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Abstract: This paper presents a multiscale searching and target-locating algorithm for a group of agents moving in a
swarm and sensing potential targets. The aim of the algorithm is to use these agents to efficiently search
for and locate targets with a finite sensing radius in some bounded area. We present an algorithm that both
controls agent movement and analyzes sensor signals to determine where targets are located. We use computer
simulations to determine the effectiveness of this collaborative searching. We derive some physical scaling
properties of the system and compare the results to the data from the simulations.

1 INTRODUCTION

Collaborative sensing has long attracted research in-
terest. Researchers have investigated scenarios where
sensors require localization (Bullo and Cortes, 2005),
where they are used to control collaborative move-
ment (Bopardikar et al., 2007), detect a scalar field
(Gao et al., 2008), or perform a collaborative task
(Smith and Bullo, 2009). Using such collaborating
sensors to detect and locate targets within an area
has been studied in reference to the “mine counter-
measure” problem (Cook et al., 2003), the specific
military task of locating ground or water-based mines.

In this paper, we develop a multiscale search and
target-locating algorithm for a type of mine counter-
measure problem in which a number of independent
agents are given the task of determining the precise
location of targets within a domain. The algorithm is
designed to handle problems where the scale of the
target sensing radius is much smaller than the domain
size. The focus of this work is to identify optimality
of the algorithm as a function of the swarm size, the
number of agents per group and the distribution of
resources into different groups.

We assume a connected domain with no holes, and
use noisy sensors that detect a scalar quantity emitted
by each target, but only when the agent is within a
fixed distance rs from a target. We control the mo-

tion of the agents through a model that makes the
individuals form distinct swarms, and present filter-
ing techniques that allow for locating targets despite
noisy data. The inspiration for this approach comes
in part from biology, as in the example of birds form-
ing flocks when flying and searching for food (Travis,
2007).

Next, we analytically derive some of the system’s
main scaling properties, such as the relationship be-
tween the swarm size, the distance between agents
and the target sensing radius, and compare to the ex-
perimentally recorded data. We conclude that our an-
alytical approach closely matches the data from the
simulations.

We assume a sensing radius rs much smaller than
the domain but comparable to or less than the swarm
size. Other assumptions, however, may require differ-
ent algorithms. For example, in (Burger et al., 2008)
the sensing radius is infinite, but sensing is limited by
obstacles, and in (Olfati-Saber, 2007) communication
between agents is not always possible.

1.1 Scenario Description

We consider M targets in a two-dimensional simply-
connected domain, that is, a flat enclosed area with
no holes, and N agents able to move freely within
the domain. Each target emits a radially symmetric



scalar signal g(r) that decays with the distance r from
the target, and drops to zero at some rs, the target’s
sensing radius. Agents detect this signal with an addi-
tional Gaussian, scalar white noise component added.
If an agent is within the sensing radius of multiple tar-
gets, it detects only the sum of the individual signals,
again with a noise component added. We suppose
that an agent takes sensor readings at regular inter-
vals (once per “time step”) spaced such that the noise
between time steps can be assumed independent.

The algorithm accomplishes three tasks: filter-
ing the noisy sensor data, controlling the coordinated
movement of the agents based on this data, and deter-
mining when a target has been acquired and where it
is located.

1.2 Structure of the Paper

The algorithm is described in the next three sections:
Section 2 focuses on the techniques we use to process
sensor data, Section 3 describes the general move-
ment control of the agents, and Section 4 describes the
method for locating a target. The algorithm is evalu-
ated in Section 5. Scaling properties are derived and
checked against simulations in Section 6, which is fol-
lowed by a conclusion and ideas for future research in
Section 7.

2 SENSOR DATA PROCESSING

Due to noise in the agent sensor readings and the sens-
ing radius rs being finite, we employ two distinct fil-
ters to the data from the readings: a Kalman filter and
a cumulative sum (CUSUM) filter. The Kalman fil-
ter reduces or eliminates the noise in the data while
the CUSUM filter is specifically suited to determining
whether or not an agent is within the sensing radius of
a target.
The sensor data model follows as a mathematical for-
mula. As explained in Section 1, the formula de-
scribes sensor readings as the sum of scalar signals
that depend only on the distance from a target, to-
gether with a noise component.
Given the M targets at positions y j and an agent i with
current position xi(tk) at timestep k, the agent sensor
reading si(tk) is given by

si(tk) =
M

∑
j=1

g(|y j− xi(tk)|)+ni(tk) , (1)

where ni(tk) denotes sensor noise and g(r) is the sig-
nal strength at a distance r from the target. For
simplicity, we have assumed that g(r) is isotropic,

smooth, decaying, the same for all targets, and has
a cutoff at rs.

2.1 Kalman Filtering

Before using the agent sensor readings to locate tar-
gets or control agent motion, we pass the sensor read-
ings through a Kalman filter. Since the signal from
the target is presumed to be varying smoothly with
the distance to the target r (up to the cutoff point rs)
as the agents navigate the environment, a Kalman fil-
ter is a natural choice to eliminate or reduce noise in
the sensor readings. The Kalman filter takes the sen-
sor reading si(tk) of agent i at time tk, and converts it
into the filtered data fi(tk) according to

Pi(tk) =
Pi(tk−1)Ri(tk)

Pi(tk−1)+Ri(tk)
+Qi(tk) , (2)

and

fi(tk) = fi(tk−1)+
Pi(tk)(si(tk)− fi(tk−1))

Pi(tk)+Ri(tk)
. (3)

Here Ri(tk) is the square of the noise amplitude,
known or estimated by the agent, and Qi(tk) is the
square of the estimated change of the signal ampli-
tude between two time steps, either fixed beforehand
or estimated using the current velocity of the agent (in
this paper, it is fixed beforehand). Pi(tk) is roughly the
variance of the sensor reading’s amplitude. The out-
put fi(tk) of this filter is then used in target locating,
as described in Section 4.

2.2 Threshold Check and the CUSUM
Filter

Before attempting to locate targets, an agent needs to
determine whether or not it is receiving an actual sig-
nal, rather than just noise. In other words, an agent
needs to determine whether it is within the sensing ra-
dius of a target at each time-step tk. This information
is then used both in controlling the movement of the
agents, and in determining when to begin estimating
a target’s location. In order to determine the sensing
status of an individual agent, we employ a CUSUM
filter, as this type of filter is well-suited to determin-
ing abrupt changes of state (Page, 1954), and has been
used in the similar task of boundary tracking (Jin and
Bertozzi, 2007; Chen et al., 2009). In essence, the fil-
ter keeps a sort of running average of the signal, and
notes when this average seems to have changed by ris-
ing above a certain threshold, indicating that the agent
is now within the sensing radius of a target. As the
noise is effectively summed up by the filter, it tends
to cancel out.



In the original form of the CUSUM filter, we
imagine a sensor that returns a sequence of inde-
pendent observations s(t1)...s(tn), each of which fol-
lows one of two probability density functions: a pre-
change function g0 and a post-change function g1.
The log-likelihood ratio is

Z(tk) = log[g1(s(tk))/g0(s(tk))] , (4)

and we define the CUSUM statistic as

U(tk) = max(0,Z(tk)+U(tk−1)), U(t0) = 0 . (5)

We then choose a threshold Ū , and when U(tk) ≥ Ū
for the first time, the algorithm ends and we declare
that the state has changed from g0 to g1. The threshold
should be chosen so as to minimize both false-alarms
(these happen more frequently for small Ū) and time
to detection (this gets larger as Ū increases).

In our system, we choose the special case where
sensor reading follows a Gaussian distribution. In the
pre-change state, the agent is outside the sensing ra-
dius of any target and senses only noise, which we
model as a Gaussian with zero mean. In the post-
change state, the agent enters the sensing radius of a
target, so the mean is larger than zero though the prob-
ability distribution is still Gaussian. If we estimate the
mean of state g1 as 2B, then

Z(tk) = log

[
e−[s(tk)−2B]2/2σ2

/(σ
√

2π)
e−s(tk)2/2σ2

/(σ
√

2π)

]

=
−[s(tk)−2B]2

2σ2 +
s(tk)2

2σ2

=
2B
σ2 [s(tk)−B] . (6)

We also modify the algorithm so that it can detect
status changes both into and out of detection zones.
Thus, we implement two filter values: Ui(tk) to deter-
mine when an agent has entered a zone, and Li(tk) to
determine if they have left a zone. We also define a
binary function bi(tk) which denotes the status of an
agent; bi(tk) = 1 denotes that the agent is near a target
and bi(tk) = 0 means otherwise. These filter values all
start at zero, and are updated according to

Ui(tk) = max(0,si(tk)−B+Ui(tk−1)) , (7)

Li(tk) = min(0,si(tk)−B+Li(tk−1)) , (8)

and

bi(tk) =

 1 bi(tk−1) = 0, Ui(tk) > Ū
0 bi(tk−1) = 1, Li(tk) < L̄
bi(tk−1) otherwise.

(9)

In addition, when the status of agent i changes, we
reset the corresponding Ui or Li to zero.

Figure 1: Sample filter results from one agent within a simu-
lation as a function of time. The fine-dashed purple line rep-
resents the true signal that should be detected by the agent.
The blue dots are the actual signal detected by the agent
at each time step (i.e., the purple curve plus noise). The
green line is the signal status returned by the CUSUM filter,
with a thin crimson line representing the value B = 0.1. The
sparsely-dashed red curve is the result of the Kalman filter.

Recall that B is a sensor value that is less than the
predicted mean when inside a sensing radius, and Ū
is our chosen detection threshold. So, when the agent
is near a target, the sensor reading si(tk) tends to be
larger than B, causing Ui(tk) to grow quickly until it is
larger than Ū , indicating a change in status. The con-
verse is true if an agent leaves the sensing region of a
target. The values of the various parameters of the fil-
ter are problem-specific, and should be estimated in a
manner that minimizes both false-alarms while keep-
ing the average time to detection as low as possible,
as mentioned above.

An example of sensor reading from an agent
within our current simulations can be seen in Fig. 1.
The Kalman filter does a good job of reducing initial
noise, bringing the sensor readings much closer to the
true values. Near the middle of the plot, the agent en-
ters into the sensing radius of a target, and this is re-
flected by a transition within the CUSUM filter from
b = 0 to b = 1. There is, as expected from the behav-
ior of CUSUM, a slight delay between when the agent
actually enters into the radius and when this transi-
tion of b occurs. After spending some time within
the sensing radius, the estimated target location stabi-
lizes, the agent begins to subtract the true signal from
its measurements (this will be explained below), and
the agent leaves to find further targets.

3 AGENT MOVEMENT
CONTROL

We have chosen to control the movement of our
agents by breaking up our total agent population N



Figure 2: A screenshot from the simulation. Four swarms
with eight agents each are used. Three of them are in the
searching phase, and the upper right swarm is in the target-
locating phase. Large circles around targets denote the sens-
ing radius. Small crosses are already registered targets.

into a number of distinct, leaderless “swarms”. This
is done for a variety of reasons. Firstly, it increases
robustness, as any individual swarm member is not
critical to the functioning of the swarm as a whole.
Secondly, since we imagine that any sensor data ac-
quired by readings from these agents is local in space,
a swarm provides a method of extending the effec-
tive sensing area to that of the whole swarm. Thirdly,
a swarm of nearby agents may use their combined
measurements to decrease sensor noise. Finally, the
swarm provides the ability to locate targets via tri-
angulation or gradient methods. Each of the vari-
ous swarms may search within a different region of
space if a divide-and-conquer tactic is desired, or each
swarm may be free to roam over the entire region.
In the following two sections we mainly focus on the
control of one swarm.

Since the agents have a limited sensing radius, we
choose to employ two different phases of swarm mo-
tion. When there are no targets nearby, the agents
should move through the space as quickly and ef-
ficiently as possible, performing a simple flocking
movement as legs of a random search. After a sig-
nal is sensed via the CUSUM filter, the agents should
stop, then slowly move around the area, searching for
the exact point of the nearby target. We call these
two phases the searching phase and the target-locating
phase, respectively. For a general idea of the two
types of motion, see Fig. 2.

3.1 The Swarming Model

There are a variety of mathematical constructs that
lead to agent swarming (see for example (Justh and

Krishnaprasad, 2004), (Vicsek et al., 1995), and
(Sepulchre et al., 2008)). Here we choose a second-
order control algorithm similar to that described in
(D’Orsogna et al., 2006) and (Chuang et al., 2007),
which has been successfully implemented as a control
algorithm for second-order vehicles on real testbeds
(Nguyen et al., 2005; Leung and Bertozzi, 2007). In
this system, each agent of the swarm is subject to self-
propulsion, drag, and attractive, repulsive, and veloc-
ity alignment forces from each of the other agents.
The position and velocity of an individual agent i are
governed by

dxi

dt
= vi , (10)

and

mi
dvi

dt
= (α−β|vi|2)vi−

∇U(xi)+
N

∑
j=1

Co(v j− vi) , (11)

where

U(xi) =
N

∑
j=1

Cre−|xi−x j |/lr −Cae−|xi−x j |/la . (12)

Depending upon the various values of the parame-
ters, the swarms can undergo many complex motions
(D’Orsogna et al., 2006), two of which are flocking
and milling. In addition, in some cases the swarms
can alter motions spontaneously (Kolpas et al., 2007).
For our purposes, we simply alter the parameters to
obtain the type of motion desired, as described in
(D’Orsogna et al., 2006).

3.2 Searching Phase

In this phase, the agents move together in one di-
rection as a uniformly-spaced group travelling with a
fixed velocity. Since the agents know nothing about
the location of targets, a random search is chosen
here. Specifically, we use a Lévy flight, which is
optimally efficient under random search conditions
(Viswanathan et al., 1999), and is the same movement
that some birds employ (Travis, 2007). To accomplish
this type of search, we simply command the swarm to
turn by some random angle after flocking for some
random amount of time. For a Lévy flight, the time
interval ∆t between two turns follows the heavy-tailed
distribution

P(∆t)∼ ∆t−µ , (13)

where µ is a number satisfying 1 < µ ≤ 3. The value
of µ should be chosen optimally according to the sce-
nario in question, as in (Viswanathan et al., 1999). For
destructive searching (where targets, once located, are



no longer considered valid targets), µ should be as
close to 1 as possible. For non-destructive searching
(where located targets remain as valid future targets),
the optimal µ∼ 2−1/[ln(λ/rs)]2, where λ is the mean
distance between targets and rs is the sensing radius.

3.3 Target Locating Phase

When enough agents agree that a target is nearby
(see Section 2.2), the target-locating phase begins. In
this phase, we want the agents to move only towards
the target, so we remove the velocity alignment force
(Co = 0), disable self-propulsion (α = 0), and issue
a halt command so that all agents begin target locat-
ing with zero velocity. In addition, data from agents
within the sensing radius is used to continually esti-
mate the position ȳ of the target (see section 4), and
the agents in the swarm then try to move towards it,
thus attracting other agents in the swarm not yet in the
sensing radius to move closer to the target as well.

To make the agents move towards the target, we
add another potential in Eq. 12,

Uc = Cc(xi− ȳ)2/2 , (14)

where ȳ is the estimated position of the target. The full
control equations in the target-locating phase there-
fore become Eq. 10 and

mi
dvi

dt
=−β|vi|2vi−∇U(xi) , (15)

where

U(xi) =
1
2

Cc(xi− ȳ)2+

N

∑
j=1

Cre−|xi−x j |/lr −Cae−|xi−x j |/la . (16)

To show that this system converges to a stationary
swarm centered on the target, we note that the total
energy of the target locating system,

E =
1
2

N

∑
i=1

mi|vi|2 +
N

∑
i=1

U(xi) , (17)

serves as a Lyapunov function, so that the collective
tends to minimize it. That is,

Ė =−β

N

∑
i=1
|vi|4 ≤ 0 . (18)

Hence, velocities will eventually reach zero (due
to drag) and the swarm members will spatially re-
order themselves so as to minimize the potential en-
ergy, forming a regular pattern centered at the target
position. This stationary state serves as a spiral sink,

however, so the swarm tends to oscillate about the tar-
get position for some amount of time that depends on
the value of Cc, with a high Cc yielding less oscilla-
tion. However, since the potential being minimized
now includes a term that is effectively attracting all of
the agents towards the center of mass, the swarm will
be more compact than it was before the target locat-
ing potential was added, so too large of a Cc will make
the swarm smaller than desired. In practice, then, we
want to make Cc just large enough to minimize the os-
cillations in space without making the swarm get too
compact.

4 LOCATING TARGETS

During the target-locating phase of motion, all agents
of the swarm that are within the sensing radius keep
a common register of all of their positions and signal
readings made since entering the radius (see “Thresh-
old Check”, Section 2.2, above). The agents then
use a least-squares algorithm to give an estimate ȳ of
where the target is located via

ȳ = min
y

N′

∑
k=1

[g(|y− x(tk)|)− f (tk)]
2 , (19)

where N′ is the number of sensor readings in the com-
mon register.

Solving this least-squares minimization is quite
straightforward, but the technique requires certain as-
sumptions. Firstly, it is assumed that the form of g(r)
is known by the agents. For certain classes of tar-
gets and scalar fields, we believe this assumption to
be fair. Secondly, it is assumed that only one tar-
get is nearby, or that one target is much closer to
the agents than any other target. When the sensing
radius is small compared to the average distance be-
tween targets, these assumptions should hold true. If,
however, these assumptions are invalid for the partic-
ular system at hand, other methods such as gradient
estimation could be employed.

If the estimated position of the target stabilizes, it
is considered to have been located, and the agents reg-
ister the position of the target and return to the search-
ing phase. The model signal g(r) from the registered
target will be subtracted from further sensor readings
so that it is not detected again, a form of destructive
searching. We thus modify Eq. 1 to read:

si(tk) =
M

∑
j=1

g(|y j− xi(tk)|)+ni(tk)

−
M′

∑
j=1

g(|ȳ j− xi(tk)|) , (20)



Figure 3: A simple flowchart of the algorithm.

where M′ is the total number of registered targets.
Note that the positions of these targets may or may
not be accurate, due to noise and other errors. If, in-
stead of the estimated target location stabilizing, the
agents lose track of the target, they simply return to
the searching phase without registering the target.

For a general idea of the entire algorithm, see
Fig. 3.

5 PERFORMANCE EVALUATION

Two main criteria for the evaluation of this algo-
rithm are efficiency and accuracy. The two criteria
are roughly determined by the two different phases:
efficiency is mainly related to the swarming phase,
while accuracy is mainly related to the target-locating
phase. To evaluate the performance of the algorithm,
we used the following measurements: the average
time needed for the group to locate one target (av-
erage time), the average distance between the actual
and estimated target positions (average error), and the
percentage of registered positions that are not within
any actual sensing radius (false register). Note that
the false registers are not included in the average er-
ror calculation.

We ran computer simulations of the algorithm in a
dimensionless 20 by 20 area, with a total of 32 agents
and a dimensionless sensing radius of 1. The signals
have a Gaussian form, with a peak signal-to-noise ra-
tio of about 10.5 dB. Two cases were considered. In
the first case, there were 20 targets and we restricted
the duration of the simulation, the main goal being
that of measuring efficiency. In the second case, we

Table 1: Case 1: 20 targets, time limit 50.0. Asterisks de-
note the use of the divide-and-conquer tactic.

Swarms Agents/
swarm

Average
time

Average
error

False
reg.

1 32 9.17 0.163 9.77%
2* 16 4.83 0.155 8.40%
2 16 5.45 0.159 11.90%
4* 8 3.15 0.158 8.68%
4 8 3.52 0.16 10.59%
8* 4 2.67 0.208 9.91%
8 4 2.9 0.200 11.73%
16* 2 2.64 0.257 15.59%
16 2 2.64 0.253 15.17%

distributed just 5 targets randomly, and used a much
longer time limit, with the main goal of measuring
accuracy. In either case, the simulation ends either
when time runs out or when all targets are found. For
each case, we performed 100 trials and calculated the
average of the measurements.

Since we may have multiple groups, it is important
to decide how they cooperate with one another. Here,
we try two different policies. One is a simple divide-
and-conquer tactic where we divide the whole region
into subregions before the simulation, and each group
is in charge of a single sub-region, remaining within
that area the entire time, and performing a Lévy flight
search pattern within its designated sub-region. The
other policy allows all groups to search the entire re-
gion independently. In the results, we denote the use
of the divide-and-conquer tactic with an asterisk (*).

An important factor that influenced these mea-
surements is how many swarms we divided the agents
into, or equivalently, the number of agents in each
swarm. We therefore present the results for various
sub-divisions. The results are listed in Tables 1 and 2,
with their associated plots presented in Figs. 4 and 5.

From this data we can see that the number of
agents in the swarm works as a balance between accu-
racy and efficiency. As could have been anticipated,
larger swarms give more accurate results, while mul-
tiple, smaller swarms make the search more efficient.
To have an acceptably low error and low false target
registration rate, groups of at least four agents should
be used. This is perhaps due to the fact that at least
three agents are needed to locate a target, using trian-
gulation. Also, we note that the divide-and-conquer
tactic seems to work better for this search scenario.



Table 2: Case 2: 5 targets, time limit 200.0. Asterisks de-
note the use of the divide-and-conquer tactic.

Swarms Agents/
swarm

Average
time

Average
error

False
reg.

1 32 45.53 0.128 10.76%
2* 16 25.51 0.116 8.06%
2 16 26.89 0.117 8.95%
4* 8 14.22 0.134 8.96%
4 8 16.64 0.118 8.79%
8* 4 8.35 0.161 7.24%
8 4 10.58 0.172 8.97%
16* 2 8.31 0.223 11.97%
16 2 8.91 0.252 13.79%

Figure 4: Average search time (left) and average error
(right) as a function of the number of agents in each swarm
for case 1 (20 targets and time limit 50.0). The blue line is
for the divide-and-conquer tactic and the red dashed line is
for the result without divide-and-conquer.

6 SCALING PROPERTIES

Having noted the results above, one may wonder how
these are affected by the various scales present in
the system, such as the swarm size, distance between
agents, target sensing radius, etc. Below we present

Figure 5: Average search time (left) and average error
(right) as a function of the number of agents in each swarm
for case 2 (5 targets and time limit 200.0). The blue line is
for the divide-and-conquer tactic, and the red dashed line is
the for result without divide-and-conquer.

Figure 6: Scales influencing target locating time: the swarm
diameter D, inter-agent length l, and sensing radius rs.

some arguments for determining optimal search pa-
rameters given these scales.

6.1 Estimating the Swarm Diameter

We first define a measure for the swarm size, the
swarm diameter D = max(|xi − x j|)N

i=1, where N is
the number of agents in the swarm. Let us also de-
fine the inter-agent distance l = |xi− x j| for any two
nearest-neighbor agents i, j.

For the remainder of this section (and for the re-
sults in Fig. 7), we choose the parameters of motion so
that the system is either in regime VI (catastrophic) or
VII (H-stable) as defined in (D’Orsogna et al., 2006),
with the swarms flocking naturally in VII, and in VI
due to the velocity alignment term Co in Eq. 11. Un-
der these regimes, D and l stabilize after a transient
period, so for the purposes of this section we will
consider them to be constant in time. In such a sta-
ble swarm, agents are uniformly distributed in space
along a hexagonal pattern, so that the swarm diameter
D and inter-agent length l are related geometrically as
follows: since the area occupied by a single agent in
the swarm is Aa ≈ πl2/4 and the total swarm area is
As = πD2/4≈ NAa, then

D'
√

Nl . (21)

Thus, D scales with l, and for N = 16 (as used
in Fig. 7) we get D ' 4l. Since l is approximately
the distance that minimizes the inter-agent potential
of Eq. 12, we can easily adjust the swarm diameter D
by varying the system parameters.
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Figure 7: Average time to reach a target T̄ as a func-
tion of the swarm diameter D for rs = 3.0. Values of D
were obtained over a range Cr = 2.0−12.0, lr = 0.2−0.7,
Ca = la = 1.0. Averaging was carried out over 200 simu-
lated trials, yielding the numerical results (circles); the the-
oretical results of Eq. 26 with the best fitting τ are shown as
a line. The number of agents N = 16, and Dopt ≈ 8.

6.2 An Upper Bound on the Optimal
Swarm Diameter

Consider a setting with one target of sensing radius rs
and one swarm of diameter D, as in Fig. 6. We mea-
sure the average time to locate the target T̄ by starting
the swarm at the center of the search field at t0, plac-
ing the target at a random location within the field, al-
lowing the simulation to run until time T when the tar-
get is found, and averaging these T values over many
runs of the simulation. As D grows, we observe (see
Fig. 7) that T̄ decreases until an optimal swarm di-
ameter Dopt is reached, after which T̄ increases again,
growing without bound. We wish to explain this, by
first finding an upper bound on Dopt.

Let us begin by fixing the swarm consensus per-
centage at 25%; i.e., the swarm of agents decides
a target is present when 1/4 of the agents or more
are within the sensing area of a target, At = πr2

s (see
Fig. 8). Clearly, the borderline case between detection
and non-detection occurs when the target area is com-
pletely subsumed within the swarm area, yet there are
only just enough agents (25% of the total) within the
target sensing radius to detect it. If we assume a con-
stant density of agents in the swarm, this scenario oc-
curs when the target area is 1/4 of the swarm area. So,
it must be the case that

D≤ 4rs , (22)

or else the target will not be detected at all. This con-
dition therefore gives an upper bound for Dopt. The
condition (22) can also be written in terms of l, in

Figure 8: Sensing configurations for the case when 4 or
more agents are required to sense the target before it can
be detected. (a) Though there is overlap between the swarm
and target, too few agents can sense the target for it to be
detected. (b) The largest inter-agent distance l while still
allowing for detection, l = rs.

Figure 9: When rs is too small compared to D, the swarm
does not detect the target. The snapshots (a)-(d) show the
swarm flying over the target without locating it. Here N =
24, rs = 1.5, required percentage for consensus is 25%, and
D stabilizes at ≈ 13.5.

which case l ≤ rs; the borderline case is illustrated in
Fig. 8(b). In Fig. 9, snapshots from an actual simula-
tion show how the swarm flies over the target without
being able to detect it in a case when condition (22) is
violated.

6.3 An Approximation for the Optimal
Swarm Diameter

Now that we have an upper bound on Dopt, we assume
that condition (22) is met and look for approximate
expressions for Dopt and T̄ . First, we note that the
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Figure 10: Parameter dmax versus D for rs = 3.0. Note that
dmax increases at first, as the growing size of the swarm al-
lows it to be further away while still easily satisfying (22).
However, after the peak at Dopt ≈ 8, the condition (22) be-
comes the limiting factor, requiring greater overlap between
the two areas for detection to occur.

area of overlap Ao between the target area and swarm
area, when the centers are separated by a distance d,
is given by

Ao = r2
s arccos

[
z
rs

]
+

D2

4
arccos

[
2(d− z)

D

]
−

z
√

r2
s − z2− (d− z)

√
D2/4− (d− z)2 , (23)

where

z≡ r2
s −D2/4+d2

2d
. (24)

Eq. 23 is valid for |rs−D/2| ≤ d ≤ rs +D/2. Now, as
above, we require that Ao be at least equal to 25% of
the swarm area in order for the target to be detected.
Thus, we obtain an implicit equation for the maxi-
mum separation dmax between the center of the swarm
and the target location such that the target is detected:

Ao(rs,D,dmax) = πD2/16 . (25)

The parameter dmax will depend therefore upon rs and
D. At least in terms of the time spent within the
searching phase of the algorithm, the shortest time T̄
until detection ought to occur when, for a given rs, D
is chosen such that dmax is maximized (see Fig. 10),
giving the largest effective target size to hit; hence this
D should be Dopt. Furthermore, we expect a scaling
law such that the time to detection is roughly given by

T̄ ≈ τ

[
Afield

πd2
max
−1
]

, (26)

where τ is a characteristic timescale and Afield is the
total area of the search field.

We have experimentally verified this scaling, with
numerical results usually quite close to the theoretic

values, as illustrated by the example with rs = 3.0 in
Fig. 7. We do note that the actual time to detection
is a bit above the theory for D > Dopt, presumably
due to our assumption of constant density in deriving
Eq. 25; that is, (especially for large D) the area of
overlap between target and swarm may be sufficient,
but still not contain at least 25% of the agents, causing
the time to detection to be above that expected.

7 CONCLUSION

We considered a mine counter-measure type scenario
using multiple agents that move cooperatively via
swarming. The agents use a variety of signal filters
to determine when they are within sensing range of
a target and to reduce noise for more accurate con-
trol and locating of targets. We explored the pa-
rameter space through simulations, determining op-
timal values for some of the search parameters. We
derived scaling properties of the system, compared
with the data from simulations, and found a good
experimental-analytical fit.

There are many openings for future research in
this area. First, we could use alternate methods in
some parts of the algorithm. A potential change
is to use a compressed sensing method (Cai et al.,
2008) for target locating, which would enable us to
find multiple targets at the same time. Another in-
teresting modification would be to use an anisotropic
Lévy search and take previously covered paths into
account. Different scenarios could also be evaluated,
which might lead to different results for accuracy and
efficiency, or even suggest using new algorithms. For
example, we could extend the two dimensional prob-
lem to 3-D, as would be the case for underwater tar-
gets. Or, perhaps the model for the detected signal is
unknown, in which case we would employ a different
method to estimate the target positions. Finally, apart
from numerical simulations, we plan to do experi-
ments on a real testbed, with small robotic vehicles
as agents. This would provide an evaluation of the
algorithm in the presence of real sensor noise, which
may not be entirely Gaussian in nature.
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