
Geographical influences of an emerging network of gang rivalries

Rachel A. Dansona, Laura M. Smitha, Alethea B. T. Barbaroa,∗, Andrea L. Bertozzia, Shannon E. Reidb,
George E. Titab

aUCLA Mathematics Department
520 Portola Plaza

Box 951555
Los Angeles, CA 90095-1555

USA
bDepartment of Criminology, Law and Society

2340 Social Ecology II
Irvine, CA 92697-7080

USA

Abstract

We propose an agent-based model to simulate the creation of street gang rivalries. The movement dynamics
of agents are coupled to an evolving network of gang rivalries, which is determined by previous interactions
among agents in the system. Basic gang data, geographic information, and behavioral dynamics suggested
by the criminology literature are integrated into the model. The major highways, rivers, and the locations of
gangs’ centers of activity influence the agents’ motion. We use a policing division of the Los Angeles Police
Department as a case study to test our model. We apply common metrics from graph theory to analyze
our model, comparing networks produced by our simulations and an instance of a Geographical Threshold
Graph to the existing network from the criminology literature.

Keywords: Agent-based Model, Complex System, Dynamic Network, Gang Rivalry, Biased Lévy Walk,
Geographical Threshold Graph

1. Introduction

Street gangs are a growing problem around the world [13, 33, 32]. In fact, recent statistics from The
National Gang Intelligence Center estimate there are 1 million active gang members in the United States
alone [55]. Violence is intrinsic to street gangs, and rival gangs battle to gain respect and street reputation
[68, 14]. Criminal activities perpetrated by gang members, including armed robbery, homicide, drug dealing,
and auto theft, drain cities and governments of tight resources and also pose safety threats to community
members. Much of the research on street gangs has been conducted within the United States, though there
have been some efforts to understand the phenomenon in Europe and other parts of the world [13, 33, 32].

Violence perpetrated by gang members is frequently against members of a different gang. In areas with
numerous gangs, it is common for gangs to have multiple violent interactions with many of the other gangs.
Further, street gang members typically have locations, known as set spaces, where they spend large quantities
of time [69, 53]. It is therefore reasonable to think of each gang as a node embedded in Euclidean space
[56, 71]. Within this framework, the existence of persistent violence between two gangs becomes an edge
connecting two nodes. From this construction, one can view a collection of gangs as a spatially embedded
network [70]. The Hollenbeck policing division of eastern Los Angeles is marked by a particularly high degree
of violent crimes involving gang members, including homicides and aggravated assaults [56, 28]. It is for this
reason and others listed in Section 1.4 that we consider Hollenbeck as a case study for our model.
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Statistical approaches are often used to analyze gang activities. For example, in their recent paper, the
authors of [56] used a network statistical approach called CONCOR to partition the region of Hollenbeck
into areas of similar violence activity and geographic proximity. From this, they were able to conclude
that a relationship exists between the location of a gang and its rivals. Other authors have utilized various
statistical approaches to examine gang related data [71, 69]. The methodology of determining factors that
correlate with gang activity has been able to describe certain features of the observed system. This approach
has made important contributions in the field, but it cannot make solid causal arguments or test theories
[37, 74]. Though one could argue that creating an experiment would help validate causal arguments, many
of these experiments are not feasible due to monetary and resource constraints and could be unethical and
infringe on basic human rights. Even in circumstances where the resources are available, interventions may
fail to be implemented as planned. This is evident in the work of [71].

Obtaining complete and valid data sets is a common issue in the field of criminology. Data sets are many
times unreliable through inaccuracies, underreporting, and potential bias [16]. This provides a fundamental
problem in the conclusions made from faulty data. In [25], a strong case is made to move beyond statistical
modeling and instead model social phenomena using a mathematical approach. We use such an approach
with the aim to understand the plausible mechanisms for the formation of gang rivalries and to provide social
scientists a means by which to test social theories. For comparison, we propose two different mathematical
techniques: a pure network and an agent-based approach.

Our goal in this work is to understand how long-term rivalries among gangs develop by using a model
including geography, social dynamics, and human mobility patterns. Because we have only one observed
rivalry network, this is a very difficult inverse problem. Furthermore, statistical approaches are not able to
determine causal effects. As a solution, we propose an agent-based model that is coupled to a dynamically
evolving network. This bottom-up approach simulates the mobility of gang members by using the conclusions
from current literature in human mobility patterns, see Section 2.1 for more details. These agents interact to
form a rivalry network. We compare the resulting simulated network to the gang rivalry network observed
in the eastern Los Angeles division of Hollenbeck [71, 56].

The outline of our paper is as follows: network and agent-based modeling approaches are described in
Sections 1.1 and 1.2, and previous work on crime models is discussed in Section 1.3. Detailed information
concerning the particulars of Hollenbeck are found in Section 1.4. In Section 2, we outline the proposed
model. In Section 3, we describe two baseline models, one instance of a Geographical Threshold Graph and
a network derived from Brownian Motion. We contrast these simpler models with our model to demonstrate
the need for a more complex approach. In Section 4, we describe a series of metrics from network theory,
examine long term behavior of the model, and compare the networks against the metrics. Section 5 provides
a sensitivity analysis of our model. We conclude and give future directions in Section 6.

1.1. Network Models

General network models and the corresponding analysis are useful for describing the behavior of complex
systems and have played an increasingly active role [46, 47, 49]. One way networks are treated in the
literature is by analyzing the statistical properties of a given network. Another approach is to consider
the construction of a network. There are many instances where the network of interest is not known, but
there is some knowledge of the processes by which the network is formed. One popular method to construct
a network is to view it as a random graph. Each edge is added with a predetermined probability, often
dependent on the weight of the nodes [1, 50, 51].

In some applications, including gang rivalry networks, the geographic location of the nodes influences
the structure of the network. In such cases, geographic features should be considered as part of the random
network model. For example, interstate highways have been shown to be structurally different from scale-
free networks such as Internet and airline flight networks [22]. The importance of geography is also seen
in friendship networks in [77]. This work was descriptive by nature, and was therefore limited in the
conclusions that could be drawn. In their paper, Liben-Nowell et al. use the publicly accessible location of
495,836 bloggers in the Live Journal to investigate effects of spatial proximity on friendships [35]. The study
found that an estimated 69% of a person’s friends can be described by geography. This paper constructed a
simulation and was able to create plausible scenarios and test theories of information spreading on a social
network, again highlighting a strength of a mathematical modeling approach.
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In the scenario of gang rivalries, the geographic location of gangs play a role in the observed gang rivalry
structure [71]. Because of this, one of our approaches is to construct a simple network model that incorporates
the proximities between gang set spaces. One method for incorporating geographical information into the
random graph construction is by using a Geographical Threshold Graph [39, 8, 9]. This is a random graph
on a set of randomly weighted nodes, where the nodes are located in a metric space and the connections
are determined by thresholding a function of the distance and the weights. This provides an efficient way
to construct a rivalry network while incorporating some geographic information. We use an instance of a
Geographical Threshold Graph as a baseline against which we compare our model.

1.2. Agent-Based Models

Network models can provide a computationally inexpensive means to reproduce an observed network,
but these models do not lend themselves to describing phenomena of interest beyond the structure of the
network. An alternative modeling approach is to use agent-based models. These models are generally used
for complex systems, since they are able to capture details at the level of an individual, or agent. In this
class of models, agents often move through phase space and interact amongst themselves, producing complex
dynamics and patterns from simple behavioral rules. Agent-based models can answer different questions from
a network approach since they focus on the way individuals actions can determine the behavior at the system
level.

This type of modeling approach is widely used in economics [75, 67, 78], epidemiology [19], sociology [65],
biology [27], and other situations in which complex systems are encountered. The strength of agent-based
modeling is that it allows for responses at the individual level to be directly incorporated into the model.
For example, agent-based models have been proposed in the context of searching and swarming [36], and
much interesting mathematical analysis has been done on the behavior of these systems [15, 12]. In this way,
modelers can include information and behavioral dynamics from scientists who study the complex system of
interest. Agent-based methods have been proposed to describe social systems and economics since they can
provide a means by which to test theories about individual dynamics in cases where the dynamics are not
precisely known [20, 37].

In our model, we are interested in the coupling between the network and the underlying system. There
has been some exploration of this in the literature. For example, Schweitzer and Tilch provide one example of
a model that uses an agent-based approach to form an emerging network [58, 59]. They model the chemical
trail formed by ants searching for food at an unknown location. As the ants search their environment,
networks of chemical trails form with which the ants interact. Another example is that of the EpiSims model
[73, 41]. Here, the contact networks of the populations are evolving over time and depend on the internal
attributes of the people in the population. In turn, as a disease is spread through the contact network, the
movements of the people change in response to the disease, producing a non-trivial interaction between the
system and the network.

One of the major strengths of this approach is the flexible framework available for these models. For
example, this method can easily incorporate environmental and spatial information inherent to the system.
One example of this is shown in [4], where the authors were able to incorporate environmental information
in the form of temperature and current, as well as geography of landmasses, to accurately model and predict
the migration patterns of a species of pelagic fish. In our agent-based model, we use information about the
environment in the form of freeways, rivers, and road density. In a network context, coupling an agent-based
model to a network is a novel way to explore how changing dynamics of individual agents can affect the
evolution of the network, providing control parameters which would be inaccessible in a graph-based model.

1.3. Previous Work on Crime Modeling

Many mathematical models have been created to study the patterns, mechanisms, and potential inter-
ventions associated with crime. Research has been conducted to address various aspects of burglaries such
as hot spot formation [61, 63, 10], policing strategies [31, 54], criminal cooperation [62], and geographical
profiling [52]. Some attempts have also been made to model gang behaviors. The study in [42] examines
the short term retaliatory behavior of the rivalries based on between gang violence data from the LAPD. In
this work, each violent event between two gangs is considered an instance of a point process associated with
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that pair of gangs. The intensity of the rivalry depends directly on the network of unidirectional violent in-
teractions. This provides a top-down approach to understanding immediate consequences of violence among
gangs within a system.

In the model proposed by [17], an agent-based approach was used to simulate the location of violent
interactions and gang retaliations in Hollenbeck. Embedded in the model was a rivalry network. Though
the model recreated similar features to the violence data, the model made unrealistic assumptions about the
mobility of the agents. For instance, the agents’ movements were influenced by the location of every rival
gang member, an implausible assumption. Further, agents only move towards rival gangs members, ignoring
their own set space, or center of activity. However, according to the criminology literature, this retaliatory
behavior is only seen on short time scales [42]. Furthermore, gang members tend to avoid the territory of
rival gangs and spend large quantities of time at their set spaces [2, 34]. Another concern is that the the
agents ignore geographic features, such as highways and rivers, known to correlate with the rivalry structure
[56]. It has been shown in other models simulating human movement that highways restrict movements [26].

We propose a bottom-up approach with an agent-based model that incorporates movement rules from
literature on human mobility in order to capture the long-term gang rivalry structure. These rules consider
geographical features known to relate to movement dynamics. We also consider current literature on known
gang behavior as a basis for directional decisions. More details are seen in Subsection 2.1. We use Hollenbeck
as a case study for our model.

1.4. Hollenbeck

Hollenbeck is a policing division located in eastern Los Angeles, surrounded by downtown Los Angeles to
the west, Pasadena to the northeast, Vernon to the south, and to the east the unincorporated area of East
Los Angeles, see Figure 1. Hollenbeck provides a diverse geography with many highways cutting through the
region and is bounded by the Los Angeles River. It encompasses an area of roughly 39.4 km2. Hollenbeck
is home to approximately twenty-nine active gangs with sixty-nine rivalries among them [56, 71]. The set
spaces for the gangs and the corresponding observed rivalry network are displayed in Figure 1, as given in
[56].

Certain properties of Hollenbeck make it accessible to modeling the gang rivalry networks outlined in
[71, 56]. First, it is a closed system in that the gang activity within Hollenbeck is generally isolated from gang
activity outside of Hollenbeck. Further, the motivation for violence between gangs is largely characterized
by disputes over geographical gang territories, as opposed to drug and racially motivated violence. Data on
the geography of Hollenbeck is easily accessible, and there has been explicit documentation of the observed
rivalry network.

2. Our Model

Our objective is to model the long-term gang rivalry structure and gang member mobility by incorporating
simple behavioral rules and geographical factors, such as road density, highways, and locations of gangs’ set
spaces (centers of activity). The movement of each agent is not intended to model each detail involved in an
individual’s mobility, but rather capture the statistical behavior of people’s movements observed from the
literature. Agents in the model move based on their location with respect to their and other gangs’ set spaces
and interact with agents of different gang affiliations. We count the number of interactions between gangs,
and when agents of different gangs move within a certain distance of each other, the number of interactions
between those gangs increases by one. As the simulation progresses, a network structure emerges. The
weighted network of interactions in turn influences the directional decisions of the agents.

2.1. Motivation for model construction

The intent of this model is to capture the broad statistical features of human mobility with an emphasis
on gang members’ movements. Empirical data on the location and individual movements of each gang
member is inaccessible, so we characterize the movements of the individual gang members in a statistical
sense based on the literature on human mobility. Several studies give compelling evidence that when people
move unconstrained environment, the jump lengths between movements is distributed like a power law
[11, 57]. Further, in the presence of obstacles such as roads and buildings, the jump lengths more accurately
follow a bounded power law distribution [23].
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Figure 1: Google EarthTM Image of the Hollenbeck area (left). Map of the Hollenbeck area with the location of the gang set
spaces, or centers of a gang’s activity, and the corresponding rivalry network approximated by [56], where a node of the network
represents a set space, and an edge represents a rivalry between two gangs (right). Major roads, highways, the Los Angeles
river, and division lines are also seen in both images.

Determining the statistical properties of the jump length is only one aspect of movement dynamics. In
their paper, Rhee et al. discuss the need to incorporate geographical features and the tendency for people
to go home [57]. Gonzalez et al. confirmed in their data that humans do tend to frequent a small number
of locations often [23]. For these reasons, the agents in our model pick their jump length from a Bounded
Pareto distribution and have a directional choice in movement.

In the case of gangs in Hollenbeck, it is reasonable to assume that the gang members have a clear sense of
the location of their home territory, or set space, as well as the location of their rival gangs’ set spaces [69].
Literature on gang activity suggests that, in general, gang members tend to stay away from their rival gangs’
set spaces [34]. Unlike other criminal groups, such as organized crime syndicates and insurgency groups that
strive for secrecy, street gangs are social organizations that proudly demarcate their territory and announce
their enemies through the use of graffiti. Gangs create social boundaries and therefore areas of avoidance
[2]. Our model incorporates this social geography into agents’ movement dynamics.

One aspect of modeling human mobility that was touched on, but not fully explored, by the previous
literature is the role of physical features specific to urban areas that may constrain agents’ movement. The
first consideration is the ease with which an agent can move through a city. We posit that in areas where
there is a dense street network, the likelihood of an agent to move long distances is small due to such obstacles
as the high density of people and cars, as well as traffic lights. On the other hand, areas where the road
density is lower, agents should be able to move longer distances. A second physical consideration that affects
human mobility in a city are the highway systems and rivers that can cut across the region. These features
are not impassible, in that there are underpasses and bridges. Simulations have shown that they provide an
obstacle to mobility [26]. It has been posited that these features play a role in gang rivalry networks [56].
Therefore in our model, we view major roads, highways, and rivers as semi-permeable boundaries that affect
the agents’ movements.

2.2. Model Details

2.2.1. Agents
The agents of this model are gang members in a city. Each agent is associated with exactly one gang.

For simplicity we assume agents’ directional choice is dictated only by the location of the gang set spaces,
or centers of activity. All agents know the location of their home and rivals’ set spaces. We divide the city
into regions based on geographical boundaries, such as rivers and highways. An agent knows which region
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it is currently in as well as the region of any prospective new locations. Embedded in the city is a rivalry
network among the gangs in the city. This network is encoded in the rivalry matrix R. Each element (i, j)
of R corresponds to the number of interactions between gang i and gang j. When two agents are within
interaction range, we consider them to have interacted and the corresponding element of the rivalry matrix,
R, is updated. Refer to Section 2.2.3 for details on R.

2.2.2. Environment
The environment of interest is on the scale of a small city. Agents and gang set spaces, or centers of

gang activity, have a coordinate location in free space. The rest of the physical features of the city are
approximated by an NxM grid. Each point in free space is identified with the nearest grid element. The size
and number of grid elements are constant throughout the simulation and are limited by the available data
and the memory of the computer.

Two specific features encoded by this grid are the road density and semi-permeable boundaries represented
by a region map. Each grid element of the road density contains a number between 0 and 1. A value of 0
implies a low road density whereas a value of 1 implies high road density. The semi-permeable boundaries,
corresponding to such objects as highways and rivers, are assumed to split the environment into distinct
regions. We pair this region grid with a transition matrix that stores the associated probability of an agent
to cross from one region to another. These probabilities are determined at the start and remain constant
throughout the simulation. This is implemented to discourage agents from crossing freeway boundaries.

2.2.3. Rivalries
The network structure of the rivalries is encoded in a weighted adjacency matrix, R. Each element Rij

contains the current history of interactions between gang i and gang j. At the end of a simulation, we
construct a thresholded rivalry graph where an edge between gang i and j exists if either ρi(j) or ρj(i) is
larger than a given threshold T , where

ρi(j) =
Rij

∑N
k=1 Rik

and ρj(i) =
Rji

∑N
k=1 Rjk

. (1)

The quantity ρi(j) represents the proportion of gang i’s interactions which have occurred with gang j. Note
that ρi(j) is not necessarily equal to ρj(i); however, this thresholding yields a bidirectional network or,
equivalently, a symmetric adjacency matrix. Although the final rivalry network is symmetric, the influence
of the rivalry matrix Rij on the agents’ movements during the course of the simulations are not symmetric.
The data available to us was in the form of a symmetric network, and so we chose the thresholding rule
to be comparable with the data. Other thresholding rules that result in asymmetric networks could be
implemented. For example, if the thresholding rule for gang i solely depended on the quantity ρi(j) > T ,
then the resulting network could be asymmetric.

2.3. Process overview and Scheduling

At each iteration an agent is chosen from the set of all agents with equal probability. The selected agent
performs one step of a random walk by choosing a jump length and direction from probability distributions
for its new prospective location. Depending on the distributions for the jump length and direction, different
random walks will occur. The literature on human mobility suggests humans move according to a truncated
Lévy walk, motivating our model selection. Further, it is unreasonable to assume that an person’s direction
of movement is solely determined by set space locations. Therefore, we use a statistical distribution to
simulate an agent’s directional choice. See Section 2.1 for more motivational details.

The jump length, x, is chosen from the Bounded Pareto probability density function,

P (x; k, xm, xM ) =
kxk

mx−k−1

1−
(

xm

xM

)k
k > 0 , xM ≥ x ≥ xm > 0. (2)

The minimum and maximum jump lengths, xm and xM respectively, provide the bounds for the jump
length x. The scaling parameter, k, determines how quickly the probability density function decays from the
minimum jump length to the maximum jump length. For all agents the minimum jump length, xm, and scale,
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k, are fixed parameters. To determine the maximum jump length, xM , the agent uses the approximated
road density of the agent’s corresponding location from the environment grid, with xM ranging from a to
A. These values remain constant throughout the simulation. Here, A is called the largest maximum jump
length and a is the smallest maximum jump length. Then xM is calculated via

xM = (1− δ) ·A+ a, (3)

where the road density at the agent’s location, δ, is between 0 and 1.
The second quantity needed to move the agent to the next location is the new direction, θ. This is

obtained by constructing a deterministic direction of bias. This bias incorporates the agent’s location with
respect to its home set space and the location of its rival gangs’ set spaces. Agents have a higher probability
of moving in this direction. However, with lower probability, they have the ability to move any direction.
To account for this mobility pattern, the von Mises distribution is used to simulate the direction the agent
will move, θ.

More specifically, given an agent in gang i, the bias direction, µi, is defined as

〈y, z〉 = Hi(||
−→
Gi||2)

−→
Gi

||
−→
Gi||2

+
∑

j #=i

Dij(||
−→
Gj ||2)

−→
Gj

||
−→
Gj ||2

(4)

µi = tan−1

(

z

y

)

.

Here,
−→
Gl is the vector that points to the set space of gang l from the location of the agent. When l = i, this

vector points towards the agent’s home set space, and when l &= i, it points towards a different gang’s set
space. This concept is shown in the cartoon example in Figure 2.

In Equation 4, Hi gives the rules for weighting towards a gang member’s own home set space. The
weightings toward or away from different gangs’ set spaces are determined by Dij . Our Hi and Dij take the
following form:

Hi(||
−→
Gi||2) = hi ||

−→
Gi||2, (5)

Dij(||
−→
Gj ||2) = wij(R)

1

||
−→
Gj ||2

. (6)

One notable feature about these equations is that Hi(·) is large when an agent in gang i is far from his or her
gang’s set space, but the Dij(·) function is large when the agent is close to a rival gang j’s set space. The
factors hi and wij(R) of the weighting functions are chosen according to the rules for agent movement. In
our implementation, the factor wij(R) depends on the current state of the rivalry network. Negative values
of these functions result in repulsion and positive values result in attraction.

Figure 2: Cartoon example of the direction vectors incorporated in the direction of bias formula, Equation 4. The agent in this
example is located at the dot. Here G1, G2, G3, and G4 show the vectors pointing toward the set spaces of gangs 1 through
4, respectively. Depending on the choices of Hi and Dij , different movement dynamics are possible.
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After determining the direction of bias from Equation 4, we must choose in which direction the agent
will move. The direction, θ, is drawn from a von Mises distribution (also known as the Circular Normal
distribution) [38, 29, 6]. For θ ∈ [−π, π], the von Mises distribution is given by

f(θ|µ, κ) =
exp (κ cos(θ − µ))

2πI0(κ)
.

Here I0 is a modified Bessel function of order zero. The von Mises distribution requires two parameters, one
for the angle of bias, µ, and one for the strength of the bias, κ. We can think of µ as being the mean of
the distribution, and 1

κ as being comparable to the variance. The larger κ is, the stronger the bias is for the
direction µ. If κ = 0, this is a uniform distribution on a circle.

From the direction, θ, and jump length, x, a prospective location is calculated. The new location is then
checked to see if the result would move the agent into a different region. Within the same region movement
is unrestricted. However, if its next move would result in a region change, i.e. it is crossing a semi-permeable
boundary, it has a given probability of crossing into that region. If the agent moves, it searches the other
agents to see if it is close enough to interact with agents of other gangs. When an interaction does occur,
the rivalry matrix, R, is updated. The location of interactions is also recorded and could be of interest to
other applications, see discussion in Section 6 and Figure 14.

The model is run until limiting behavior is observed in all of the metrics. In the absence of an observed
network, it could be helpful to run simultaneous simulations with different random seeds and calculate the
variance of each metric over the course of the simulation run. When the variances of each metric levels off,
terminate the simulation. In the case of Hollenbeck, the final network is taken after 20,000,000 iterations
and then thresholded to ignore infrequent interactions. For more details on long term behavior of the model,
see Section 4.2.

2.4. Initialization and Input Data

Before the simulation begins, the region map and an estimated density of the road networks must be
provided in matrix form on the same grid. The probability of crossing each boundary must also be provided.
Additionally, parameter values must be specified. Table 1 describes the full list of parameters needed for
implementation. At the start of the simulation all of the agents are located at their gang’s set space. The
size of each gang must also be specified.

Parameters Acceptable Hollenbeck Tested Description
Values Values Range

Agent
xm 0 < xm < a 0.1 Minimum jump length
k 0 < k 1.1 [1, 1.9] Bounded Pareto scaling parameter
κ 0 ≤ κ 3.5 [1.5, 5] Von Mises scaling parameter
hi −∞ < hi < ∞ 1 Home weighting
wij(R) −∞ < wij(R) < ∞ −ρi(j) Rival gang weighting
Environment
Ni Ni ∈ Z+ 14≤ Ni ≤ 598 Number of gang members in gang i
Si Si ∈ R2 see Figure 1 Location of gang i set space
A a < A 200 [100, 400] Largest maximum jump length
a xm < a < A 100 [100, 200] Smallest maximum jump length
B 0 ≤ B ≤ 1 0.2 [0, .5] Permeability of boundaries
Network
T 0 ≤ T 0.04 [0, 0.06] Threshold for existence of an edge

Table 1: Parameters needed for model implementation are listed in the first column. The second column lists theoretically
acceptable parameter values. The values corresponding to the SBLN are displayed in the Hollenbeck Values Column. The
Tested Range column provides the range for each variable for simulations run. The last column provides a description of each
of the parameter values.
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2.5. Hollenbeck parameters

The grid of environment features of Hollenbeck was approximated from the Google EarthTM image
in Figure 1. Hollenbeck is about 39.4 km2 [56, 71]. In our implementation, one Hollenbeck city block
corresponds to approximately six grid elements. The interaction radius between agents is 3 units, or roughly
half a city block. The approximated road density and region grids are show in Figure 3. The boundaries
of the Hollenbeck region were approximated using points from the geographic features visible from Google
EarthTM . These boundaries were used to construct the region grid. To approximate the road density,
the Weighted H1 Maximum Penalized Likelihood Estimation method was used [66]. Although the area of
Hollenbeck does not have large invalid regions of agent movement, alternative cities could have regions where
human mobility is not expected to occur, such as in lakes, mountains, and oceans. Other methods for density
estimation, such as kernel density estimation or other Maximum Penalized Likelihood Estimation (MPLE)
methods, could also be used to construct the road density [64, 18, 43, 24]. To extend the approximated
road density to the same sized grid as the region grid, the average value of the density over Hollenbeck
was computed and used for the extended regions. The number of agents in each gang reflects historical
information obtained from the LAPD.

Figure 3: The image on the left shows the location of Hollenbeck in the N × M environment grid. The semi-permeable
boundaries encoded in the model are displayed in the center image. The shades of gray of this image are used to distinguish
among regions. On the right, we used a Weighted H1 Maximum Penalized Likelihood Estimation method with a road map as
the initial data to approximate the road density of Hollenbeck [66]. The scale, seen on the far right, gives the approximated
road density intensity. Light shades of gray correspond to high density values near one and dark shades correspond to low
densities near zero.

The boundary crossing probability between the regions was calculated by the minimum number of bound-
aries one must cross to get from one region to the next. For instance, if region 1 and region 2 were separated
by one boundary, the agent would have a probability, B, of accepting a move from region 1 to region 2. If
region 1 and 2 were separated by α boundaries, then the agent would have a Bα probability accepting the
move.

3. Baseline Comparison Models

3.1. Geographical Threshold Graphs (GTG)

For comparison to the networks produced by our simulations, we constructed an instance of a Geograph-
ical Threshold Graph (GTG). Geographical Threshold Graphs are random graphs that use spatial proximity
to assist in determining whether or not two nodes are connected with an edge [39, 8, 9]. Geographical
Threshold Graphs randomly assign weights ηi to the N nodes. Then, using an interaction function F (ηi, ηj),
an edge between nodes ni and nj exists only if

F (ηi, ηj)

d(ni, nj)β
≥ Threshold,

where d(ni, nj) is the distance between nodes ni and nj . Constructing an instance of this graph is fast and
computationally inexpensive.

Geographical Threshold Graphs are not deterministic in general. However, we are using this framework
to construct one network in order obtain a reasonable comparison to our proposed model. To this end,
we provide deterministic weights, ηi, taken from data to be the size of each gang. In our case, we take
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the multiplicative weight function F (ηi, ηj) = ηi · ηj , since this is the number of possible pairings between
members of gang i and gang j. We use Euclidean distance for the d(ni, nj) function and choose β = 2. The
threshold was chosen to give the same number of rivalries as the observed rivalry network.

3.2. Brownian Motion Network (BMN)

Another model we use to compare with the simulated network is a simplified version of the proposed model
using Brownian Motion and unbiased movement rules. Experiments without encoding the semi-permeable
boundaries were conducted with unsatisfactory results. Therefore, the semi-permeable boundaries of the
model are incorporated. In this model, each agent chooses the next prospective location from a standard
normal distribution, ignoring any directional decisions. These simplifications reduce the number of variables
to the threshold, T , and the permeability, B, while still incorporating the geographic boundaries. The
parameter space around the Hollenbeck values was explored and run for 2 · 107 iterations. A priori, it was
unclear how many iterations to run the simulation. We observed that the accuracy of the Brownian Motion
networks peaked around 1.2·107 iterations and then decreased as the simulations progressed. The parameters
and number of iterations that produced the highest accuracy were used for analysis. We will refer to the
resulting network as the Brownian Motion Network (BMN).

Inherent in the BMN is a level of stochasticity. To understand how this stochasticity influences the final
rivalry network and the resulting metrics, the BMN simulation was run for 100 different seed values. The
resulting collection of final networks will be called the Ensemble BMN.

3.3. Baseline Network Graphs

Figure 4 displays the resulting GTG and BMN as compared to the observed rivalry network. The lower
portion of the GTG graph has similar shape to the observed network, but contains more connections. The
GTG does not make long connections. This is particularly evident in the upper half of Hollenbeck. The
BMN picks up many of the longer connections, but includes far too many connections.

Figure 4: A visual comparison of the observed rivalry network (left), GTG (center), and BMN (right). Here, a node of the
network represents a set space, and an edge represents a rivalry between two gangs.

4. Results

The proposed model produces strong results when compared to the baseline models. For analysis of the
model, this section is divided into two parts, the internal properties of the model and the comparison among
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models. Due to the stochastic nature of the movement rules, the final network is not deterministic. Despite
fluctuations among simulation runs, within a single run the model exhibits long term stable behavior in the
metrics used for analysis. The stochasticity and long term behavior are the internal properties we examine
in detail in Subsection 4.1 and Subsection 4.2, respectively. The stochastic nature of the model allows for
a more realistic scenario, in the case where the observed network is just one instance of a random process.
Further, the existence of stable long term behavior in our model is important to replicating the observed
system, since research has demonstrated that the rivalry networks among gangs tend to be stable over time
[70, 56, 53]. A more detailed discussion of this can be seen at the end of Subsection 4.2.

After an examination of the internal properties of the model, we subject the models to a number of
metrics in order to capture the features of the observed network as well as the accuracy of model networks.
Keeping in mind the potential for variants of an observed network, the measures we chose to evaluate the
performance of our model are fairly robust to small perturbations to the observed network. The metrics used
to assess the shape of the network and the accuracy are defined in Subsection 4.3, and their corresponding
results are displayed in Subsection 4.4.

For analysis and comparison, we took one simulation run as a showcase of the model. This network
was obtained by searching the parameter space within the ranges specified in the fourth column of Table 1,
allowing for dependencies between parameters. The 34,128 simulated networks were then sorted according
to accuracy, defined in Equation 7. Because each of the gangs in Hollenbeck are active, the graph with
the highest accuracy with all non-zero degree nodes was chosen. The parameter values for the optimal run
are found in the third column of Table 1. We will to refer to this as Simulated Biased Lévy walk Network
(SBLN). Figure 5 displays the network with our optimal parameters. The SBLN has a shape and structure
similar to the observed network, but does not capture all of the longer edges. We also verified that all of the
metrics we use to evaluate our model have reached a statistical equilibrium for the SBLN.

Figure 5: Comparison of the observed rivalry network (left) and the SBLN (right). Here, a node of the network represents a
set space, and an edge represents a rivalry between two gangs. The SBLN has a shape and structure similar to the observed
network, but does not capture many of the longer edges.

4.1. Stochastic Effects Observed in the Simulated Biased Lévy walk Network (SBLN)

Implicit in the model is a degree of stochasticity intended to capture the gross features of human move-
ment. In particular, the jump length and direction choice are sampled from probability distributions, and
the directional bias is determined by the (inherently stochastic) current rivalry structure. These elements
affect the inclusion and exclusion of rivalry network edges. To understand the effect of stochasticity on the
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network produced by the model, each simulation was run 100 times with different random seed values with
the same SBLN parameter values. We refer to the collection of runs as the Ensemble SBLN. Each simulation
was run independently and evaluated with several metrics. The resulting metrics were then averaged for
analysis.

We also recorded the persistence of each edge in the ensemble of networks, and this is denoted as the
percent edge agreement. For example, an ensemble network with 10% edge agreement refers to a network
consisting of all edges that appear in at least 10% of the runs. Figure 6 displays the Ensemble SBLN
with 100%, 50%, and 1% edge agreement next to the observed rivalry network. As expected, increasing the
percent edge agreement decreases the number of edges present in the network. The network constructed with
100% edge agreement does not give a close representation of the observed network, because there are too few
edges. However, allowing for 50% edge agreement produces a similar shape to the observed network. The
Ensemble SBLN 1% edge agreement network shows all possible edges observed in the ensemble of simulation
runs. Taken together, these images demonstrate the stochastic effects inherent in the model.

Figure 6: Percent edge agreement for the ensemble of runs for the SBLN parameter values. These four images give a comparison
of, from left to right, the observed rivalry network, the Ensemble SBLN 1% edge agreement, the Ensemble SBLN 50% edge
agreement, and the Ensemble SBLN 100% edge agreement. Here, a node of the network represents a set space, and an edge
represents a rivalry between two gangs.

For comparison, we simulated a random model that incorporates only the distance between nodes. In
particular, we constructed a collection of randomly weighted Geographical Threshold Graphs by fixing the
locations of the nodes and sampling the weights, ηi, independently from a uniform distribution. We selected
a threshold to yield a median of 69 edges. Figure 7 displays the percent agreement of each possible edge for
the Ensemble SBLN, a collection of randomly weighted Geographical Threshold Graphs, and the Ensemble
BMN. For visualization, the edges for each ensemble were sorted separately in descending order based on
percent edge agreement. In the Ensemble SBLN, there is 100% edge agreement for the existence of 39 of the
edges (corresponding to the first 39 edges of the Ensemble SBLN along the horizontal axis in Figure 7). The
100% edge agreement network in Figure 6 shows these edges. All runs in the Ensemble SBLN consistently
agree on the nonexistence of 309 edges (corresponding to the last 309 edges of the Ensemble SBLN in
Figure 7). These are the edges not appearing in the 1% edge agreement network in Figure 6.

The transition between edge existence and nonexistence in the Ensemble SBLN is marked by a steep
drop over 58 edges. The collection of randomly weighted Geographical Threshold Graphs displays a large
degree of stochasticity indicated by fewer edges with 100% edge agreement and the more gradual decline
of edge agreement. The Ensemble BMN appears to have a smaller degree of stochasticity with more edges
with 100% edge agreement and a steeper decline than the Ensemble SBLN and the collection of randomly
weighted Geographical Threshold Graphs. Despite the stochasticity observed in these models, there is
agreement among the edges of the Ensemble BMN and Ensemble SBLN, maintaining some structure within
the simulated networks.

Further analysis was conducted on the stochastic nature of the proposed SBLN model by looking at the
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metrics calculated on the network produced with varying levels of percent edge agreement. Plots of the
accuracy, density, and nodal degree variance for the collection of randomly weighted Geographical Threshold
Graphs, the Ensemble SBLN, and the Ensemble BMN are displayed in Figure 8. A definition of these metrics
can be found in Subsection 4.3. As the percent edge agreement increases, the accuracy metric generally
increases for the randomly weighted Geographical Threshold Graphs. However, the Ensemble SBLN and
Ensemble BMN do not show much variation, though it is notable that the Ensemble SBLN consistently
has higher accuracy across percent edge agreements. For the density metric, as the percent edge agreement
increases, the density decreases as expected. The randomly weighted Geographical Threshold Graphs have
the greatest variation in the density metric and nodal degree variance metric. This implies that there is a
greater degree of stochasticity for this model. Alternatively, more structure is seen in the Ensemble SBLN
and Ensemble BMN. The two ensembles show small variations in the density and nodal degree variance
metrics for percent edge agreements between 15 and 75. Note that the Ensemble BMN has little change in
nodal degree variance across all percent edge agreements. This indicates a lower degree of stochasticity in
the model, which agrees with the steep decline in Figure 7.
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Figure 7: Plot of the edge persistence for the Ensemble SBLN (solid), Ensemble BMN (thin-dash), and an ensemble of random
Geographical Threshold Graphs (thick-dash). The randomly weighted Geographical Threshold Graphs were constructed with
random weights and have a median of 69 edges present. The edges were sorted in descending order according to the proportion
of simulation runs where the edge is present in the network. Each ensemble of runs were sorted separately, yielding different
edge numbers among ensembles.

4.2. Long Term Behavior of the SBLN

The simulated network, through the movements of each of the agents, evolves as the simulation progresses.
Because of this evolution, it is natural to ask if any sort of steady state is achieved. Keeping in mind the
stochasticity of the model and the interaction between the network and the agents’ movements, an equilibrium
in the strictest sense cannot be obtained. Despite this, the results indicate there is limiting behavior of the
observed metrics as the simulation progresses. Figure 9 displays the density and accuracy over the progression
of the simulations for the Ensemble SBLN. In general, the accuracy metric we used is a measure of how close
the simulated network is to the observed network. The density of a graph is proportional to the average
number of rivals of all gangs; for further definitions of these metrics, refer to Subsection 4.3. Each run is
observed every 1,000 iterations, and the results of each simulation are shown as a thin line. The average
metric value at each iteration is calculated and plotted as the thick line. For visual investigation, the vertical
axis on the accuracy plot has been refined to include only the area of interest. Accuracy values can range
from 0 to 1. Both of these plots suggest that after a short phase of initialization, the metrics of each run
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Figure 8: Plots of the measured Accuracy (Top), Density (Middle), and Variance (Bottom) of the networks constructed from a
given percent edge agreement. The metric values corresponding to the Ensemble SBLN (solid), Ensemble BMN (thin-dash), and
an ensemble of random Geographical Threshold Graphs (thick-dash) are plotted together. The randomly weighted Geographical
Threshold Graphs were constructed with random weights and have a median of 69 edges present.

seem to stabilize. For the average values of the density and accuracy of the last iteration, refer to Tables 2
and 3. Further, we tracked the variance of the metrics over the course of the simulation; plots of the variance
for density and accuracy are shown in Figure 10. We observe that the variance of the network metrics across
simulations levels out, indicating an appropriate time to terminate the simulation.

The Ensemble SBLN exhibits stable long term behavior the simulated rivalry network, with some variation
due to stochasticity. Despite this variation, the network emerging from the model results in metrics with a
small deviation from the average. Further, the stochasticity observed may provide a more realistic model of
the true rivalry structure. Research has demonstrated that the rivalry networks that link gangs tend to be
stable over time [70, 56, 53], and that the activity spaces of gangs are anchored to specific places [69, 44].
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Figure 9: Plots of the accuracy (top) and the density (bottom) of the SBLN over the 2 ·107 iterations. Each of the 100 Ensemble
SBLN runs are plotted by thin lines. The average over all the runs at each sampled iteration is shown with the solid, thick
line. The density of the observed network is shown in the thick, dashed line. For visual investigation the vertical axis on the
accuracy plot has been refined to include the area of interest. Accuracy values can range from 0 to 1.

However, over longer periods of times, the membership ranks of gangs may ebb and flow due to incarceration,
individuals “aging out” of active status, or other forms of incapacitation [71]. Thus, gangs may lay dormant
and, though identified in the rivalry network, not actually participate in violence. In extreme cases, either
through high levels of victimization at the hands of rival gangs or through the focused enforcement of law
enforcement agencies, a gang may simply disappear altogether. As more data become available, inherent
stochasticity in the model may allow for further understanding of the rivalry structure.

4.3. Metrics Used for Analysis

We analyze our model according to several common metrics for accuracy and shape. Since we are
examining a rivalry network, there are certain popular measures that are not applicable here. For example,
the clustering coefficient is often used in social and friendship networks, describing the proportion of a node’s
neighbors who are also neighbors [1, 48, 76]. In the analysis of gangs this metric is not relevant because
the rival of a rival gang is not necessarily a rival. In addition, there may be errors in an observed rivalry
network. With these in mind, we carefully choose measures that are applicable to gang rivalry networks
and robust to small perturbations in the observed data. For example, the degree distribution is commonly
used in social network analysis [79, 72, 48, 50, 49, 1]. In the context of gangs, the degree distribution of

15



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 107

0

0.002

0.004

0.006

0.008

0.01

0.012

  
Variance of Accuracy Metric of Ensemble SBLN Networks at Each Iteration

  

Iteration Number

Va
ria

nc
e 

of
 th

e 
Ac

cu
ra

cy
 M

et
ric

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 107

0

0.002

0.004

0.006

0.008

0.01

0.012

  
Variance of Density Metric of Ensemble SBLN Networks at Each Iteration

  

Iteration Number

Va
ria

nc
e 

of
 th

e 
De

ns
ity

 M
et

ric

Figure 10: Plots of the variance of the accuracy (top) and the density (bottom) measures of the Ensemble SBLN over the 2 ·107

iterations. The variances of the 100 Ensemble SBLN runs were calculated at 1,000 iteration increments.

the network describes the number of rivalries of each gang. Knowing the distribution of rivalries at the city
level may be helpful to policy makers for determining how to allocate resources. The measures we used are
motivated and defined in Sections 4.3.1 and 4.3.2.

4.3.1. Accuracy Metrics
The first measures of interest are the raw values for the number of correct and incorrect edges. These

values provide a means for evaluating the performance of the model. However, when comparing the observed
network with the constructed network, each edge can be correct in two ways and incorrect in two ways.
First, the constructed network can correctly identify an edge, true positive (TP), and correctly identify the
lack of an edge, true negative (TN). The constructed network can also be wrong in two different ways. It
can place an edge where there is none, false positive (FP), and also fail to place an edge where there is one,
false negative (FN).

There are three quantities that are of particular interest that summarize the TP, TN, FP, and FN values.
First is the accuracy of the model. The accuracy in the context of edges on a graph is defined by

ACC =
TP + TN

TP + TN + FP + FN
. (7)

The ACC ranges between 0 and 1, with 1 being a perfect reproduction of the observed network. This measure
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is proportional to the Qα measure discussed in [3]. The F1 score provides another measure to analyze the
accuracy of the predicted network, [60, 80], and is defined as

F1 =
2TP

2TP + FP + FN
. (8)

An exact replication of the network would have an F1 score of 1. The other summary statistic for the raw
closeness to the network is the Matthews Correlation Coefficient (MCC) [40, 3]. This measurement varies
between −1 and 1, where a value of 1 is a perfect prediction. The MCC is defined as follows:

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (9)

The ACC, F1 score, and MCC provide a summary of the TP, TN, FP, and FN. These measures are fairly
robust to changes in the observed data. For example if one edge were added or removed in the observed
network, at most the the ACC would change by 2

N(N−1) , where N is the number of nodes.
The measurements of the TP, TN, FP, and FN provide one means by which to determine the success of

the model. However, they do not describe how these correct or incorrect measurements affect the overall
network structure. A strong model would create a network that is not only accurate but also, maintains the
same network structure, even in the event that the individual connections are the not same.

4.3.2. Shape Metrics
We would like to verify that the simulated network has a similar shape to that of the observed network.

To do this, we calculate the graph density, standard variance of nodal degree and Freeman’s centrality
measure of the graph [76, 21]. Given N nodes, the density of a graph is defined by

N
∑

i=1

degree(i)

N(N − 1)
. (10)

In the context of gangs, the degree of a gang is equivalent to the number of rivals of the gang. The density
of the rivalry network is the average number of rivalries scaled by a normalization, 1

N−1 . Networks with the
same number of edges and nodes have the same density measure. Further, this metric is fairly robust to
perturbations of the graph. For instance, if one edge were added or removed, the density metric would only
change by 2

N(N−1) .
Two other metrics, the variance of nodal degree and centrality measure, give an indication of the spread

of degrees among the gangs. The variance of nodal degree for a graph is

N
∑

i=1

(degree(i)− aveDegree)2

N
. (11)

The centrality measure of the graph is defined to be

N
∑

i=1

maxDegree − degree(i)

(N − 1)(N − 2)
. (12)

These measures provide summary statistics with which to describe the general shape of the graph. This
becomes useful when comparing the output to multiple models. For instance, if the observed network has
a few gangs with high degrees and the rest of the gangs with low degrees, then this will be reflected high
values in the spread statistics. A good model should capture this feature.

The degree distribution has been widely used to understand the overall network structure [48, 50, 49, 1].
We compare the nodal degree cumulative distribution function (CDF) of our simulations with the observed
network.
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4.4. Evaluating Models using Graph Metrics

4.4.1. Accuracy Metric Results
Table 2 provides the accuracy measures for the GTG, BMN, Ensemble BMN, SBLN, and Ensemble SBLN.

The SBLN outperforms all of the other networks on all of the accuracy metrics. Observe that the GTG
also performs well on these metrics. The Ensemble SBLN metrics are comparable to the GTG and BMN
metrics. In particular the average number of true negatives (TN) and false positives (FP) perform slightly
better for the Ensemble SBLN than for the GTG, BMN, and Ensemble BMN. The Ensemble SBLN average
of the true positives (TP) and false negatives (FN) performs slightly worse than the GTG and BMN. Only
the GTG and SBLN have higher accuracy, F1 Score, and MCC values than the Ensemble SBLN average.

TP TN FP FN ACC F1 Score MCC

SBLN 50 320 17 19 0.9113 0.7353 0.6822
Ensemble Average 45.50 316.1 20.90 23.50 0.8906 0.6722 0.6069
SBLN ± σ ± 1.269 ± 2.424 ± 2.424 ± 1.269 ± 0.0077 ± 0.020 ± 0.025

GTG 48 316 21 21 0.8966 0.6957 0.6333

BMN 47 313 24 22 0.8867 0.6714 0.6031
Ensemble Average 43.61 309.2 27.76 25.39 0.8691 0.6213 0.5424
BMN ± σ ± 1.380 ± 1.390 ± 1.390 ± 1.380 ± 0.0051 ± 0.016 ± 0.019

Table 2: Accuracy measures for the SBLN, Ensemble SBLN, GTG, BMN, and Ensemble BMN. The σ denotes the standard
deviation of the ensemble metric values.

4.4.2. Shape Metric Results
Table 3 provides the shape measures for the observed network, GTG, BMN, Ensemble BMN, SBLN, and

Ensemble SBLN. Note that the density of the GTG is exactly the same as the observed rivalry network by
construction, but it does not perform well for the nodal degree variance. The density for the BMN, Ensemble
BMN, SBLN, and Ensemble SBLN are all close to the observed network. The BMN and the Ensemble BMN
average have the closest nodal degree variance to the observed network’s nodal degree variance. The centrality
measure for the SBLN is the closest to that of the observed network.

The cumulative distribution function (CDF) of nodal degree for the observed network, GTG, BMN, nor-
malized Ensemble BMN, SBLN, and the normalized Ensemble SBLN are shown in Figure 11. A normalized
ensemble CDF shows the CDF of the degree distribution of all runs divided by the number of runs. The
SBLN and the normalized Ensemble BMN have the most similar distributions as the observed network. The
normalized Ensemble SBLN performs better than the GTG and the BMN. In the same figure, the normal-
ized Ensemble BMN and SBLN are plotted with two standard deviations above and below together with the
observed network distribution. Here we see that there is a smaller standard deviation for the normalized
BMN than the normalized SBLN. Even with the standard deviations, the degree distributions of both classes
of networks are close to that of the observed degree distribution.

4.5. Summary of Results

In all metrics except the density, the SBLN performs better than the GTG (note that the density measure
of the GTG is exactly the same as the observed network by construction). Although the GTG is unable
to closely replicate the standard shape measures, it has fairly high accuracy values. The Ensemble SBLN
average performs similarly to the GTG in the accuracy, but performs better with shape measures, even with
the stochastic considerations. On average, the Ensemble SBLN produces a slightly more accurate degree
distribution than the GTG. The BMN is able to reproduce the degree distribution fairly well, however,
the BMN and Ensemble BMN average have lower values for the accuracy (ACC), Matthews Correlation
Coefficient (MCC), and F1 Score when compared to the other models. Our analysis demonstrates that the
SBLN is the strongest model in reproducing the observed rivalry network.
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Density Variance of Centrality
Nodal Degree

Observed 0.16995 4.32105 0.20106

SBLN 0.16503 3.54578 0.16799
Ensemble Average 0.16355 3.66423 0.15040
SBLN ± σ ± 0.005593 ± 0.48395 ± 0.01883

GTG 0.16995 9.97622 0.27778

BMN 0.17488 3.88585 0.15741
Ensemble Average 0.17579 3.93926 0.16065
BMN ± σ ± 0.004546 ± 0.41351 ± 0.02635

Table 3: This table provides the shape measures for the observed network, SBLN, Ensemble SBLN, GTG, BMN, and Ensemble
BMN. The σ denotes the standard deviation of the ensemble metric values. Note that the density of the GTG is exactly the
same as the observed rivalry network by construction.
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Figure 11: The top figure plots together the cumulative distribution functions of the degree distribution for the observed
network (thick-solid), GTG (thick-dashed), BMN (dot-dash), normalized Ensemble BMN (thin-dash), SBLN (thin-solid), and
normalized Ensemble SBLN (dot-solid). A normalized ensemble CDF shows the CDF of the degree distribution of all runs
divided by the number of runs. The normalized Ensemble BMN (bottom left) and SBLN (bottom right) are plotted with two
standard deviation above and below (thin-dash) with the observed network distribution (thick-dash).

5. Sensitivity Analysis

Our objective in this section is to understand the effects of the input parameters on the system by
comparing the different metrics of the resulting networks as the parameters change. Due to computational
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constraints, we perform a local analysis of the parameter space around the SBLN parameters specified in
column 3 of Table 1.

In particular, we perturb one parameter at a time by 30% from the SBLN parameter values in 10%
increments. To account for the stochasticity inherent in the model, each perturbation was run using the
same 25 seed values for the random number generator. The range of each parameter examined is listed in
Table 4.

Bounded Pareto Scaling Parameter k ∈ [0.77 , 1.43]
Von Mises Scaling Parameter κ ∈ [2.45 , 4.55]

Largest Maximum Jump Length A ∈ [140 , 260]
Smallest Maximum Jump Length a ∈ [70 , 130]

Boundary Permeability B ∈ [0.14 , 0.26]
Network Threshold T ∈ [0.028 , 0.052]

Table 4: Ranges of the parameters used in the sensitivity analysis. Each parameter was changed 30% from the SBLN parameters
in 10% increments. For SBLN parameter values refer to the Hollenbeck column of Table 1

For each simulation run, we compute the accuracy, Matthews Correlation Coefficient, F1 score, centrality
measure, variance of nodal degree, and density for the resulting network. Plots of each combination of metric
versus parameter values were created for the general analysis. Three examples of parameter and metric
combinations with more dramatic results are plotted in Figure 12. In this figure, we display the variance of
nodal degree versus the smallest maximum jump length, a, and the network threshold, T . We also display
the density versus the Bounded Pareto scaling parameter, k, where the vertical axis has been rescaled for
visualization. The dots represent the metric values of the simulation run at the specified parameter. The
solid curve indicates the average metric value over all runs at each parameter value.
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Figure 12: Plots of the nodal degree variance versus the smallest maximum jump length (top left), and the network threshold
(top right). We also display the density versus the Bounded Pareto scaling parameter (bottom), where the vertical axis has
been rescaled for visualization. The solid curve indicates the average metric value over all runs at each parameter value. The
dots represent the metric values of the simulation run at the specified parameter.

As seen in Figure 12, the plots varying the network threshold and Bounded Pareto scaling parameters
have a negative trend on average. The smallest maximum jump length, however, shows a positive trend.

20



The stochastic effects can also be observed by the range of metric values associated with each parameter
input, as illustrated by the dots in Figure 12. These plots suggests that stochasticity may influence the
metric values for a particular run, and on average the resulting metric output is sensitive with respect to
these parameters.

These plots give a view of how the particular metric and parameter value interact. We changed all of
the parameter values by the same 30% from the SBLN parameters, and so we can compare plots with the
same metric. For example in Figure 12, we can see that in general nodal degree variance for the smallest
maximum jump length has a steeper trend than the nodal degree variance for the threshold, but we can not
compare the trend of the nodal degree variance plots directly to that of the density plot.

To compare the effects of all the parameters on all metrics, we rescale the data points to percent deviation
from the SBLN parameter values. For example, when considering the affects of the Bounded Pareto scaling
parameter, k, on the density metric, we rescaled the observed data points

(ki, densityi) *→

(

ki − k SBLN

k SBLN

,
densityi − density

SBLN

density
SBLN

)

,

where k SBLN is the SBLN Bounded Pareto scaling parameter. Here, density
SBLN

is the average density at
the k SBLN value for all 25 runs. A line was fitted to the rescaled data points, and the slope of this line was
recorded. This process was repeated for each parameter and metric value combination.

The results are recorded in Table 5 and visualized in Figure 13. In Table 5, negative values indicate a
negative slope of the best fit line to the scaled data, and positive values indicate a positive slope. Slopes
with a greater magnitude indicate a stronger correlation between the metric and parameter. To get a clearer
impression of overall sensitivity of the system, this information is displayed in Figure 13. The dark, and
light, intensities of the color map represent large positive, and negative, values of the best fit line slope.

k κ A a B T
Accuracy -0.0120 -0.0031 0.0011 0.0001 0.0031 0.0000
MCC -0.2066 -0.0161 0.0023 0.1458 0.0293 -0.0000

F1 Score -0.2149 -0.0146 0.0018 0.1562 0.0278 -0.0000

Centrality -0.1705 -0.0100 -0.0131 0.7119 0.0195 -0.1751
Nodal Degree Variance -0.4385 -0.0489 -0.0146 0.9456 0.0154 -0.5412

Density -0.7410 -0.0080 -0.0114 0.6131 0.0640 -0.2460

Table 5: Slope of the best fit to the rescaled data for each metric and parameter combination. For reference, coefficients that
correspond to the images in Figure 12 are highlighted in bold font. Figure 13 displays this information in a color map.

In general, the metrics are not very sensitive to the von Mises parameter, κ, the largest maximum jump
length, A, and the boundary permeability, B, within the parameter space investigated. On the other hand,
the Bounded Pareto scaling parameter, k, the smallest maximum jump length, a, and the network threshold,
T , have the most influence on the metrics. As seen in the table and figure, the accuracy measures are fairly
robust to changes in all parameter values. Further, note that nodal degree variance and density measures
appear to be the most affected by the changes in these parameters.

The Bounded Pareto scaling parameter values result in negative slopes for all metrics. This is to be
expected because an increase in the Bounded Pareto scaling parameter will decrease the likelihood of larger
jumps and result in fewer edges. This phenomena is particularly evident in the density metric. Also this
parameter appears to have the most effect on the accuracy measures, in particular the MCC and F1 score.

Increasing the network threshold parameter also has a negative effect on the shape metrics. By increasing
the network threshold, the number of connections decreases. This in turn decreases the density, nodal degree
variance, and centrality. On the other hand, increasing the smallest maximum jump length increases the
connectivity of the network by allowing for larger jumps in areas of high road density. The effect of changing
this parameter is more significant than changing the largest maximum jump length. Interestingly, as the
largest maximum jump length increases, the connectivity decreases. This could be where attempts to cross
boundaries are more likely to occur. The lower portion of Hollenbeck is approximately 300 units wide and

21



Metrics versus Parameters Sensitivity Color Map 

Model Parameters

M
et

ric
s

 

 

k Kappa A a B T

Accuracy    

 MCC    

F1 Score    

Centrality    

Nodal Degree Variance    

Density     −0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 13: Slopes of the best fit line to the rescaled data for each of the parameter and metric combinations depicted in a
color map. The parameters varied include the Bounded Pareto scaling parameter, k, the von Mises scaling parameter, Kappa,
the largest maximum jump length, A, the smallest maximum jump length, a, the boundary permeability, B, and the network
threshold, T . The scale to the right of the image gives the slope values. Tones close to the center of the scale represent
combinations where the metrics are not very sensitive to the respective parameter. Combinations with tones at the ends of
the spectrum (black and white) represent metrics that are sensitive to the respective parameter. The numerical values are also
stored in Table 5.

has many boundaries. When varying the largest maximum jump length between 140 to 260, it becomes very
probable that at least one boundary cross would be attempted. At this point, the boundary permeability is
expected to play a stronger role in the simulation.

Depending on the network, changes in the number of connections could be more or less beneficial in
terms of accuracy. Further, small changes in the connectivity, i.e. the existence or non-existence of an edge,
could have small effects on the accuracy measures and large effects on the shape measures, as seen for our
simulations in the case of the network threshold parameter.

6. Discussion

Using biased truncated Lévy walks with semi-permeable boundaries, we have designed an agent-based
model for gang members that incorporates quasi-realistic movement rules as well as physical geographic
features existing in Hollenbeck. We have shown that it is able to simulate a gang rivalry network similar
to the one observed in [71, 56]. The Simulated Biased Lévy walk Network (SBLN), the Brownian Motion
Network (BMN), and an instance of a Geographical Threshold Graph (GTG) were compared to the observed
rivalry network using measures of accuracy and shape.

In choosing the metrics for the analysis of the models, we took into account that the observed network
may not represent the actual set of rivalries in a given region. If the true rivalry network were only a small
perturbation from the observed network, then ideally, we would like the metrics to only vary slightly. For
this reason, we evaluated these models with the accuracy and shape metrics presented. The accuracy metrics
provide a means to determine whether the simulations are recreating the same rivalries that are observed.
The variance of nodal degree and centrality measures indicate the spread in degrees for each gang. These
measures could be used to help policy makers know how to distribute resources. For example, if one gang
has several rivals and the rest of the gangs only have one, then the resources should be mainly directed
towards the one gang that is highly centralized within the network. Alternatively, if all gangs have the same
number of rivals, then resources should be spread more equally through the area. The density metric gives
an indication as to the connectivity of the network. In terms of gang rivalries, a higher density indicates that
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a larger number of rivalries are present in the system. Creating a model that produces a network with similar
shape metrics is desirable, since the connectivity and degree distributions could be useful for determining
intervention strategies and methods for implementation.

We implemented simpler, baseline models so that we could contrast them with the SBLN model. The
baseline models did not perform as well as the SBLN, but they did provide some insight into the modeling
of gang rivalry networks. The GTG is a simple model designed to compare with the agent-based models.
This method performs well on the accuracy metrics and provides an alternative, computationally inexpensive
method to construct the rivalry network. One could extend this model to incorporate boundary information
by increasing the distance function d(ni, nj) if ni and nj are in distinct regions, see Section 3.1. The GTG
model indicates that geography and size of gangs matter for the rivalry structure. However, the GTG is
limited to reproducing only the rivalry network and does not lend itself to understanding other phenomena,
such as the gang member mobility and the locations of interactions between gang members. It is not obvious
how to extend the modeling framework of a GTG to include policing strategies, the location of violence,
retaliatory behavior, and effects of injunctions, unlike agent-based models.

The BMN is a simplified version of the SBLN model. Although the BMN accuracy results were not
as strong as the GTG and SBLN results, this method was able to reproduce a similar shape as the ob-
served rivalry network. This model incorporated geographical features, but ignored directional decisions of
the agents. The presence of semi-permeable boundaries in this model reduced the number of connections
between regions, giving the simulated network a more similar shape to the observed. This suggests that
the incorporation of boundaries plays an important role in the replication of the observed network. This is
corroborated in [56]. In the absence of the directional decisions of the agents, we see a fundamental difference
between the SBLN and the BMN. Without directional decisions the BMN has too many high degree nodes.
Another major problem with the BMN model is that the stopping criterion for the model was artificial, in
that we chose to stop it at the observed peak in accuracy. In general, there may not be an observed network,
and so it would be difficult to determine stopping criterion. Unlike the BMN, our proposed SBLN model
exhibits long term stabilization of the accuracy and density metrics. This is a direct consequence of the
directional decisions of the agents. The need for incorporating directional decisions into a mobility model is
consistent with the literature [23].

The SBLN is the best model in replicating the observed network. It allows for easy incorporation
of geographic features and alternate movement dynamics, while maintaining a high level of accuracy and
allowing for evolution in the observed system. This model is admittedly more complex than the other models,
however, it provides better results in terms of accuracy and shape of the networks. The stochasticity in the
model is beneficial not only to estimating the expected resulting network, but also potential networks that
could arise from the seemingly random movements of individuals. One important feature is that this model
produces stable long term behavior, meaning there is a reasonable point at which to stop the number of
iterations. This has practical consequences when the true rivalry network is not known. In the absence
of an observed network with which to calibrate the parameters of the model, various parameters could
be initialized using data when available. There has been some work done on approximating the probability
density function for jump lengths in a given region. Using similar methodology as [30], one could approximate
the parameters associated with this region. In addition, an analysis of traffic flow under highways and within
regions could be used to approximate the boundary cross probability. This would greatly reduce the number
of variables of the model and would be an interesting avenue for future study.

Our modeling framework allows for a variety of data output, depending on the questions of interest. For
example, our model is able track the location of the agents’ interactions during the simulation. This can be
compared to violence data for the Hollenbeck area, and preliminary work has been done in this direction.
Using this violence data would provide an additional data set to use for testing the external validity of our
model. The issues of internal and external credibility are discussed in [5]. Figure 14 shows the locations of
the interactions among agents for one of the Ensemble SBLN simulation runs and the density estimation
of gang-related violent crimes in Hollenbeck from 1998 through 2000. The juxtaposition of these two plots
emphasizes the similarities between the two and illustrates the potential predictive capabilities of this kind
of approach. Though movement and interaction rules may need to be slightly altered to provide a closer
match to the data, the current model provides a baseline model for further analysis and investigation of the
gang rivalry violence in Hollenbeck.

This highly flexible model provides a framework with which to test sociological theories related to gang
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activities. One question of great interest to social scientists is the role of territories in the motivation for gang
violence [71]. One could encode territories into the model by having each agent place a marker, associated
with its gang, on the locations where it has been. By leaving these markings, one could see territories begin
to form. Once these territories were established, the behavioral rules could be changed to avoid or attack
the territories of gangs, instead of one point in space. From this, social scientists would be able to play out
various scenarios and test hypotheses. Another interesting phenomenon observed is the presence of alliances
or truce between gangs, as has been observed in Chicago [7] and Los Angeles [71, 45]. The current model
does not account for the difference between positive, negative, and neutral interactions. Instead the SBLN
records interactions between agents with the implicit assumption that these are negative interactions. A
known truce between two gangs could be incorporated into the model by flagging that pair of gangs as allies
with negative values to the corresponding element of the gang rivalry matrix R. Then, all future interactions
between gangs with an alliance would not influence the movement decisions for agents of these gangs. Our
model could also be used to examine this question.

Pursuing a model that accurately describes the violent behavior in Hollenbeck is of great value, since Hol-
lenbeck is one of the most violent areas in Los Angeles [71, 28]. There are several advantages of approaching
this serious problem using a mathematical model. One major strength over a network or statistical approach
is that once the model has been sufficiently calibrated, it provides a powerful tool for social scientists to test
theories and hypotheses. The paper [25] highlights that correlation does not imply causality, and though
statistical analysis provides important contributions to social science as a field, it falls short in terms of
identifying underlying mechanisms and testing causation hypotheses. Though one could argue that creating
an experiment would help validate or reject causal arguments, such experiments are expensive and may
bring up ethical concerns. Finally, if the simulation can accurately model the social phenomena of interest,
then we gain insight into how intervention strategies could alter the existing gang rivalry system. The costs
of implementing these changes in the simulation are small compared to those costs of public funds needed
to implement experimental interventions. If the Hollenbeck area can be well understood by this approach,
there may be hope in understanding, and potentially mitigating, other areas of intense violent behavior.

Figure 14: Locations of all the interactions between agents for one of the Ensemble SBLN runs (left). Density map of gang-
related violent crimes in Hollenbeck between 1998 and 2000 (right).
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