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Searching for objects with unknown locations based on random walks can be optimized when
the walkers obey Lévy distributions with a critical exponent. We consider the problem of opti-
mizing statistical searches when a priori information, such as location densities, are known. We
consider both spatially dependent exponents and biased search directions. For spatially localized
target distributions and non-destructive searches, the search is most improved by biasing the search
direction.

The best statistical strategy for efficient searching for
randomly located objects is a subject of ongoing investi-
gation [1–4]. Lévy random walks are known to outper-
form Brownian (normal) random walks [3] when the pre-
cise location of the targets is not known a priori but their
spatial distribution is uniform. Lévy flights are charac-
terized by a distribution function

Π(lj) ∼ l−α
j , (1)

where lj is the flight length and 1 < α ≤ 3 [2]. The
lower bound of 1 is required in order to have a normal-
ized probability distribution (1). Such statistical search-
ing patterns are also robust as they result in space fill-
ing paths. For exponent values exceeding 3, the central
limit theorem implies that the distributions are Gaus-
sian. The optimally efficient searching exponent can be
computed analytically for a nondestructive search for a
spatially uniform target distribution [2]. In the limit of
large mean free path between targets one obtains α = 2;
for destructive searches α ↓ 1 is optimal [3].

A uniform target distribution applies to problems in
biology such a foraging for food [5]. However, for hu-
man applications, in which the searchers are software,
robots, humans, etc., there is often presumptive knowl-
edge and there are many approaches to best use this in-
formation. For example, a recent study of U-boat search
and destroy missions [6] proposes a human-in-the-loop
integrated with a heuristic optimization method. In this
paper, we propose an autonomous search method based
on the classical Lévy method but applied to a problem in
which the distribution of targets is spatially non-uniform.
We consider both spatially dependent exponents α and
biasing the choice of direction for each successive flight.
For simplicity we consider a Gaussian target distribution.
Future work would generalize to more complex target dis-
tributions.

We build our model on an unbiased Lévy search with
flight lengths satisfying Eq. (1), in which the searcher
“walks” the path as opposed to making an instantaneous
jump [2]. In this model the searcher behaves as follows:
(a) If there is a target located within a ‘direct vision’
distance rv , then the searcher detects the target. (b)
If there are no targets within a distance rv , then the
searcher chooses a direction at random and a distance lj
from a Lévy distribution. The searcher then incremen-

tally moves to this new point, constantly searching for a
target site within a distance rv . At the end of the jump,
the searcher picks a new jump distance and direction and
repeats the process. Multiple targets could, in principle,
be detected during any individual jump path.

The model on which we build has only two parameters,
the vision distance rv and the exponent α of the Lévy
distribution. The vision distance is a fixed parameter for
the model determined by the physical limitations of the
searcher. Although we develop theory and algorithms for
an infinite domain, for practical purposes and for numer-
ical simulation, we restrict to a finite system size. In this
paper we contrast two methods of incorporating a pri-

ori information into the standard Lévy model: the first
allows the distribution exponent α to depend on space.
The second biases the direction chosen for each successive
flight path (the standard model has equal probability to
jump in any direction).

We first review the results in [2] on the optimal expo-
nent α for both nondestructive and destructive searches.
Let λ denote the mean free path of the searcher between
successive target. The mean flight distance is

〈l〉 ≈

∫ λ

rv

x1−αdx + λ
∫ ∞

λ x−αdx
∫ ∞

rv

x−αdx

=

(

α − 1

2 − α

)

λ2−α − r2−α
v

r1−α
v

+
λ2−α

r1−α
v

. (2)

Here we assume that the mean distance between succes-
sive targets is a fixed λ which thus serves as a maximum
necessary jump length. Likewise, no flights are less than
the “vision distance” rv . The search efficiency function
η(α) is the ratio of the number of target visited to the
total distance traveled by the searcher,

η =
1

ℵ〈l〉
, (3)

where ℵ is the mean number of flights needed to travel
between two successive targets. ℵ can be computed as

ℵ ∼ (λ/rv)α−1for destructive searching, (4)

ℵ ∼ (λ/rv)
α−1

2 for nondestructive searching, (5)

for 1 < α ≤ 3. In the case where targets are sparsely
distributed, λ � rv , then substituting Eq. (4) and Eq.
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(2) into (3), one finds that for destructive searching, the
mean efficiency has no maximum, with lower values of α
leading to more efficient searching. Thus for destructive
searching the optimal choice is α as close to 1 as possible.
For nondestructive searches, replacing Eq. (4) with (5) in
Eq. (3) and differentiating with respect to α, the optimal
efficiency is achieved at

α∗(λ, rv) ≡ argmaxα>1η(α, λ, rv) = 2 − δ(λ, rv), (6)

where δ ∼ 1/[ln(λ/rv)]2. In summary, for a nondestruc-
tive search, an optimal searching exponent α∗ is pre-
dicted; where α∗ is a function of the mean target distance
λ and the vision radius rv . These results are independent
of the dimension of the search domain.

Searching in one dimension. We propose two meth-
ods for constructing a spatially dependent exponent α.
The first method directly applies the above arguments
for uniform target distribution to a nonuniform distribu-
tion. The second method is a heuristic model motivated
by observational data from simulation. Both models re-
quire an upper bound on the distance between targets as
a function of position in the spatial domain. Assume a
probability distribution of target locations P (x) (P ≥ 0,
∫

P = 1). Then the expected length between a fixed
point x in the search domain and a point z chosen from
the target distribution is given by

λ(x) =

∫ ∞

−∞

|x − z|P (z)dz. (7)

This gives an effective upper bound on the distance to the
nearest target. One strategy for improving a searching
method for a spatially variable target distribution is to
take a spatially dependent α based on a local value of λ.
We compare two contrasting options using λ(x) above.

Option 1A. Use α∗ in formula (6), plugging in for
λ the spatially dependent bound computed in (7). Note
that for a fixed vision radius rv , α∗ increases (to the value
2) as λ increases. A larger value of α makes the search
closer to Brownian motion, thus keeping the searcher
more contained in a region. This is because the larger the
exponent α, the smaller the average jump length, with
the jumps approximating Brownian motion as α → 3.

Option 1B. For a spatially localized probability distri-
bution, we might heuristically expect that a better search
strategy uses a smaller α where targets are sparse (larger
λ) and a larger α where targets are closer together. This
way a searcher would take smaller hop lengths in a dense
target region and larger hop lengths in a less dense re-
gion.

Using the mean distance to a target computed in (7),
we propose to choose α according to α2(x) =

H(λ(x)−rv)

(

1 +
max(P (x)) + 1

λ(x) + 1

)

+3H(rv−λ(x)). (8)

Here H denotes the Heaviside function which is one for
positive arguments and otherwise zero. Note that Option
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FIG. 1: The figure contrasts α∗ (solid line) with α2 (dashed
line) for a Gaussian distribution P (x) with variance 1, zero
mean, and a vision radius rv = 0.5.

1B has α decreasing as λ increases. Figure 1 contrasts
α∗ and α2 for the case of a Gaussian target P with zero
mean and unit variance and a vision radius rv = 0.5. For
this particular choice of P , λ can be computed explicitly

as λ(x) = xerf
(

x√
2

)

+
√

2
π e−x2/2. Note that α∗ increases

for larger x while α2 decreases. The significance of this
is that, for the Gaussian distribution, Option 1A results
in shorter jump lengths in regions of lower target density
while Option 1B results in longer jump lengths in these
regions.

Option 2. We propose a third method that biases the
jump direction based on the a priori information. Af-
ter choosing a jump length from the Lévy distribution, a
choice of direction is made using information about the
derivative Px of the a priori target distribution. Since
we wish to retain the space filling nature of the search,
we choose a nonzero probability of moving in either di-
rection. We propose the following algorithm in which β
denotes a number between 0 and 1

2 and pr and pl denote
the probabilities of jumping to the right and to the left.

� Px > 0, (the a priori distribution is increasing),
then choose pr = 1 − β, pl = β.

� Px < 0, (the a priori distribution is decreasing),
then pr = β and pl = 1 − β.

� Px = 0, then perform unbiased Lévy search.

In the computations below, we choose β = 0.25. In one
dimension, this method is very similar to the classical bi-
ased random walk [7]. Here we use local spatial informa-
tion to determine the bias. In two dimensions (discussed
below) the method is more complicated.

We present simulations of the three methods above for
nondestructive searching on a fixed box of length 200.
The vision radius rv = 1.5 and the searcher is started
randomly in the domain. Figure 2 shows the result of
each method as a function of N, the number of targets.
Each datapoint is an average over 1000 runs of 100 jumps
each. Figure 2 shows that the biased Lévy search out-
performs all unbiased searches. The variable α2 (Option
1B) method is the next efficient followed by the standard
unbiased with α = 2. Finally the simulations that used
α = α∗ (Option 1A) are least efficient. At the surface this
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FIG. 2: One dimensional Lévy walks, variable α compared
with biased searching for a Gaussian target distribution with
variance 1. Efficiencies as a function of the number of targets
N averaged over 1000 runs of 100 jumps each. The vision
radius rv = 1.5. The symbols denote � = α∗, N = α∗ with
bias, � = unbiased with α = 2, • = α2, solid line = biased
with α = 2.

is surprising as α∗ is originally derived to maximize effi-
ciency. However with a concentrated target distribution,
this choice of α tends to have a larger jump length which
gives a higher probability of “jumping over” the concen-
tration of targets at the origin. Figure 2 also shows that
bias search outperforms the variable α approach. We ex-
pect that higher dimensionality will enhance this effect.

Two dimensions. The proposed 1D search methods
can be extended to higher dimensions. Given a 2D prob-
ability distribution P of target sites, the expected length
to a target can be computed as

λ(x, y) =

∫ ∞

−∞

∫ ∞

−∞

√

(x − u)2 + (y − v)2P (u, v)dudv.

(9)
The proposed methods in Options 1AB above can be
directly extended two dimensions with this new choice of
λ.

Extending the biased Lévy search requires more dis-
cussion. Given an a priori two dimensional target dis-
tribution P (x, y), we choose the jump direction from a
continuum as opposed to left or right as in the one di-
mensional case. We choose an angular direction from a
distribution with mean

µ = tan−1

(

∂yP (x, y)

∂xP (x, y)

)

. (10)

In the case that ∇P (x, y) is undefined or zero, the angle
is chosen uniformly in [0, 2π) (i.e. it reduces to an un-
biased Lévy step), otherwise we choose the angle from a
von Mises distribution [8] with mean µ. The von Mises
distribution for points on a circle is analogous to the nor-
mal distribution of points on a line. Its properties are

well documented in [9]. An angular random variable θ
has a von Mises distribution V M(µ, κ) if its probability
density function has the form

Φ(θ) =
1

2πI0(κ)
eκ cos(θ−µ), −π ≤ θ < π, −π ≤ µ < π,

where I0(κ) is the zeroth order modified Bessel function
of the first kind. We use the wrapped Cauchy method
[10] to generate variates from this type of density. The
variables µ and κ are analogous to the mean and vari-
ance, respectively, of a normal distribution on the line.
We choose the angle of direction from a von Mises distri-
bution with parameters µ given by (10) and κ constant.
If the gradient of P is zero or undefined, then θ is chosen
uniformly in [0, 2π).

Again, we simulate and compare the different search
methods. As before we choose P to be Gaussian with
zero mean and unit variance. The vision radius, rv = 1.5,
and we average over 1000 runs, each truncated after 100
jumps. A smaller domain [−10, 10] × [−10, 10] is used;
on the domain [−100, 100]× [−100, 100], the majority of
searching is done in sparse regions preventing meaning-
ful statistics with the 100 jump cutoff. On the smaller
domain [−10, 10]× [−10, 10] we can achieve a similar hit
rate for targets in the Gaussian distribution as we did on
the [−100, 100] domain in one dimension. We compute
λ(x, y) numerically on the lattice with spacing 1

25 , and
interpolate as needed at each jump point in the simula-
tion. Figure 3 shows the efficiencies as a function of tar-
get number for the different methods. In two dimensions
the increase in efficiency by using a biased search (Option
2) is more pronounced than in one dimension. All three
computations without bias (fixed α = 2, α = α2 and
α = α2) performed similarly. The biased simulation with
α = 2 outperforms all the others, including the biased
simulation with α = α∗.
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FIG. 3: Two dimensional Lévy walks, efficiencies vs. target
number. The symbols are as in Figure 2, � = α∗, N = α∗

with bias, � = unbiased with α = 2, • = α2, solid line =
biased with α = 2.
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In two dimensions, Option 1B, defined by Eq. (8) per-
forms less well than in one dimension. This is related to
the fact that direction is more important than in the one
dimension. This effect is illustrated in the trajectories
seen in Fig. 4. The left panel denotes the trajectory from
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FIG. 4: The left panel shows a biased (κ = 1) two dimensional
trajectory. The right panel shows a dynamic α trajectory
(using α∗ (Option 1A)). rv = 0.5, and 100 jumps are allowed
before cutoff. The step size is 1 and every 5 steps are plotted.

a biased (κ = 1 in the von Mises distribution) Lévy flight,
and the right panel the trajectory from a Lévy flight with
variable α. The circles are the level sets of the a priori

target distribution. When the trajectory intersects with
the boundary of the search domain [−10, 10]× [−10, 10],
the jump is truncated and the searcher jumps again. The
maximal jump length is restricted to be the minimum
of λ(x) and 20. With these constraints, we see that the
majority of the variable α search is spatially near the
boundary of the search domain, while the biased search
repeatedly passes through the peak of the a priori target
distribution. The variable α search has the same prob-
ability of jumping in any direction, therefore, when the
searcher is near the boundary, there is a 50% chance that
the searcher will jump towards the edge of the search do-
main. In the biased case, when the searcher is near the
boundary, there is a large probability that the searcher

will jump towards the peak of the Gaussian. Increasing
the computational domain size will only serve to worsen
the effect shown in Figure 4 (right); the searcher can
wander very far from the center of the target distribu-
tion before returning to the concentrated area of targets.

We conclude that when searching with apriori infor-
mation, biasing the searching direction has the most posi-
tive effect of the methods considered. Our results concern
nondestructive search, which is the predominant type
seen in nature [11]. As a point for further investigation,
we propose a simple way to extend our algorithms to
destructive searching. Start by performing a nondestruc-
tive search with a priori target information in the form of
a probability density P , as above. As targets are located
and destroyed, dynamically update P to include infor-
mation about areas that have been searched and thus
are now known to contain no targets. In this way a bi-
ased search would continue to look toward new areas that
have not been searched. The conclusions about bias be-
ing more effective than the dynamic α search are largely
based on our computational results for single point Gaus-
sian probability distribution. As another point of further
study, it would be interesting to see how the different
methods perform for bimodal and more complex distri-
butions of target sites. Moreover, a recent study [12]
considers the dynamics of Lévy flights in the presence of
external deterministic potentials. It would be interesting
to consider optimal search strategies given an external
field or flow. This is particularly relevant to underwa-
ter searching which is affected by ocean currents and to
aerial searching affected by wind and weather patterns.
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