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Abstract— In this paper, we study cooperative control algo-
rithms using pairwise interactions, for the purpose of control-
ling flocks of unmanned vehicles. An important issue is the
role the potential plays in the stability and possible collapse
of the group as agent number increases. We model a set of
interacting Dubins vehicles with fixed turning angle and speed.
We perform simulations for a large number of agents and we
show experimental realizations of the model on a testbed with a
small number of vehicles. In both cases, critical thresholds exist
between coherent, stable, and scalable flocking and dispersed
or collapsing motion of the group.

I. INTRODUCTION

A. Motivation

Social aggregation is a remarkable aspect of animal behavior.

Large numbers of individual agents interacting with each

other are able to self-organize into complex yet coordinated

patterns such as insect swarms, fish schools and bird flocks

[1]. These systems have recently become of great interest

for the mathematical [2], physical [3], [4] and biological

sciences [5] with promising applications for the development

and control of autonomous, multi-vehicular ensembles [6],

[7]. One of the main goals of this nascent field of research

is to program interactions among individuals so that desired

collective behaviors may arise. The emergence of spatial

patterns however, can be dramatically affected by even small

parameter changes in interactions among individuals, in

constituent number or speed [8]. In this paper, we formulate

criteria, valid for general pairwise interactions, to ensure

local group cohesion of a first order model. When inter-

actions are controlled by a Morse potential, we investigate

stability and scalability through numerical simulations and

practical testbed applications, demonstrating the existence of

thresholds and cutoffs for different regimes of aggregation.

B. Related work and outline

Swarming vehicular systems are often modeled as two-

dimensional point particles in which members may interact

with one another through attractive-repulsive pairwise in-

teractions. Specific potential choices lead self-propelled or

kinematic particles to self-organize into coherent patterns

[4], [9], [10], [11], [12]. More recently, swarm stabilization

or collapse with increasing constituent number has been
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predicted [8]. Virtual leaders [6] and structural potential

functions [13], [14] can be introduced to direct and stabilize

vehicles into desired formations or to avoid obstacles. The

robustness of various algorithms in the presence of noise,

communication delays and other non-idealities, have been

tested on several testbeds, both for single and multi-vehicular

systems [15], [16]. Activities such as spatial dispersion,

gradient navigation, and cluster formation have also been

reported [17] as well as single-vehicle path following, sta-

tionary obstacle avoidance, and cooperative searching [18],

[19].

The subject of flock cohesion for first order systems has

been analyzed in detail in Refs. [9], [10], [11], where the

attractive-repulsive interaction is specified and always has the

unphysical feature of being unbounded for large distances.

The proof that agents converge to a finite region in space

depends heavily on this assumption. In the present work, on

the other hand, we present a general theory applicable to

any first order kinematic system subject to interactions, and

find local conditions for flock cohesion. We apply our theory

to the specific case of the Morse potential, which decays

exponentially at large distances and represents a much more

realistic description of natural and artificial swarming agents.

The theory is presented in section II where we also compare

our results with known properties of second order dynamic

descriptions. In section III we adapt our model to a group of

Dubins vehicles [20], [21] with specific attractive and repul-

sive interactions. We discuss stability and scalability of the

system for certain parameter ranges, and we also investigate

the effects of virtual leaders. Finally, in section IV, results

from numerical simulations and experimental realizations of

the model for small vehicle numbers are shown.

II. THEORY

A. First order models

We consider a general potential flow for a particle at position

~ri, at distance ri = |~ri| from the origin, subject to dissipation

γ and to pairwise interactions U :

~̇ri = −γ~∇i

∑

j 6=i

U(rij). (1)

Here rij ≡ |~ri − ~rj | denotes the distance between agents

i, j. For simplicity in the remainder of this paper we will set

γ = 1. The potential U has an attractive and repulsive part

denoted by Ua, Ur, respectively. Then, U ′ = U ′
a − U ′

r, with

U ′
a, U ′

r ≥ 0. The center of mass ~x =
∑N

i=1 ~ri is stationary for
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any interaction potential that depends solely on the distance

between agents. Without loss of generality we let ~x = 0.

A free agent is defined as one whose distance to all

other members of the swarm is greater than the repulsive

length scale of the potential. In Ref. [9], free agents interact

through an ad-hoc potential that, at large enough distances,

is essentially a spring. This unrealistic attraction increases

with distance, so that two free agents infinitely far from

each other are also infinitely attracted to each other. It is

not surprising then, that such free agents converge to an

absorbing ball around the center of mass with finite con-

vergence time: the crucial point in the proofs is the strongly

attractive, yet unphysical, nature of the interactions at infinite

distances. In particular, agents are shown to collapse inside

the absorbing region, regardless of constituent number N
and initial condition. The radius of the absorbing ball is

independent of N so that the density of the final resting

state diverges as N → ∞.

In this paper we find the conditions on a general inter-

action U for which this collapsing behavior can be proven

locally, that is if all agents start inside a fixed set. We

will later particularize this theorem to the case of a Morse

potential, that has the much more realistic feature of decaying

to zero as the interparticle distance becomes large. We make

the following definition:

Definition 1 : Diffused state. A flock is in a diffused state

if rij > δ ∀i 6= j, where δ is the repulsive range such that

U ′(r) > 0 for all r > δ.

Note that in order to be in a diffused state, the potential

must yield only attraction outside of a certain radius. The

following Lemma shows that, regardless of the specific form

of the potential, a diffused state always shrinks.

Lemma 1 : Weak maximum principle. Define the flock radius

as R ≡ supi ri. For a flock in the diffused state, Ṙ ≤ 0.

Proof : Let R = ri and define r̂ij ≡ ~rij/rij . From Eq. 9

then:

ṙi
2

2
= ~ri · ~̇ri = −~ri ·

N
∑

j 6=i

r̂ijU
′(rij) (2)

=

N
∑

j 6=i

(

~ri · ~rj − r2
i

)

rij
U ′(rij) ≤ 0 (3)

since r2
i ≥ ~ri · ~rj and U ′ > 0 in the diffused state. Thus r2

i ,

and ri, are decreasing functions and Ṙ ≤ 0. 2

A corollary to the above Lemma 1 is that the swarm size

decreases even if only the outermost agents are in a diffused

state. This is due to the fact that the proof only uses an

estimate for the farthest agents of the swarm. We now prove

a local stability limit for general interactions U and find

conditions for particles initially constrained to a local region

of radius R, to evolve into a more compact ball of radius

R∗ < R. The proof uses a Lyapunov function discussed in

[9], [10].

Theorem 1 : Existence of bound states. Consider N particles

located at ~ri with ri ≤ R ∀i, 1 ≤ i ≤ N . If a finite constant

value K > 0 exists such that max {0≤r≤2R} |Kr−U ′(r)| <
KR, then asymptotically ri ≤ R∗, with R∗ < R.

Proof : We choose the Lyapunov function Vi = r2
i /2. Its time

derivative obeys the following

V̇i = −~ri · ~∇i

∑

j 6=i

U(rij) (4)

= −~ri ·
∑

j 6=i

r̂ijU
′(rij) (5)

≤ −KNr2
i + ri(N − 1)η, (6)

where η ≡ max{ 0≤r≤2R} |Kr−U ′(r)|. In going from Eqn. 5

to Eqn. 6 we have added and subtracted −K~ri(~ri−~rj) in the

sum and where K > 0 is an arbitrary constant. We also used

the fact that ~ri ·
∑N

j 6=i ~rij = Nr2
i . Also note that rij ≤ 2R

since by assumption ri ≤ R. Asymptotically then:

ri ≤
N − 1

N

η

K
≤

η

K
≡ R∗, (7)

and we require η < KR for this bound to be more stringent

than the initial radius R. 2

Corollary 1:Existence of collapsed states. If Theorem 1 holds

for all R′ < R then as t → ∞ the system will collapse with

all particles converging at Rf = 0.

Proof: This follows from the fact that for ri ≥ η/K, the

Lyapunov function V̇ ≤ −Kr2
i = −2KVi. The limit R∗ is

thus reached in a time:

tmax = max
i

[

1

2K
ln

(

η2

2K2Vi(0)

)]

, (8)

where Vi(0) is the Lyapunov function at time t = 0. After

tmax is reached, Theorem 1 can be applied again, and the

iteration process can be repeated until the limit Rf = 0
is reached. Theorem 1, applied to the parabolic potential

of Ref. [9] is the global convergence theorem there shown

2.

Our control algorithm adopts a generalized Morse poten-

tial that decays at infinite distances, as would be expected

for systems of vehicles with a limited communication range:

U(rij) = −Cae−rij/ℓa + Cre
−rij/ℓr . (9)

Here, Ca, Cr represent the strength of the attractive and re-

pulsive potentials, and ℓa, ℓr their length scales, respectively.

Define ℓ ≡ ℓr/ℓa, C ≡ Cr/Ca. A sufficient condition for

Theorem 1 is
(

Ca

ℓa
e−

2R
ℓa −

Cr

ℓr

)

< 2KR < 2

(

Ca

ℓa
e−

2R
ℓa −

Cr

ℓr

)

, (10)

which can be satisfied only if ℓ > C so that R can be chosen

as 2R < ℓa ln (ℓ/C). Thus, with the proper values of ℓ, C
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Fig. 1. Phase diagram for N particles interacting according to the first
order model of Eqn. 1. The region with ℓ > C is guaranteed to give rise to
collapsed structures for any choice of N if agents are initially sufficiently
close to each other. In the dispersive mode particles will form an unbound
system, regardless of initial conditions. In the region ℓ ≤ min {C, 1}
cohesive structures form. Their shape and scaling with N depends on further
details of the potential and on the dimensionality of the system.

and the proper initial condition R, free agents subject to the

non diverging Morse interactions are guaranteed to collapse

to a ball of radius R∗ < R. Also note that Corollary 1

holds here, since the latter condition holds for all R′ < R.

The above condition is a sufficient but not necessary one,

and other combinations of ℓ, C could give rise to acceptable

R,K values without resulting in a state where all agents

collapse to a point. For other, specific choices of the potential

parameters, numeric estimates can determine whether R,K
values exist that satisfy Theorem 1. We can also prove that

the system is dispersive for the same Morse potential in the

region where C ≥ ℓ ≥ 1.

Lemma 2 : Dispersion under the Morse potential. For C ≥
ℓ ≥ 1 of the Morse potential a bounded state at t = 0, where

rk ≤ R ∀k, 1 ≤ k ≤ N , will evolve into an unbounded one

as t → ∞.

Proof : Of the bounded particles, let i be the one furthest

away from the origin. We let ri = R > rk for all k 6= i,
so that at time t = 0, r2

i > ~ri~rk. Note that to simplify the

analysis we let only one particle be on the boundary, the

results do not change by considering multiple particles at R
for t = 0. Consider the distance between the i-th particle

and the center of mass of the remaining N − 1 particles.

This distance is |~ri − (−~ri/(N − 1))| = Nri/(N − 1) since

the stationary center of mass is assumed to be fixed at the

origin. The distance of the i-th particle from the center of

mass and from the center of mass of the remaining N − 1
particles therefore differ only by a multiplicative factor. The

evolution of 1
2r2

i = ~ri~̇ri obeys the following:

~ri~̇ri =
∑

k 6=i

Ca

ℓa
e−

rik
ℓa

(

C

ℓ
erik( ℓ−1

ℓr
) − 1

)

~rir̂ik

> 0 (11)

as long as rik~rir̂ik = r2
i − ~ri~rk ≥ 0, and where we have

used the fact that C ≥ ℓ ≥ 1. This result indicates that r2
i ,

r aC = C  / C

a
r

l 
=

 l
  

 /
 l

    

         

2
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Fig. 2. Phase diagram for the second order model of Eqn. 12. Note that the
system is self-propelling and asymptotically each particle will have a finite
velocity, giving rise to circular or flocking structures both in the H-stable and
catastrophic regimes. H-stability permits to further characterize the details of
the cohesive regime: for Cℓ2 < 1 cohesive structures originate that shrink
in size with N while patterns that are extensive with N are formed in the
region Cℓ2 > 1, C ≥ ℓ.

and ri are increasing functions in time. The i-th particle will

thus move away from the center of mass of the other N − 1
particles, and increase its distance from the origin as long as

ri ≥ rk for all other k particles. If the inequality ri ≥ rk

ceases to hold, at time t∗ > 0 for some k∗, the outer bound

of the system will be R∗ > R since ri has increased. Let

r∗k > ri at t∗: we can then apply Lemma 2 again with i = k∗

and with the initial condition R∗ > R. The system size will

thus increase in an unlimited fashion. 2

We can adapt this result to the remainder of the C, ℓ phase

space where ℓ ≤ min {1, C} through the following:

Corollary 2 : Cohesion under the Morse potential. For ℓ ≤
min {1, C}, a lower and an upper bound on the asymptotic

rij for all i 6= j exist so that the system is cohesive.

Proof: From Eqn. 11 it is evident that for ℓ ≤ min {1, C}
the distance ri is an increasing function of time whenever

rik < ℓr

1−ℓ ln
(

C
ℓ

)

, for all k 6= i. This implies that any

bound state of radius R < ℓr

2(1−ℓ) ln
(

C
ℓ

)

will increase its

size and will not be compacted further. On the other hand,

when rik > ℓr

1−ℓ ln
(

C
ℓ

)

, for all k 6= i, the distance between

the i-th particle and the center of mass of the other N − 1
particles will decrease and particles will reside into a more

compact ball. The system is thus of a cohesive type. 2

In this parameter region ℓ ≤ min {1, C} the potential

consists of a short range repulsion and of a long range

attraction. Based on the above observations, we may con-

clude that the swarm will be formed by particles separated

by distances rik such that the repulsion felt by the ‘closer’

particles is balanced by the attraction experienced by the

‘farther’ ones. The final size of the cohesive swarm will

depend on the total number of constituents. In the limit of

large N a cohesive swarm may give rise either to an extended

state, with finite density or to a collapsed one where the

density is diverging. As we shall see in the analysis for the

second order model, other features of the total potential,

and the dimensionality of the system play a major role

in determining such asymptotic swarm configurations. For

ThB9.1

2294



instance, consider the following qualitative arguments for

the Lyapunov function Ui,tot ≡
∑

j 6=i U(rij). In the limit

of large N and finite swarm area A, the sums can be

replaced with two-dimensional integrals so that Ui,tot ≃
NA−1(Crℓ

2
r − Caℓ2a). For Cℓ2 > 1 this Lyapunov function

will increase with N so that the collapsed limit N → ∞ in a

finite region of space cannot be asymptotically reached. The

system thus stays cohesive but does not collapse, a possibility

that may occur for Cℓ2 ≥ 1 where the previous arguments

do not hold. Similar considerations can be found in Ref. [2].

The phase diagram for the {C, ℓ} parameters is shown in

Fig. 1.

B. Second order models and H-stability

In Ref. [8] we have studied the same Morse potential in a

dynamic, second order system. It will be useful to compare

the results of the first and second order approaches to further

characterize the Morse interaction. Our second order model

reads:

~̇ri = ~vi, ~̇vi = f(vi)~vi − ~∇i

∑

j 6=i

U(rij). (12)

Here, self propulsion and drag of an individual are introduced

through f , and the potential U is as above. The system is

conservative if f = 0,∀v, and f is chosen so that there exists

a special value v∗ for which f(v∗) = 0. As pumping and

dissipation occur through f , it is reasonable to expect that

the steady state configurations of Eqn. 12 are minimizers of

the energy U =
∑

i 6=j U(rij) and zeroes of f .

Drawing on analogies with statistical ensembles [22], in

Ref. [8] we show that an important indicator of the expected

morphology is the H-stability of the interaction potential U .

A system is said to be H-stable if the energy per particle

is bounded from below as the number of particles goes to

infinity. Mathematically, a system is H-stable if a constant

B > 0 exists such that:

lim
N→∞

N
∑

j 6=i

U(rij) ≥ −BN (13)

In the limit N → ∞, H-stable interactions result in particles

either occupying the entire space at their disposal in a gas-

like manner and with zero density, or keeping interparticle

distances fixed, so that the density remains constant. In

the language of the purely dissipative model of Eqn. 1,

H-stable interactions correspond to dispersed or cohesive

agent behavior. In the latter case, a finite nearest-neighbor

distance emerges as N → ∞. Non H-stable potentials, on

the other hand, are called ‘catastrophic’ as they typically

result in systems that collapse to a localized region in space

with diverging density in the N → ∞ limit. For finite N
catastrophic potentials give rise to cohesive motions of agent

groups. As N → ∞ nearest-neighbor distances become

vanishingly small, and the group eventually collapses. The

potentials analyzed in Ref. [9] are all examples of catas-

trophic potentials for the dynamic system.

We compare the results for the first order model of Eqn. 1

to the the phase diagram arising from the second order model

of Eqn. 12 in Fig. 2. The region ℓ > C with ℓ < 1 is classified

as catastrophic in Ref. [8], with particles converging towards

their center of mass and becoming denser as N → ∞. This

is consistent with the results proven here that N particles

initially in a ball of radius R get ‘squeezed’ into a tighter

one. On the other hand, the region ℓ > C, with ℓ > 1 is

classified as stable in Ref. [8], with no possible squeezing

effects in the long time limit. This can be understood as

follows. In the region ℓ > C, ℓ > 1, the pairwise potential

has a positive, local minimum for rij = 0 and a barrier

at rij = rmax > ℓa ln (ℓ/C), before decaying to zero as

rij → ∞. The first order system (1) is purely dissipative

and there are no fluctuations in the total energy, which can

only decrease in time. For second order systems of the

type described in Eqn. 12 however, even if the local energy

minimum is reached, with all particles simultaneously at

rij = 0, fluctuations due to exchange with the environment

as imposed by f , can eventually drive the system away,

towards the dispersed, global energy minimum at rij → ∞.

III. TESTBED ADAPTATION

The models described in Eqns. 1 and 12 cannot be directly

applied to the specific platform of autonomous vehicles

we are equipped with, due to mechanical constraints that

limit speed and turning radii capabilities. The real vehicles

we use are described in Ref. [16] and consist of Dubins

micro-cars with fixed speed and fixed left and right turning

radii. The first constraint implies our dynamical system must

be described as first order. The only independent variable

denoting agent i is its heading angle with respect to a fixed

orientation we define as θi. The Dubins vehicles interact

with each other by means of the Morse potential of Eqn. 9

with variable parameters Ca, Cr, ℓa, ℓr. Due to the fixed

turning radii, the interactions cannot directly control θi and

an appropriate control algorithm must be devised. For each

vehicle then, we measure the angle γi between vehicle

heading and the total force ~Fi it experiences, as given by

the right hand side of Eqn. 1 and as shown in Fig. 3. Vehicle

i then changes direction only if |γi| > Γ, where Γ is an

angular threshold 0 ≤ Γ ≤ π. The equations of motion are

as follows:

ẋi = α cos θi ẏi = α sin θi, (14)

θ̇i =











α
RL

if γi > Γ (left turn),

− α
RR

if γi < −Γ (right turn),
α

RS
otherwise.

(15)

Here, α is the speed of the vehicle, and RL, RR are the

left and right turning radii, respectively. RS is the deviation

radius. In the ideal case RL = RR and RS = ∞, so that

vehicle direction is unaffected for |γi| < Γ. Because of

alignment asymmetries, in general RL 6= RR and RS is

a large but finite number. Vehicular motion proceeds along
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vehicle i

j

Fig. 3. Definition of variables for vehicle i: The heading is denoted by
θi, the angle between its direction of motion and the x axis of the testbed.
~Fi is the interaction force it experiences due to all other vehicles. This
direction defines an angle γi with the heading direction. Vehicle i is at a
distance ~rij from vehicle j and the angles φi and φj here shown are used
in the collision avoidance scheme described in the text. The origin of the
reference coordinate system is fixed at the left-lower corner of the testbed.
All vehicular angles, γi, θi, φi, are defined in [π,−π).

the direction specified by the heading parameter θi until the

turning commands θ̇i are given.

A crucial point is that the interaction potential in Eqn. 9

is soft-core and does not prevent vehicles from colliding. In

fact, even hard-core potentials cannot avoid collisions due to

communication delays, errors in position information, and

the finite turning radii of the vehicles. The repulsive range

may be increased to initiate turning at larger inter-vehicle

distances. This however, would significantly affect pattern

formation and the emergence of cooperative aggregates

would be unlikely. Instead, we add an additional collision

avoidance algorithm to address short range interactions. We

use a ‘wait and go’ scheme for vehicles closer than a

cutoff distance rc. For vehicles i, j at distance ~rij such that

rij < rc, we define the angles φi, φj between their main

axis and ~rij , as shown in Fig. 3. If φi < φj vehicle i will

pause while vehicle j veers away, until rij > rc. The cutoff

distance rc in the control algorithm acts as an effective hard-

core potential. If φi = φj any one of the vehicles (in our

simulations the one with a higher labeling index) will pause

and let the other proceed. When φi, φj ≃ 0 the ’wait and

go’ scheme cannot avoid collision as shown in Fig. 4, and

an alternate algorithm is invoked. For vehicles i and j we

define the angle Ωij between ~rij and the segment joining

their opposite front edges measured from max{φi, φj} as

shown in Fig. 4. If max{φi, φj} < Ω, where Ω is an angular

threshold 0 ≤ Ω ≤ π/2, then the vehicle closer to the center

of the testbed is veered towards the center and the other in

the opposite direction.

IV. EXPERIMENTAL RESULTS

In this section we study the behavior and performance scaling

of a set of Dubins vehicles controlled by the first order laws

based on the model in the previous section. We consider both

testbed implementation and numerical simulations for small

and large numbers of vehicles, respectively. The computer

model is validated against the testbed in the case of a few

vehicles. It is also possible to incorporate the presence of

ij
φi

φ
j

rij

vehicle 

vehicle 

Testbed

i

j

Ω

Fig. 4. Collision avoidance failure: The angles φi and φj are too small and
vehicles i and j collide even if one of them should pause. An additional
algorithm is required to steer the vehicles away from each other and is
described in the text. It relies on the angle Ωij here depicted.

many virtual vehicles in practical testbed applications and

study the effects of larger vehicle numbers on the actual

ones.

A. Testbed Simulations

The testbed has three working vehicles. A virtual leader

moves around an ellipse with semimajor axis approximately

15 times the vehicle length. There is some variability in

vehicle speed. To address this issue, the position of the leader

is checked against the distance to the closest vehicle. If the

distance becomes larger than a certain threshold dt, the leader

will pause; otherwise, it will move at its intrinsic speed, We

select our parameters as follows: ℓr = 5.7 cm, ℓa = 95.2 cm,

Ca = 104 erg and Cr = 6·103 erg. so that C = 1.67 and ℓ =
0.06. Note that these parameters correspond to a potential in

the ‘catastrophic regime’ of Ref. [8]. For potential parameters

in the H-stable regime we have not been able to realize

stable configurations of vehicular aggregation due, in part,

to the constant speed of the vehicles. The leader interacts

with the vehicles according to the same Morse potential used

for vehicle-vehicle interaction. When leading more than one

vehicle, the leader’s contribution to the potential is increased

1.1 times and 2.1 times the vehicular potential for the two-

vehicle and the three-vehicle experiments, respectively.

1) One vehicle follows a leader: The parameters men-

tioned above provide short-range repulsion and long-range

attraction resulting in an equilibrium separation. Figure 5

shows results for dt near the equilibrium req, calculated

to be req = 20.2 cm. Running tests with dt = 20.5 cm,

dt = 20.2 cm, and dt = 20.0 cm, we note that leader-

following becomes ineffective for dt below req.

2) Two vehicles follow a leader: The vehicles are found to

alternate between a snake-like competing behavior as shown

in Fig. 6-top and a stable gliding behavior as shown in Fig. 6-

middle. The stable behavior emerges when one vehicle trails

the other and they form a rather flat triangle with the leader

that glides around the ellipse as shown in Fig. 6-bottom.

3) Three vehicles follow a leader: The vehicles still

alternate between competing and gliding behaviors as in

the two-vehicle case as shown in Fig. 7-top. When stable

motion emerges, the vehicles and the leader form a stretched

quadrilateral that glides around the ellipse as shown in

Figs. 7-middle and bottom. We note that fragmentation can
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Fig. 5. Vehicular motion: These panels show fragments of the vehicle’s
trajectory when it tries to follow a virtual leader along an elliptical path.
The vehicle is unstable when dt is decreased below req = 20.2 cm. Top
left: dt = 20.5 cm; Top right: dt = 20.2 cm; Bottom: dt = 20.0 cm.
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Fig. 6. Two vehicles try to follow a virtual leader along an elliptical path.
Top: Two vehicles exhibit snake-like motion as they compete for the optimal
spot behind the virtual leader; middle and bottom: The vehicles’ motion
becomes stable when one trails the other, and they form a flat triangle with
the leader, which glides along the path.
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Fig. 7. Three vehicles try to follow a virtual leader along an elliptical path.
Top: Vehicles exhibit snake-like motion when they level with each other;
Middle: The formation becomes stable when one trails another. Bottom:
The vehicles and the leader form a stretched quadrilateral that glides along
the path.

sometimes occur due to the stretched formation, as the

attraction between the two slower vehicles overwhelms the

long-range attraction from the leader.

To reduce such occurrences, we can enhance the leader

attraction by increasing its weight. Also, both group cohesion

and stabilization of the above examples can be realized by

imposing rigid formations for the vehicle group as in Ref. [6].

Note, however, that in the absence of a rigid structure, even

though the vehicles shift position with respect to each other,

they are able to maintain a coherent group as they follow the

leader around the track.

B. Computer Simulations

Computer simulations provide a powerful tool to study

scalability and statistical issues for large numbers of vehicles.

Figure 8 shows two distinct formations observed in computer

simulations of 100 vehicles. Aggregates similar to the vortex

shown in the left-hand panel of Fig. 8 are seen for weak or

non-existent leaders. For strong, effective leaders, vehicles

align and follow, as shown in the right hand panel. For

the second-order model of Eqn. 12 as specified in Ref. [8]

it is shown that as the number of agents increase, collapse,

stability or dispersion of the agents depend on the parameters
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of the potential. It is interesting to investigate how these

results compare to the first-order model of Eqns.14 and 15.

In particular, in Ref.[8] it is shown that for a range of

parameter values defined by C and ℓ coherent behavior is

expected. In Fig. 9 we show the steady state formation radius

as a function of vehicle number in the catastrophic regime,

where coherent structures are expected to collapse as the

number of constituents increases. In the present model, the

size of a catastrophic flock remains steady as vehicle number

increases, consistent with an increasing vehicle density. On

the other hand, for parameter values in the H-stable regime,

where aggregation is extensive in large number limit, the

flock size expands with increasing vehicle number. Repulsion

is more accentuated in the H-stable regime: for parameters

that are close to the stable-catastrophic threshold flocking

is still possible, but as the parameters are chosen further

and further away into the H-stable regime, cooperative flocks

no longer occur and vehicle groups loose coherence. Figure

10 shows that the critical ℓr, beyond which the flock dis-

integrates is located deeper into the H-stable regime as the

number of vehicles increases.

V. CONCLUSIONS

We consider a well-known first order gradient flow model

for robot interactions in a swarm. We prove new results

on cohesion and collapse for a general class of potentials.

In particular, we find conditions under which the system is

guaranteed to converge inside a ball of fixed radius, provided

it started from a ball of pre-defined larger radius. These

radii are independent of number of agents and result in a

state in which swarm density goes to infinity as vehicle

number increases. Such scaling results are very important

in designing large agent swarming algorithms. We adapt

the model to a system of Dubins vehicles and consider

both testbed and numerical simulations for the swarm. We

include a virtual leader which allows for continued motion

of the swarm in a confined geometry. For small numbers of

agents, the testbed verifies some simple facts about stability

of the algorithm under certain parameters of the virtual leader

potential. For large numbers of agents we show in computer

simulations how the size of the swarm scales as the agent

number increases. In our model, as the number of agents

grows, the swarm is able to maintain its cohesion using

potentials with parameters that would lead to instability at

smaller numbers.
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