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Abstract. Higher order equations, when applied to image inpainting, have certain advantages over
second order equations, such as continuation of both edge and intensity information over larger
distances. Discretizing a fourth order evolution equation with a brute force method may restrict the
time steps to a size up to order ∆x4 where ∆x denotes the step size of the spatial grid. In this
work we present efficient semi-implicit schemes that are guaranteed to be unconditionally stable. We
explain the main idea of these schemes and present applications in image processing for inpainting
with the Cahn-Hilliard equation, TV-H−1 inpainting, and inpainting with LCIS (low curvature image
simplifiers).

1. Introduction

An important task in image processing is the process of filling in missing parts of damaged images
based on the information gleaned from the surrounding areas. It is essentially a type of interpolation
and is called inpainting. Thereby one could restore images with damaged parts due to, for instance,
intentional scratching, aging, or weather. Or one can recover objects which are occluded by other
objects, where within this context the process is called disocclusion. In fact the applications of image
inpainting are countless. From the restoration of ancient frescoes [3], to the medical needs of reducing
artifacts in MRI-, CT- or PET imaging reconstructions [47], digital image inpainting is ubiquitous in
our modern computerized society. Since the first works on image inpainting by Mumford, Nitzberg
and Shiota [57], Masnou and Morel [52], Caselles, Morel, Sbert and Gillette [21], and Bertalmio et
al [10], much effort has gone into developing digital algorithms. These methods include the texture
synthesis and exemplar-based approach (see, e.g., [20, 29, 32, 72]) and a number of variational- and
PDE-based approaches. This paper focuses on the latter.

In mathematical terms, image inpainting can be described in the following way: let f be the given
image defined on an image domain Ω. The problem is to reconstruct the original image u in the
damaged domain D ⊂ Ω, called inpainting domain. More precisely, let Ω ⊂ R2 be an open and
bounded domain with Lipschitz boundary, B1, B2 two Banach spaces and f ∈ B1 be the given image.
A general variational approach in inpainting can be written as

E(u) = R(u) + ‖λ(f − u)‖2B1
→ min

u∈B2

,(1)

where R : B2 → R and

λ(x) =

{

λ0 Ω \D

0 D,
(2)

is the characteristic function of Ω \D multiplied by a constant λ0 ≫ 1. R(u) denotes the regularizing
term and ‖λ(f − u)‖B1

the so called fidelity term of the inpainting approach. In general B2 ⊆ B1

signifying the smoothing effect of the regularizing term on the minimizer u ∈ B2. Depending on the
choice of the regularizing term R and the Banach spaces B1, B2 various inpainting approaches have
been developed. The most famous model is the total variation (TV) model, where R(u) =

∫

Ω
|∇u| dx

denotes the total variation of u, B1 = L2(Ω) and B2 = BV (Ω) the space of functions of bounded
variation, cf. [23, 25, 61, 60]. A variational model with a regularizing term containing higher order
derivatives is the Eulers elastica model [26, 27, 52] where R(u) =

∫

Ω(a + bκ2)|∇u| dx with positive
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Figure 1. Two examples of curvature based inpainting compared with TV inpainting
from [26]. In the case of large aspect ratios the TV inpainting fails to comply to the
Connectivity Principle.

weights a and b, and curvature κ = ∇ · (∇u/|∇u|). Other examples to be mentioned for (1) are the
active contour model based on Mumford and Shahs segmentation [68], the inpainting scheme based
on the Mumford-Shah-Euler image model [35], inpainting with the Navier-Stokes equation [11], and
wavelet-based inpainting [28, 30], only to give a rough overview. For a more complete introduction to
image inpainting using PDEs we refer to [26, 18, 63].

1.1. Second- versus higher-order inpainting approaches. Second order variational inpainting
methods (where the order of the method is determined by the derivatives of highest order in the
corresponding Euler-Lagrange equation), like TV inpainting, have drawbacks as in the connection of
edges over large distances (Connectivity Principle, cf. Figure 1) and the smooth propagation of level
lines (sets of image points with constant grayvalue) into the damaged domain (Curvature Preservation,
cf. Figure 2). This is due to the penalization of the length of the level lines within the minimizing
process with a second order regularizer, connecting level lines from the boundary of the inpainting
domain via the shortest distance (linear interpolation). The regularizing term R(u) =

∫

Ω |∇u| dx in
the TV inpainting approach, for example, can be interpreted via the coarea formula which gives

min
u

∫

Ω

|∇u| dx ⇐⇒ min
Γλ

∫ ∞

−∞

length(Γλ) dλ,

where Γλ = {x ∈ Ω : u(x) = λ} is the level line for the grayvalue λ. If we consider on the other hand
the regularizing term in the Eulers elastica inpainting approach the coarea formula reads

min
u

∫

Ω

(a+ bκ2)|∇u| dx ⇐⇒ min
Γλ

∫ ∞

−∞

a length(Γλ) + b curvature2(Γλ) dλ.(3)

Thus not only the length of the level lines but also their curvature is penalized (where the penalization
of each depends on the ratio b/a). This results in a smooth continuation of level lines over the inpainting
domain also over large distances, compare Figure 1 and 2. The performance of higher order inpainting
methods can also be interpreted via the second boundary condition, necessary for the well-posedness
of the corresponding Euler-Lagrange equation of fourth order. Not only are the grayvalues of the
image specified on the boundary of the inpainting domain, but also the gradient of the image function,
namely the direction of the level lines are given.

In an attempt to solve both the connectivity principle and the staircasing effect resulting from
second order image diffusions, a number of third and fourth order diffusions has been suggested for
image inpainting. The first work connecting image inpainting to a third order PDE (partial differential
equation) is the transport process of Bertalmio et al. [10]. The image information, modeled by ∆u, is
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Figure 2. An example of elastica inpainting compared with TV inpainting from [27].
Despite the presence of high curvature, TV inpainting truncates the circle inside the
inpainting domain (linear interpolation of level lines, i.e., Curvature Preservation).
Depending on the weights a and b Eulers elastica inpainting returns a smoothly re-
stored object, taking the curvature of the circle into account.

transported into the inpainting domain along the level lines of the image. The resulting scheme is a
discrete model based on the nonlinear PDE

ut = ∇⊥u · ∇∆u,

solved inside the inpainting domain D using the image information from a small stripe around the
boundary of D. The operator ∇⊥ denotes the perpendicular gradient (−∂y, ∂x). Due to the lack of
communication among the level lines, the transportation may result in kinks or contradictions inside
the inpainting domain. Thus in [10] the equation above is implemented with intermediate steps of
anisotropic diffusion. In [11] the authors develop a theory for the proper boundary conditions in [10]
by making a connection to the Navier-Stokes equations. The two conditions on the “boundary” of
the inpainting domain correspond to the no slip condition for Navier-Stokes. A variational third order
approach to image inpainting is CDD (Curvature Driven Diffusion) [24]. Solving the problem of con-
necting level lines also over large distances (connectivity principle) the level lines are still interpolated
linearly. The drawbacks of the third-order inpainting models [10] and [24] have driven Chan, Kang and
Shen [27] to a reinvestigation of the earlier proposal of Masnou and Morel [52] on image interpolation
based on Eulers elastica energy (3). The fourth order elastica inpainting PDE combines CDD [24]
and the transport process of Bertalmio et al. [10] and is as such able to solve both the connectivity
principle and the staircasing effect. Other recently proposed higher order inpainting algorithms are
inpainting with the Cahn-Hilliard equation [13, 14], TV-H−1 inpainting [19, 64] and combinations of
second and higher order methods, e.g. [51].

In this paper we are especially interested in three, rather new, fourth-order inpainting schemes.
Namely, we shall discuss Cahn-Hilliard inpainting, TV-H−1 inpainting, and inpainting with LCIS (low
curvature image simplifiers). We start the discussion with the inpainting of binary images using the
Cahn-Hilliard equation [13, 14]. The inpainted version u of f ∈ L2(Ω) is constructed by following the
evolution of

(4) ut = ∆(−ǫ∆u+
1

ǫ
F ′(u)) + λ(f − u),

where F (u) is a so called double-well potential, e.g., F (u) = u2(u − 1)2. The applicability of the
Cahn-Hilliard equation for the inpainting of binary images is due to the double well potential F (u) in
the equation. The two wells correspond to values of u that are taken by most of the grayscale values.
Choosing a potential with wells at the values 0 (black) and 1 (white), equation (4) therefore provides
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a simple model for the inpainting of binary images. The parameter ǫ determines the steepness of the
transition between 0 and 1. Further the fourth order regularizing term in the equation provides the
advantages of higher order inpainting approaches which have been discussed before, such as the ability
to connect level lines also over large distances (cf. (3)).

The second method of interest in this paper is a generalization of the Cahn-Hilliard inpainting
approach to grayvalue images which has been recently proposed in [19, 64] and is called TV-H−1

inpainting. Therein the inpainted image u of f ∈ L2(Ω), shall evolve via

(5) ut = ∆p+ λ(f − u), p ∈ ∂TV (u),

with

TV (u) =

{

∫

Ω
|∇u| dx if |u(x)| ≤ 1 a.e. in Ω

+∞ otherwise,

where ∂TV (u) denotes the subdifferential of the functional TV (u). To build the connection to Cahn-
Hilliard inpainting the authors in [19] show that solutions of an appropriate time-discrete Cahn-Hilliard
inpainting approach Γ-converge, as ǫ → 0, to solutions of an optimization problem regularized with
the TV norm. A similar form of this approach appears in the context of decomposition and restoration
of grayvalue images, see for example [49, 58, 70]. Further, in Bertalmio at al. [12] an application of
the model from [70] to image inpainting is proposed. In contrast to the inpainting approach (5) the
authors in [12] use a more general form of the TV-H−1 approach for a decomposition of the image
into cartoon and texture prior to the inpainting process. The latter is accomplished with the method
presented in [10]. Moreover, we would like to mention that in [45] the authors consider a complex
Ginzburg-Landau energy for inpainting of grayscale- and color images.

The third inpainting model we are going to discuss is inpainting with LCIS (Low Curvature Image
Simplifier). This higher order inpainting model is motivated by two famous 2nd order nonlinear PDEs
in image processing, the works of Rudin, Osher and Fatemi [60] and Perona Malik [59]. These methods
are based on a nonlinear version of the heat equation

ut = ∇ · (g(|∇u|)∇u),

in which g is small in regions of sharp gradients. LCIS represent a fourth order relative of these
nonlinear 2nd order approaches. They are proposed in [69] and later used by Bertozzi and Greer in
[15] for the denoising of piecewise linear signals. In this paper we consider LCIS for image inpainting.
With f ∈ L2(Ω) our inpainted image u evolves in time as

ut = −∇ · (g(∆u)∇∆u) + λ(f − u),

with thresholding function g(s) = 1
1+s2 . Note that with g(∆u)∇∆u = ∇(arctan(∆u)) the above

equation can be rewritten as

ut = −∆(arctan(∆u)) + λ(f − u).(6)

1.2. Numerical solution of higher-order inpainting equations. One main challenge in inpaint-
ing with higher order flows is their effective numerical implementation. Discretizing a fourth order
evolution equation with a brute-force method may restrict the time steps to a size up to order ∆x4

where ∆x denotes the step size of the spatial grid. Such a brute-force method is computationally
prohibitive and hence it is essentially never done, see, e.g., [65].

The numerical solution of higher-order equations, like thin films, phase field models, surface diffusion
equations, and much more, occupied a big part of research in numerical analysis in the last decades.
In [31] the authors propose a semi implicit finite difference scheme for the solution of second order
parabolic equations. A diffusion term is added implicitly and subtracted explicitly in time to the
numerical scheme in order to suppress unstable modes. Smereka uses this idea to solve the fourth-
order surface diffusion equation, cf. [65]. The same idea is applied by Glasner to a phase field approach
for the Hele-Shaw interface model, cf. [40]. Besides the finite difference approximations, there also exist
a lot of finite element algorithms for fourth-order equations. Barrett, Blowey, and Garcke published a
series of papers on the solution of various Cahn-Hilliard equations, cf. [5, 6, 7]. For the sharp interface
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limit of Cahn-Hilliard, i.e., the Hele-Shaw model, Feng and Prohl analyze finite element methods in
[37, 38]. Finite element methods for thin film equations are studied, for instance, in [8, 46].

For image inpainting, efficient numerical schemes for higher-order methods is an active area of
research. As discussed in [26] one of the most interesting open problems in digital inpainting is, in
fact, the fast and exact digital realization. In the case of Cahn-Hilliard inpainting, in [13] the authors
propose a semi-implicit scheme, which constitutes the common numerical method discussed in this
paper. They verify its computational superiority compared with currently used numerical methods for
three curvature driven approaches. It turns out that Cahn-Hilliard inpainting performs at least one
order of magnitude faster than the curvature methods. In [33, 34] Elliott and Smitheman propose a
finite element method for TV-H−1 minimization in the context of image denoising and cartoon/texture
decomposition. They also prove rigorous results about the approximation and convergence properties
of their scheme. An extension of their approach to TV-H−1 inpainting would be interesting. Note
that, however, the difference of the inpainting approach from denoising and decomposition is that the
former does not follow a variational principle and the fidelity term is locally dependent on the spatial
position. Another algorithm for TV-H−1 inpainting is proposed by one of the authors in [62]. This
work generalizes the dual approach of Chambolle [22] and Bect et al. [9] from an L2 fidelity term to
an H−1 fidelity and extends its application from TV-H−1 denoising [1, 2] to image inpainting. The
main motivation for the work in [62] is that with the proposed algorithm the domain decomposition
approach developed in [39] can be applied to the higher-order total variation case. Being able to
apply domain decomposition methods to TV-H−1 inpainting can result in a tremendous acceleration
of computational speed due to the ability to parallelize the computation. Another very recent approach
in this direction is [18], where the authors propose a multigrid approach for inpainting with CDD.

In this paper we discuss an efficient semi implicit approach based on a numerical method presented
in Eyre [36] (also cf.[71]) called convexity splitting. Convexity splitting was originally proposed to solve
energy minimizing equations. We consider the following problem: Let E ∈ C2(RN ,R) be a smooth
functional from RN into R, where N is the dimension of the data space. Let Ω be the spatial domain
of the data space. Find u ∈ RN such that

(7)

{

ut = −∇E(u) in Ω,

u(., t = 0) = u0 in Ω,

with initial condition u0 ∈ RN . The basic idea of convexity splitting is to split the functional E into a
convex and a concave part. In the semi implicit scheme, the convex part is treated implicitly and the
concave one explicitly in time. Under additional assumptions on (7), this discretization approach is
unconditionally stable, consistent, and relatively easy to apply to a large range of variational problems.
Moreover we shall see that the idea of convexity splitting can be applied to more general evolution
equations, and in particular to those that do not follow a variational principle, especially to the
inpainting equations (4) and (5).
Convexity splitting methods, although possibly not under the same name, already have a long tradition
in several parts of numerical analysis. In finite element approximations for PDEs, examples for such
numerical schemes can be found in the works of Barrett, Blowley, and Garcke, cf. [4] equation (3.42)
for an application to a model for phase separation. In [35] a finite difference scheme for second-order
parabolic equations is presented which also uses the convexity splitting idea, cf. equation (5.4) in [35].
Further convexity splitting is also discussed in a more general optimization context, cf. [73] Chapter
two for an overview on this topic.

The main part of the paper is to illustrate the application of the convexity splitting idea to the
three fourth-order inpainting approaches (4), (5) and (6). Motivated by the analysis in [17], we show
that with this numerical approach we are able to (approximately) compute strong solutions of the
continuous problem with an unconditionally stable finite difference scheme. The numerical scheme is
said to be unconditionally stable, if all solutions of the difference equation are bounded, independently
from the time step size, cf. Definition 2.2. Moreover, we prove consistency of these schemes and
convergence to the exact solution. Further, we present numerical results demonstrating the effect of
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the higher order regularizing term in the approaches. In the case of TV-H−1 inpainting, and inpainting
with LCIS we directly compare the visual results with the second order TV inpainting method.

Organization of the paper

In section 2 the idea of convexity splitting is presented. After an introduction to gradient systems
we state and prove Eyre’s theorem about the unconditional stability of the convexity splitting scheme.
Sections 3-5 are dedicated to the application of convexity splitting to Cahn-Hilliard inpainting (4),
TV-H−1 inpainting (5) and inpainting with LCIS (6). In the case of Cahn-Hilliard- and TV-H−1

inpainting the corresponding equations (4) and (5) are not strictly gradient flows but their evolution
is the sum of the gradients of two different energies. Here, convexity splitting is applied to each of
these energies and results into a semi-implicit scheme for the whole evolution. Rigorous proofs for the
consistency of the numerical scheme, the boundedness of numerical solutions and their convergence to
the exact solution are given. For each of these inpainting algorithms numerical results are presented.
In the conclusion of the paper open problems are discussed.

Notation

In this paper we discuss the numerical solution of evolutionary differential equations. Therefore we
have to distinguish between the exact solution u of the continuous equation and the approximative
solution U of the corresponding time discrete numerical scheme. We write capital Uk for the kth
solution of the discrete equation and small uk = u(k∆t) for a solution of the continuous inpainting
equation at time k∆t with time step size ∆t. Let ek denote the temporal discretization error given
by ek = uk − Uk. In subsection two, u and U are vectors in RN , where N denotes the dimension
of the data. In all other parts of this paper u and U are assumed to be elements in L2(Ω). Let
E ∈ C2(H,R) denote a functional from a suitable Hilbert space H to R, and ∇E(u) its first variation
with respect to u. In the discrete setting H = RN . Throughout this paper ‖·‖ denotes the norm in
L2(Ω) (or the Euclidean norm in the discrete setting), and 〈·, ·〉 the inner product in L2(Ω) (or in RN

in the discrete setting). Finally, since we pose all three inpainting approaches (4)-(6) with Neumann
boundary conditions, we have to define the non-standard space H−1(Ω) as

H−1(Ω) =
{

F ∈ H1(Ω)∗ | 〈F, 1〉(H1)∗,H1 = 0
}

,

with norm ‖·‖−1 :=
∥

∥∇∆−1·
∥

∥

L2(Ω)
. Thereby the operator ∆−1 denotes the inverse of ∆ with Neumann

boundary conditions. In more detail, let
◦

H1(Ω) :=
{

ψ ∈ H1(Ω) :
∫

Ω ψ dx = 0
}

. Then u = ∆−1F ∈
◦

H1(Ω) is the unique weak solution of the following problem:
{

∆u − F = 0 in Ω
∇u · ν = 0 on ∂Ω.

For a more elaborate derivation of the above space we refer to [19], Appendix A.

2. The convexity splitting idea

As already discussed in the Introduction, convexity splitting methods are used in a wide range of
optimization problems, cf. Section 1.2 for relevant references. Originally designed to solve gradient
systems, we shall see in this paper that convexity splitting schemes are relevant for more general
problems, i.e., for evolution equations which do not follow a variational principle. See Sections 3-5 for
our three inpainting approaches (4)-(6).
First we introduce the notion of gradient flows and the application of convexity splitting methods in
this context. To do so we follow the explanations and notations in Eyre’s work [36].
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We consider equation (7). If E fulfills the following conditions,

(8)
(i) E(u) ≥ 0, ∀u ∈ RN ,
(ii) E(u) → ∞ as ‖u‖ → ∞,
(iii) 〈J(∇E)(u)u, u〉 ≥ λ ∀u ∈ RN ,

then equation (7) is called a gradient system and its solutions are called gradient flows. Thereby
J(∇E)(u) is the Jacobian of ∇E in u, λ ∈ R and 〈., .〉 denotes the inner product on RN with corre-

sponding norm ‖u‖
2
= 〈u, u〉. All gradient systems satisfy the dissipation property, i.e.,

dE(u)

dt
= −‖∇E(u)‖

2

and therefore E(u(t)) ≤ E(u0) for all t ≥ 0.
If E(u) is strictly convex, i.e., λ in condition (8)(iii) is positive, then only a single equilibrium for

the gradient system exists. Unconditionally stable and uniquely solvable numerical schemes exist for
these equations (cf. [66]). If E(u) is not strictly convex, i.e., λ < 0, multiple minimizers may exist and
the gradient flow can possibly expand in u(t). The stability of an explicit gradient descent algorithm,
i.e., Uk+1 = Uk −∆t∇E(Uk), in this case may require extremely small time steps, depending of course
on the functional E. For fourth order inpainting approaches, for instance, E(Uk) contains second order
derivatives resulting in a restriction of ∆t up to order (∆x)4 (where ∆x denotes the step size of the
spatial discretization). Therefore the development of stable and efficient discretizations for non-convex
functionals E is highly desirable.

The basic idea of convexity splitting is to write the functional E as

(9) E(u) = Ec(u)− Ee(u),

where

(10) Eo ∈ C2(RN ,R) and Eo(u) is strictly convex for all u ∈ R
N , o ∈ {c, e}.

The semi-implicit discretization of (7) is then given by

(11) Uk+1 − Uk = −∆t (∇Ec(Uk+1)−∇Ee(Uk)) ,

where U0 = u0.

Remark 2.1. We want to anticipate that the setting of Eyre, and hence the subsequent presentation of
convexity splitting, is a purely discrete one. Nevertheless it actually holds in a more general framework,
i.e., for more general gradient flows. In the case of an L2 gradient flow for example, the Jacobian J of
the discrete functional E just has to be replaced by the second variation of the continuous functional
E in L2(Ω).

In the following we show that convexity splitting can be applied to the inpainting approaches (4),
(5), and (6) and produces unconditionally gradient stable or unconditionally stable numerical schemes.

Definiton 2.1. [36] A one-step numerical integration scheme is unconditionally gradient stable
if there exists a function E(.) : RN → R such that, for all ∆t > 0 and for all initial data:

(i) E(U) ≥ 0 for all U ∈ RN

(ii) E(U) → ∞ as ‖U‖ → ∞
(iii) E(Uk+1) ≤ E(Uk) for all Uk ∈ RN

(iv) If E(Uk) = E(U0) for all k ≥ 0 then U0 is a zero of ∇E for (7) and (8).

Note that Cahn-Hilliard inpainting (4) and TV-H−1 inpainting (5) are not given by gradient flows.
Hence, in the context of these inpainting models the meaning of unconditional stability has to be
redefined. Namely, in the case of an evolution equation which does not follow a gradient flow, a
corresponding discrete time stepping scheme is said to be unconditionally stable if solutions of the
difference equation are bounded within a finite time interval, independently of the step size ∆t.
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Definiton 2.2. Let u be an element of a suitable function space H defined on Ω× [0, T ], with Ω ⊂ R2

open and bounded, and T > 0. Let further G be a real valued function and ut = G(u,Dαu) be a partial
differential equation with space derivatives Dαu, α = 1, . . . , 4. A corresponding discrete time stepping
method

(12) Uk+1 = Uk +∆tGk(Uk, Uk+1, D
αUk, D

αUk+1),

where Gk is a suitable approximation of G in Uk and Uk+1 is

• unconditionally stable, if all solutions of (12) are bounded for all ∆t > 0 and all k such
that k∆t ≤ T .

• consistent if

lim
∆t→0

τk(∆t) = 0,

where τk(∆t) is the local truncation error of the scheme and defined as

(13) τk(∆t) =
uk+1 − uk

∆t
−Gk(uk, uk+1, D

αuk, D
αuk+1),

and uk = u(k∆t) is the exact solution at time t = k∆t. In what follows we abbreviate τk for
τk(∆t). Moreover, we define the global truncation error to be

τ(∆t) = max
k

‖τk(∆t)‖H.

A numerical scheme is said to be of order p in time if

τ(∆t) = O(∆tp) for ∆t→ 0.

We start with a theorem of Eyre [36]. The proof presented below follows the same arguments as in
[36] with additional details.

Theorem 2.1. [36, Theorem 1] Let E satisfy (8), and Ec and Ee satisfy (9)-(10). If Ee(u) additionally
satisfies

(14) 〈J(∇Ee)(u)u, u〉 ≥ −λ

when λ < 0 in (8)(iii), then for any initial condition, the numerical scheme (11) is consistent with (7),
gradient stable for all ∆t > 0, and possesses a unique solution for each time step. The local truncation
error for each step is

τk =
∆t

2
(J(∇Ec(û)) + J(∇Ee(û)))∇E(u(ξ)),

for some ξ ∈ (k∆t, (k + 1)∆t) and for some û in the parallelopiped with opposite vertices at Uk and
Uk+1.

Remark 2.2. Condition (14) in Theorem 2.1 is equivalent to the requirement that all the eigenvalues
of J(∇Ee) dominate the largest eigenvalue −λ of −J(∇E), i.e.,

〈J(∇Ee)(u)u, u〉
(14)

≥ −λ
(8)

≥ 〈−J(∇E)(u)u, u〉

for all u ∈ RN , i.e.,

(15) λ̂ ≥ |λ| , for all eigenvalues λ̂ > 0 of Ee.

Proof:(Eyre [36]). The unconditional gradient stability of (11) in the sense of Definition 2.1 is es-
tablished first. By our assumptions in (8) properties (i) and (ii) in Definition 2.1 immediately follow.
Property (iv) follows from the general behavior of gradient systems, i.e., if E(Uk) = E(U0) for all k ≥ 0
then U0 is an ω- limit point of (7) and (8) and hence U0 is a zero of ∇E (cf. [48]). The main part of
the proof consists of the verification of property (iii). Namely we have to show that

E(Uk+1) ≤ E(Uk), ∀ Uk ∈ R
N .
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To do so we consider the difference E(Uk+1)−E(Uk). The proof is by repeated application of Taylor’s
theorem. We start with an exact expansion of E about Uk+1 up to second order and obtain

E(Uk) = E(Uk+1)−〈∇E(Uk+1), Uk+1 − Uk〉+
1

2
〈J(∇E(Uk+1 − α(Uk+1 − Uk)))Uk+1 − Uk, Uk+1 − Uk〉

for some α ∈ (0, 1). Then by assumption (iii) in (8) we get

E(Uk+1)− E(Uk) ≤ 〈∇E(Uk+1), Uk+1 − Uk〉+ |λ| ‖Uk+1 − Uk‖
2
.

By (9) and (11) this is the same as

E(Uk+1)− E(Uk) ≤ 〈∇Ec(Uk+1)−∇Ee(Uk+1), Uk+1 − Uk〉+ |λ| ‖Uk+1 − Uk‖
2

−

〈

1

∆t
(Uk+1 − Uk) +∇Ec(Uk+1)−∇Ee(Uk), Uk+1 − Uk

〉

= −〈∇Ee(Uk+1)−∇Ee(Uk), Uk+1 − Uk〉+

(

|λ| −
1

∆t

)

‖Uk+1 − Uk‖
2 .(16)

Similarly, we Taylor expand Ee about Uk+1 and Uk respectively, i.e.,

Ee(Uk) = Ee(Uk+1)− 〈∇Ee(Uk+1), Uk+1 − Uk〉
+ 1

2 〈J(∇Ee(Uk+1 − α1(Uk+1 − Uk)))Uk+1 − Uk, Uk+1 − Uk〉 ,

and

Ee(Uk+1) = Ee(Uk)+〈∇Ee(Uk), Uk+1 − Uk〉+
1

2
〈J(∇Ee(Uk − α2(Uk+1 − Uk)))Uk+1 − Uk, Uk+1 − Uk〉 ,

for some α1 and α2 in (0, 1). Since Ee is convex, then J(∇Ee) is positive definite and its eigenvalues

are positive. By bounding the eigenvalues of J(∇Ee) by λ̂ > 0 and adding the above expressions we
get

〈∇Ee(Uk+1)−∇Ee(Uk), Uk+1 − Uk〉 ≥ λ̂ ‖Uk+1 − Uk‖
2
.

Substituting this in (16), we obtain

E(Uk+1)− E(Uk) ≤ −

(

λ̂− |λ|+
1

∆t

)

‖Uk+1 − Uk‖
2
.

By applying condition (14) (i.e., (15)) the result follows for all ∆t ≥ 0. Hence the method is uncondi-
tionally gradient stable.

To prove the unique solvability of (11) we consider the nonlinear equations

Uk+1 +∆t∇Ec(Uk+1) = Rk,

which must be solved at each step for a given Rk. Since Ec is strictly convex, then

1

2
‖Uk+1‖

2
+∆tEc(Uk+1)− 〈Uk+1, Rk〉

has a unique minimum in Uk+1 for all ∆t, and (11) has a unique solution for all ∆t ≥ 0. The con-
sistency and the local truncation error of (11) can be established by similar Taylor expansions as the
ones we did above to prove the unconditional stability of the scheme. More precisely it constitutes
of expanding Uk+1 and Uk around (k + 1/2)∆t, and ∇Ec(Uk+1) and ∇Ee(Uk) around Uk+1/2. This
finishes the proof of Theorem 2.1. �

In the following we apply the idea of convexity splitting to our three inpainting models (4), (5), and
(6). For this we change from the discrete setting to the continuous setting, i.e., considering functions
u in a suitable Hilbert space instead of vectors u in RN . Although the first two of these inpainting
approaches, i.e., Cahn-Hilliard inpainting and TV-H−1 inpainting, are not given by gradient flows, we
show that the resulting numerical schemes are still unconditionally stable (in the sense of Definition
2.2) and therefore suitable to solve them accurately and reasonably fast. For inpainting with LCIS (6)
the results of Eyre can be directly applied, even in the continuous setting, cf. Remark 2.1. Nevertheless,
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also for this case, we additionally present a rigorous analysis, similar to the one done for Cahn-Hilliard-
and TV-H−1 inpainting.

3. Cahn-Hilliard inpainting

In this section we show the application of convexity splitting to Cahn-Hilliard inpainting (4). Recall
that the inpainted version u(x) of f(x) is constructed by following the evolution equation

ut = ∆(−ǫ∆u+
1

ǫ
F ′(u)) + λ(f − u),

to steady state. This modified Cahn-Hilliard equation is introduced in [13] for the inpainting of
binary images. The latter, mainly numerical paper, was followed by a very careful analysis of (4)
in [14]. To start with, the authors prove global existence of a unique weak solution of the evolution
equation (4). More precisely the solution u is proven to be an element in C([0, T ];L2(Ω))∩L2(0, T ;V ),
where V =

{

φ ∈ H2(Ω) | ∂φ/∂ν = 0 on ∂Ω
}

, and ν is the outward pointing normal on ∂Ω. Under
additional conditions on the given image f , they also derive some very interesting results concerning
the continuation of the gradient of the image into the inpainting domain. In fact in [14] the authors
prove that in the limit λ0 → ∞ a stationary solution of (4) solves

(17)

∆(ǫ∆u−
1

ǫ
F ′(u)) = 0 in D

u = f on ∂D

∇u = ∇f on ∂D,

for f regular enough (f ∈ C2). The existence of a stationary solution of (4) is assured in [19]. This,
once more, supports the claim, that fourth-order methods are superior to second-order methods with
respect to a smooth continuation of the image contents into the missing domain.

The idea to apply convexity splitting in order to solve (4) numerically, was born in [13]. The
numerical results presented there illustrate the usefulness of this scheme. Although the authors do not
analyze the scheme rigorously, based on their numerical results they conjecture unconditional stability.
In the following we shall present this numerical scheme and derive some additional properties based
on a rigorous analysis of the latter.

The original Cahn-Hilliard equation is a gradient flow in H−1 for the energy

E1(u) =

∫

Ω

ǫ

2
|∇u|

2
+

1

ǫ
F (u) dx,

while the fitting term in (4) can be derived from a gradient flow in L2 for the energy

E2(u) =
1

2

∫

Ω

λ(f − u)2 dx.

However, note that equation (4) as a whole is no longer a gradient system. Hence, for the discretization
in time, we apply the convexity splitting discussed in section 2 to both functionals E1 and E2 separately.
Namely we split E1 in E1 = E1c − E1e with

E1c(u) =

∫

Ω

ǫ

2
|∇u|

2
+
C1

2
|u|

2
dx, E1e(u) =

∫

Ω

−
1

ǫ
F (u) +

C1

2
|u|

2
dx.

A possible splitting for E2 is E2 = E2c − E2e with

E2c(u) =
1

2

∫

Ω

C2 |u|
2
dx, E2e(u) =

1

2

∫

Ω

−λ(f − u)2 + C2 |u|
2
dx.

To make sure that E1c, E1e and E2c, E2e are strictly convex the constants C1 and C2 have to be chosen
such that C1 >

1
ǫ , C2 > λ0, see [14].

Then the resulting discrete time-stepping scheme for an initial condition U0 = u0 is given by

Uk+1 − Uk

∆t
= −∇H−1(E1c(Uk+1)− E1e(Uk))−∇L2(E2c(Uk+1)− E2e(Uk)),
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where ∇H−1 and ∇L2 represent gradient descent with respect to the H−1 inner product and the L2

inner product respectively. This translates to a numerical scheme of the form

(18)
Uk+1 − Uk

∆t
+ǫ∆∆Uk+1−C1∆Uk+1+C2Uk+1 =

1

ǫ
∆F ′(Uk)−C1∆Uk+λ(f−Uk)+C2Uk, in Ω.

We enforce Neumann boundary conditions on ∂Ω, i.e.,

(19) ∇Uk+1 · ~n = ∇∆Uk+1 · ~n = 0, on ∂Ω,

where ~n is the outward pointing normal on ∂Ω, and compute Uk+1 in (18) in the spectral domain
using the discrete cosine transform (DCT). The idea to use spectral methods for equations involving
Laplacian operators is classical and is based on the fact that the Laplace matrix is diagonalized
in the spectral domain. Hence, solving these equations in the spectral domain can be done much
faster since matrix multiplication is replaced by scalar multiplication (multiplying with the elements
in the main diagonal). Since additionally there also exist fast numerical methods to compute the
discrete Fourier/Cosine transform (such as the fast Fourier transform (FFT)) this method has an

overall computational advantage. Let Û be the DCT of U with eigenvalues λi. Then equation (18) in

Û reads

Ûk+1(i, j) =
(1 − C1∆t(

1
∆x2λi +

1
∆y2λj) + C2∆t)Ûk(i, j) +

∆t
ǫ

̂∆F ′(Uk)(i, j) + ∆t ̂λ(f − Uk)

1 + C2∆t+ ǫ∆t( 1
∆x2 λi +

1
∆y2 λj)2 − C1∆t(

1
∆x2 λi +

1
∆y2 λj)

.

3.1. Rigorous Estimates for the Scheme. From Theorem 2.1 we know that (at least in the spatially
discrete framework) the convexity splitting scheme (9)-(11) is unconditionally stable, i.e., separate
numerical schemes for the gradient flows of the energies E1(u) and E2(u) are non–increasing for all
∆t > 0. But this does not guarantee that the numerical scheme (18) is unconditionally stable, since it
combines the flows of two energies. In this section we shall analyze the scheme in more detail and derive
some rigorous estimates for its solutions. In particular we show that the scheme (18) is unconditionally
stable in the sense of Definition 2.2. Our results are summarized in the following theorem.

Theorem 3.1. Let u be the exact solution of (4) and uk = u(k∆t) the exact solution at time k∆t,
for a time step ∆t > 0 and k ∈ N. Let further Uk be the kth iterate of (18) with constants C1 > 1/ǫ,
C2 > λ0. Then the following statements are true:

(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical scheme (18) is
consistent with the continuous equation (4) and of order one in time.

Under the additional assumption that

(20) F ′′(Uk−1) ≤ K

for a nonnegative constant K, we further have

(ii) The solution sequence Uk is bounded on a finite time interval [0, T ], for all ∆t > 0. In particular
for k∆t ≤ T , T > 0 fixed, we have for every ∆t > 0

(21) ‖∇Uk‖
2
2 +∆tK1 ‖∆Uk‖

2
2 ≤ eK2T

(

‖∇U0‖
2
2 +∆tK1 ‖∆U0‖

2
2 +∆t T C(Ω, D, λ0, f)

)

,

for suitable constants K1 and K2, and constant C depending on Ω, D, λ0, f only.
(iii) The discretization error ek, given by ek = uk−Uk, converges to zero as ∆t→ 0. In particular,

we have for k∆t ≤ T , T > 0 fixed, that

(22) ‖∇ek‖
2
2 +∆t

C1

C̃
‖∆ek‖

2
2 ≤

T

C̃
eK1T · C · (∆t)2,

for suitable constants C, C̃,K1.

Remark 3.1. Note that our assumptions for the consistency of the numerical scheme only hold if the
time derivative of the solution of the continuous equation (4) is uniformly bounded. This is true, for
smooth and bounded solutions of the equation.
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Further, since we are interested in bounded solutions Uk of the discrete equation (18), it is natural
to assume (20), i.e., that the nonlinearity F ′′ in the previous time step (k − 1)∆t is bounded. Also
note that the constant K in (20) can be chosen arbitrarily large.

The proof of Theorem 3.1 is organized in the following three Propositions 3.1-3.3.

Proposition 3.1. (Consistency (i)) Under the same assumptions as in Theorem 3.1 and in par-
ticular under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical scheme (18) is
consistent with the continuous equation (4) with ‖τk‖−1 = O(∆t) as ∆t → 0, where τk is the local
truncation error as defined in equation (13) above.

Proof. Let τk be the local truncation error defined as in (13). Then

τk = τ1k + τ2k ,

with

τ1k =
uk+1 − uk

∆t
− ut(k∆t)

τ2k = ǫ∆∆(uk+1 − uk)− C1∆(uk+1 − uk) + C2(uk+1 − uk)

= ǫ∆t∆2uk+1 − uk
∆t

− C1∆t∆
uk+1 − uk

∆t
+ C2∆t

uk+1 − uk
∆t

,

i.e.,

(23) τk =
uk+1 − uk

∆t
+ ǫ∆2uk+1 −

1

ǫ
∆F ′(uk)− λ(f − uk)− C1∆(uk+1 − uk) + C2(uk+1 − uk).

Using standard Taylor series arguments and assuming that ‖utt‖−1 and ‖∇∆ut‖2 are bounded we
deduce that the global truncation error τ is given by

�(24) τ = max
k

‖τk‖−1 = O(∆t) as ∆t→ 0.

Proposition 3.2. (Unconditional stability (ii)) Under the same assumptions as in Theorem 3.1
and in particular assuming that (20) holds, the solution sequence Uk fulfills (21). This gives bounded-
ness of the solution sequence on [0, T ].

Proof. We consider our discrete model

Uk+1 − Uk

∆t
+ ǫ∆∆Uk+1 − C1∆Uk+1 + C2Uk+1 =

1

ǫ
∆F ′(Uk)− C1∆Uk + λ(f − Uk) + C2Uk,

multiply the equation with −∆Uk+1 and integrate over Ω. We obtain

1

∆t

(

‖∇Uk+1‖
2
2 − 〈∇Uk,∇Uk+1〉2

)

+ ǫ ‖∇∆Uk+1‖
2
2 + C1 ‖∆Uk+1‖

2
2 + C2 ‖∇Uk+1‖

2
2

=
1

ǫ
〈F ′′(Uk)∇Uk,∇∆Uk+1〉2 + C1 〈∆Uk,∆Uk+1〉2

+ 〈∇λ(f − Uk),∇Uk+1〉2 + C2 〈∇Uk,∇Uk+1〉2 .

Using Young’s inequality we obtain

1

2∆t

(

‖∇Uk+1‖
2
2 − ‖∇Uk‖

2
2

)

+ ǫ ‖∇∆Uk+1‖
2
2 + C1 ‖∆Uk+1‖

2
2 + C2 ‖∇Uk+1‖

2
2

≤
1

2ǫδ
‖F ′′(Uk)∇Uk‖

2
2 +

δ

2ǫ
‖∇∆Uk+1‖

2
2 +

C1

2
‖∆Uk‖

2
2 +

C1

2
‖∆Uk+1‖

2
2

+
C2

2
‖∇Uk‖

2
2 +

C2

2
‖∇Uk+1‖

2
2 +

1

2
‖∇λ(f − Uk)‖

2
2 +

1

2
‖∇Uk+1‖

2
2 .

Using the estimate

‖∇λ(f − Uk)‖
2
2 ≤ 2λ20 ‖∇Uk‖

2
2 + C(Ω, D, λ0, f)
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and reordering the terms we obtain

(

1

2∆t
+
C2

2
−

1

2

)

‖∇Uk+1‖
2
2 +

C1

2
‖∆Uk+1‖

2
2 +

(

ǫ−
δ

2ǫ

)

‖∇∆Uk+1‖
2
2

≤

(

1

2∆t
+
C2

2
+ λ20

)

‖∇Uk‖
2
2 +

1

2ǫδ
‖F ′′(Uk)∇Uk‖

2
2 +

C1

2
‖∆Uk‖

2
2 + C(Ω, D, λ0, f).

By choosing δ = 2ǫ2, the third term on the left side of the inequality is zero. Because of assumption
(20) we obtain the following bound on the right side of the inequality

‖F ′′(Uk)∇Uk‖
2
2 ≤ K2 ‖∇Uk‖

2
2

and we have

(

1

2∆t
+
C2

2
−

1

2

)

‖∇Uk+1‖
2
2 +

C1

2
‖∆Uk+1‖

2
2

≤

(

1

2∆t
+
C2

2
+ λ20 +

K2

4ǫ3

)

‖∇Uk‖
2
2 +

C1

2
‖∆Uk‖

2
2 + C(Ω, D, λ0, f).

Now we multiply the above inequality by 2∆t and define

C̃ = 1 +∆t(C2 − 1),

˜̃C = 1 +∆t(C2 + 2λ20 +
K2

2ǫ3
).

Since C2 is chosen greater than λ0 > 1, the first coefficient C̃ is positive and we can divide the inequality
by it. We obtain

‖∇Uk+1‖
2
2 +∆t

C1

C̃
‖∆Uk+1‖

2
2 ≤

˜̃C

C̃
‖∇Uk‖

2
2 +∆t

C1

C̃
‖∆Uk‖

2
2 +∆tC(Ω, D, λ0, f),

where we updated the constant C(Ω, D, λ0, f) by C(Ω, D, λ0, f)/C̃.

Since
˜̃C
C̃

≥ 1, we can multiply the second term on the right side of the inequality by this quotient

to obtain

‖∇Uk+1‖
2
2 +∆t

C1

C̃
‖∆Uk+1‖

2
2 ≤

˜̃C

C̃

(

‖∇Uk‖
2
2 +∆t

C1

C̃
‖∆Uk‖

2
2

)

+∆tC(Ω, D, λ0, f).

We deduce by induction that

‖∇Uk‖
2
2 +∆t

C1

C̃
‖∆Uk‖

2
2 ≤

(

˜̃C

C̃

)k
(

‖∇U0‖
2
2 +∆t

C1

C̃
‖∆U0‖

2
2

)

+∆t

k−1
∑

i=0

(

˜̃C

C̃

)i

C(Ω, D, λ0, f)

=
(1 +K2∆t)

k

(1 +K1∆t)k

(

‖∇U0‖
2
2 +∆t

C1

C̃
‖∆U0‖

2
2

)

+∆t
k−1
∑

i=0

(1 +K2∆t)
i

(1 +K1∆t)i
C(Ω, D, λ0, f).
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For k∆t ≤ T we have

‖∇Uk‖
2
2 +∆t

C1

C̃
‖∆Uk‖

2
2 ≤ e(K2−K1)T

(

‖∇U0‖
2
2 +∆t

C1

C̃
‖∆U0‖

2
2

)

+∆tT e(K2−K1)TC(Ω, D, λ0, f)

= e(K2−K1)T

(

‖∇U0‖
2
2 +∆t

C1

C̃
‖∆U0‖

2
2

+∆t T C(Ω, D, λ0, f)) ,

which gives boundedness of the solution sequence on [0, T ] for any T > 0 assuming that (20) holds. �

The convergence of the discrete solution to the continuous one as the time step ∆t → 0 is verified
in the following proposition.

Proposition 3.3. (Convergence (iii)) Under the same assumptions as in Theorem 3.1 and in
particular under assumption (20) the discretization error ek fulfills (22).

In order to prove Proposition 3.3 we need the following auxiliary lemma.

Lemma 3.1. The error ek between the exact and approximate solution defined as in Theorem 3.1
fulfills

∫

Ω

ek dx = O((∆t)2).

Proof of Lemma 3.1. Because of the fidelity term in (4) and (18), solutions of these equations are not
mass preserving, i.e.,

∫

Ω ek does not in general vanish. In fact, we have for a solution uk of (4)

d

dt

∫

Ω

uk = −ǫ

∫

Ω

∆2uk +
1

ǫ

∫

Ω

∆F ′(uk) +

∫

Ω

λ(f − uk)

= −ǫ

∫

∂Ω

∇∆uk · ~n+
1

ǫ

∫

∂Ω

∇F ′(uk) · ~n+

∫

Ω

λ(f − uk),

where we have used Gauss divergence theorem to obtain the boundary integrals. Assuming zero
Neumann boundary conditions as in (19) the two boundary integrals vanish and hence

d

dt

∫

Ω

uk =

∫

Ω

λ(f − uk)

and in particular

(25)
d

dt

∫

D

uk = 0.

A similar computation for the discrete solution of (18) shows that

(

1

∆t
+ C2

)∫

Ω

(Uk+1 − Uk) =

∫

Ω

λ(f − Uk)

and in particular

(26)

(

1

∆t
+ C2

)∫

D

(Uk+1 − Uk) = 0.
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Next, let us follow the lines of the consistency proof in (23). Then the discretization error ek satisfies

ek+1 − ek
∆t

+ ǫ∆2ek+1 − C1∆ek+1 + C2ek+1

=
1

∆t
(uk+1 − uk)−

1

∆t
(Uk+1 − Uk) + ǫ∆2uk+1 − ǫ∆2Uk+1

−C1∆uk+1 + C1∆Uk+1 + C2uk+1 − C2Uk+1

= −

(

1

ǫ
∆F ′(Uk)− C1∆Uk + λ(f − Uk) + C2Uk

)

+

(

1

ǫ
∆F ′(uk) + λ(f − uk)− C1∆uk + C2uk

)

+ τk

= −

(

1

ǫ
∆(F ′(Uk)− F ′(uk))− C1∆(Uk − uk) + C2(Uk − uk)− λ(Uk − uk)

)

+ τk.

As before, integrating over Ω, applying Gauss divergence theorem and the zero Neumann boundary
conditions for uk and Uk we get

(27)

(

1

∆t
+ C2

)∫

Ω

(ek+1 − ek) +

∫

Ω

λek =

∫

τk,

where
∫

Ω

τk =

(

1

∆t
+ C2

)∫

Ω

(uk+1 − uk)−

∫

Ω

(uk)t

=

(

1

∆t
+ C2

)∫

Ω

(uk +∆t(uk)t +O((∆t)2)− uk)−

∫

Ω

(uk)t

= O(∆t).

Now, to prove our claim we apply induction on k. First, assuming that u0 = U0 in Ω we have that
∫

Ω

e0 = 0,

and hence,

(28)

(

1

∆t
+ C2

)∫

Ω

e1 = O(∆t).

Assuming that assertion (28) holds for all indices ≤ k and using (25) and (26) we have for (27)

(

1

∆t
+ C2

)∫

Ω

(ek+1 − ek) +

∫

Ω

λek =

∫

τk

(

1

∆t
+ C2

)∫

Ω

ek+1 −O(∆t) + λ0

(

1

∆t
+ C2

)−1

O(∆t) = O(∆t)

(

1

∆t
+ C2

)∫

Ω

ek+1 = O(∆t),

and hence,

(1 + C2∆t)

∫

Ω

ek = O((∆t)2),

for all k ≥ 0. �

We continue with the proof of Proposition 3.3.
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Proof of Proposition 3.3. In the proof of Lemma 3.1 we have used the consistency result (23) to show
that the discretization error ek satisfies

ek+1 − ek
∆t

+ ǫ∆2ek+1 − C1∆ek+1 + C2ek+1

= −

(

1

ǫ
∆(F ′(Uk)− F ′(uk))− C1∆(Uk − uk) + C2(Uk − uk)− λ(Uk − uk)

)

+ τk.

Multiplication with −∆ek+1 leads to

1

∆t
〈∇(ek+1 − ek),∇ek+1〉2 + ǫ ‖∇∆ek+1‖

2
2 + C1 ‖∆ek+1‖

2
2 + C2 ‖∇ek+1‖

2
2

=
1

ǫ
〈∆(F ′(Uk)− F ′(uk)),∆ek+1〉2 − C1 〈∆(Uk − uk),∆ek+1〉2

+ 〈∇λ(Uk − uk),∇ek+1〉2 − C2 〈∇(Uk − uk),∇ek+1〉2 +
〈

∇∆−1τk,∇∆ek+1

〉

2
.

Further, because

1

∆t

(

‖∇ek+1‖
2
2 − 〈∇ek,∇ek+1〉2

)

≥
1

2∆t
(‖∇ek+1‖

2
2 − ‖∇ek‖

2
2),

we obtain

1

2∆t
(‖∇ek+1‖

2
2 − ‖∇ek‖

2
2) + ǫ ‖∇∆ek+1‖

2
2 + C1 ‖∆ek+1‖

2
2 + C2 ‖∇ek+1‖

2
2

≤
1

ǫ
〈∆(F ′(Uk)− F ′(uk)),∆ek+1〉2 + C1 〈∆ek,∆ek+1〉2 − 〈∇λek,∇ek+1〉2

+ C2 〈∇ek,∇ek+1〉2 +
〈

∇∆−1τk,∇∆ek+1

〉

2
.

Applying Young’s inequality leads to

1

2∆t
(‖∇ek+1‖

2
2 − ‖∇ek‖

2
2) + ǫ ‖∇∆ek+1‖

2
2 + C1 ‖∆ek+1‖

2
2 + C2 ‖∇ek+1‖

2
2

≤ −
1

ǫ
〈(F ′′(Uk)∇Uk − F ′′(uk)∇uk),∇∆ek+1〉2 +

C1

2δ1
‖∆ek‖

2
2 +

C1δ1
2

‖∆ek+1‖
2
2

+
λ20
2δ3

‖∇ek‖
2
2 +

δ3
2
‖∇ek+1‖

2
2 +

C2

2δ2
‖∇ek‖

2
2 +

C2δ2
2

‖∇ek+1‖
2
2

+
1

2δ4
‖τk‖

2
−1 +

δ4
2
‖∇∆ek+1‖

2
2 .

Let us consider the remaining inner product in the last inequality

−
1

ǫ
〈(F ′′(Uk)∇Uk − F ′′(uk)∇uk),∇∆ek+1〉2

=
1

ǫ
〈F ′′(Uk)∇ek,∇∆ek+1〉2 +

1

ǫ
〈(F ′′(uk)− F ′′(Uk))∇uk,∇∆ek+1〉2

≤
1

2δ5ǫ
‖F ′′(Uk)|∇ek|‖

2
2 +

1

2δ6ǫ
‖(F ′′(uk)− F ′′(Uk))|∇uk|‖

2
2 +

(

δ5
2ǫ

+
δ6
2ǫ

)

‖∇∆ek+1‖
2
2 .

Next we assume that (20) holds and that ∇uk is uniformly bounded on [0, T ], in particular that

(29) ∃ ˜̃K > 0 such that ‖∇uk‖2 ≤ ˜̃K for all k∆t < T.

The latter assumption will be proven in Lemma 3.2 just after the end of this proof. Moreover, since
F ′′ is locally Lipschitz continuous we obtain

−
1

ǫ
〈(F ′′(Uk)∇Uk − F ′′(uk)∇uk),∇∆ek+1〉2

≤
C

2δ5ǫ
‖∇ek‖

2
2 +

C

2δ6ǫ
‖ek‖

2
2 +

(

δ5
2ǫ

+
δ6
2ǫ

)

‖∇∆ek+1‖
2
2 ,
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where we have set C to be a universal constant for all bounds. Further, using Lemma 3.1 and

‖ek‖
2
2 = ‖ek −O(∆t)2 +O(∆t)2‖22

≤ 2‖ek −O(∆t)2‖22 + 2‖O(∆t)2‖22,

we can apply Poincaré inequality to the L2 norm of ek. In sum we get
(

1

2∆t
+ C2

(

1−
δ2
2

)

−
δ3
2

)

‖∇ek+1‖
2
2+C1

(

1−
δ1
2

)

‖∆ek+1‖
2
2+

(

ǫ−
δ4
2

−
δ5 + δ6

2ǫ

)

‖∇∆ek+1‖
2
2

≤

(

1

2∆t
+
λ20
2δ3

+
C2

2δ2
+

C

2δ5ǫ
+

C

δ6ǫ

)

‖∇ek‖
2
2 +

C1

2δ1
‖∆ek‖

2
2 +

1

2δ4
‖τk‖

2
−1 +

C

ǫδ6
‖O(∆t)2‖22.

Next we choose δ1 = 1 and multiply the inequality with 2∆t

(1 + ∆t(C2(2− δ2)− δ3)) ‖∇ek+1‖
2
2 +∆tC1 ‖∆ek+1‖

2
2 +∆t

(

2ǫ− δ4 −
δ5 + δ6

ǫ

)

‖∇∆ek+1‖
2
2

≤

(

1 + ∆t

(

λ20
δ3

+
C2

δ2
+

C

δ5ǫ
+

2C

δ6ǫ

))

‖∇ek‖
2
2 +∆tC1 ‖∆ek‖

2
2 +

∆t

δ4
‖τk‖

2
−1 +∆t

2C

ǫδ6
‖O(∆t)2‖22.

Let

C̃ = 1 +∆t(C2(2− δ2)− δ3),
˜̃C = 1 +∆t

(

λ20
δ3

+
C2

δ2
+

C

δ5ǫ
+

2C

δ6ǫ

)

.

Now, choosing all δs such that the coefficients of all terms in the inequality are nonnegative and the

quotient ˜̃C/C̃ ≥ 1, and estimating the last term on the left side from below by zero we get

‖∇ek+1‖
2
2 + ∆t

C1

C̃
‖∆ek+1‖

2
2 ≤

˜̃C

C̃
‖∇ek‖

2
2 + ∆t

C1

C̃
‖∆ek‖

2
2 +

∆t

C̃

(

1

δ4
‖τk‖

2
−1 +

2C

δ6ǫ
‖O(∆t)2‖22

)

,

and because ˜̃C/C̃ ≥ 1 we further have

‖∇ek+1‖
2
2 +∆t

C1

C̃
‖∆ek+1‖

2
2 ≤

˜̃C

C̃

(

‖∇ek‖
2
2 +∆t

C1

C̃
‖∆ek‖

2
2

)

+
∆t

C̃

(

1

δ4
‖τk‖

2
−1 +

2C

δ6ǫ
‖O(∆t)2‖22

)

.

By induction on k we obtain

‖∇ek+1‖
2
2 +∆t

C1

C̃
‖∆ek+1‖

2
2

≤

(

˜̃C

C̃

)k+1
(

‖∇e0‖
2
2 +∆t

C1

C̃
‖∆e0‖

2
2

)

+
∆t

C̃

k
∑

i=0

(

˜̃C

C̃

)i

·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)‖22

)

=
∆t

C̃

k
∑

i=0

(1 +K1∆t)
i ·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)2‖22

)

≤
∆t

C̃
· k · eK1k∆t ·

(

1

δ4
max
i≤k

{‖τi‖
2
−1}+

2C

δ6ǫ
‖O(∆t)2‖22

)

,

where we have used the fact that e0 = 0 and 1 ≤
˜̃C
C̃

= 1 + K1∆t. Hence, by using the consistency

result (24) we conclude for k∆t ≤ T

‖∇ek‖
2
2 +∆t

C1

C̃
‖∆ek‖

2
2 ≤

T

C̃
eK1T · C · (∆t)2. �
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From [13, 14] we know that the solution uk to the continuous equation globally exists and is uniformly
bounded in L2(Ω). Next we show that assumption (29) holds.

Lemma 3.2. Let uk be the exact solution of (4) at time t = k∆t and let T > 0. Then there exists a
constant C > 0 such that ‖∇uk‖2 ≤ C for all k∆t < T .

Proof. Let K(u) = −ǫ∆u + 1
ǫF

′(u). We multiply the continuous evolution equation (4) with K(u)
and obtain

〈ut,K(u)〉2 = 〈∆K(u),K(u)〉2 + 〈λ(f − u),K(u)〉2 .

Let us further define

E(u) :=
ǫ

2

∫

Ω

|∇u|2 dx+
1

ǫ

∫

Ω

F (u) dx.

Then we have

〈ut,K(u)〉2 =

〈

ut,−ǫ∆u+
1

ǫ
F ′(u)

〉

2

= 〈∇ut, ǫ∇u〉2 +

〈

ut,
1

ǫ
F ′(u)

〉

2

=
d

dt
E(u),

since u satisfies Neumann boundary conditions. Therefore we get

(30)
d

dt
E(u) = −

∫

Ω

|∇K(u)|2 dx+ 〈λ(f − u),−ǫ∆u〉2 +

〈

λ(f − u),
1

ǫ
F ′(u)

〉

2

.

Since F (u) is bounded from below, we only have to show that E(u) is uniformly bounded on [0, T ],
and we automatically have that |∇u| is uniformly bounded on [0, T ]. We start with the last term, and
recall the following bounds on F ′(u) (cf. [67]): There exist positive constants C1, C2 such that

F ′(s)s ≥ C1s
2 − C2, ∀s ∈ R

and, for every δ > 0, there exists a constant C3 such that

|F ′(s)| ≤ δC1s
2 + C3(δ), ∀s ∈ R.

Using the last two estimates we obtain the following
〈

λ(f − u),
1

ǫ
F ′(u)

〉

2

=
λ0
ǫ

∫

Ω\D

F ′(u)f dx−
λ0
ǫ

∫

Ω\D

F ′(u)u dx

≤
λ0
ǫ

∫

Ω\D

|F ′(u)| dx · ‖f‖L∞(Ω) −
λ0C1

ǫ

∫

Ω\D

u2 dx+
λ0C2 |Ω \D|

ǫ

≤ λ0C(f,Ω)

(

δ
C1

ǫ

∫

Ω\D

u2 dx+
C3(δ) |Ω \D|

ǫ

)

−
λ0C1

ǫ

∫

Ω\D

u2 dx

+
λ0C2 |Ω \D|

ǫ

≤ −
λ0C1

ǫ
(1− δC(f,Ω))

∫

Ω\D

u2 dx+ C(λ0, ǫ, δ,Ω, D, f),

where we choose δ < 1/C(f,Ω). Therefore integrating (30) over the time interval [0, T ] results in

∫ T

0

d

dt
E(u(t)) dt ≤

∫ T

0

−

∫

Ω

|∇K(u)|2 dx dt+

∫ T

0

〈λ(f − u),−ǫ∆u〉2 dt

−
λ0C1

ǫ
(1 − δC(f,Ω))

∫ T

0

∫

Ω\D

u2 dx dt+ T · C(λ0, ǫ, δ,Ω, D, f).

Next we consider the second term on the right side of the last inequality. From Theorem 4.1 in [13] we
know that a solution u of (4) is an element in L2(0, T ;H2(Ω)) for all T > 0. Hence ∆u ∈ L2(0, T ;L2(Ω))
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Figure 3. Binary image with unknown center and the solution of Cahn-Hilliard in-
painting with λ0 = 105 and switching ǫ value: u(600) with ǫ = 0.1, u(1000) with
ǫ = 0.01

Figure 4. Text removal from a binary image: the solution of Cahn-Hilliard inpainting
with λ0 = 109 and switching ǫ value: u(200) with ǫ = 0.8, u(500) with ǫ = 0.01

and the second term is bounded by a constant depending on T . Consequently for each 0 ≤ t ≤ T we
get,

E(u(t)) ≤ E(u(0)) + C(T ) + T · C(λ0, ǫ, δ,Ω, D, f)

−

∫ T

0

[

∫

Ω

|∇K(u)|2 dx+
λ0C1

ǫ
(1− δC(f,Ω))

∫

Ω\D

u2 dx

]

dt,

and with this, for a fixed T > 0, that |∇u| is uniformly bounded in [0, T ]. �

3.2. Numerical Results. In our computations the optimal ∆t turned out to be ∆t = 1 or 10 (de-
pending also on the size of ǫ and λ0). Numerical results of the above scheme are presented in Figure 3,
4 and 5. In all of the examples we follow the procedure of [13], i.e., the inpainted image is computed
in a two step process. In the first step Cahn-Hilliard inpainting is solved with a rather large value
of ǫ, e.g., ǫ = 0.1, until the numerical scheme is close to steady state. In this step the level lines are
continued into the missing domain. In a second step, the result of the first step is put as an initial
condition into the scheme for a small ǫ, e.g., ǫ = 0.01, in order to sharpen the contours of the image
contents. The reason for this two step procedure is twofold. First of all in [14] the authors give numer-
ical evidence that the steady state of the modified Cahn-Hilliard equation (4) is not unique, i.e., it is
dependent on the initial condition inside of the inpainting domain. As a consequence, computing the
inpainted image by the application of Cahn-Hilliard inpainting with a small ǫ only, might not extend
the level lines into the missing domain as desired. See also [14] for a bifurcation diagram based on the
numerical computations of the authors. The second reason for solving Cahn-Hilliard inpainting in two
steps is that it is computationally less expensive. Solving the above time-marching scheme for, e.g.,
ǫ = 0.1 is faster than solving it for ǫ = 0.01. This is because of the damping introduced by C1, i.e., ǫ,
into the scheme, cf. (18). All numerical examples presented here have been computed in orders of 10
seconds on a 1.86 GHz processor with 1 GB RAM. For a further discussion on computational times
for the convexity splitting method applied to Cahn-Hilliard inpainting we refer to [13].
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Figure 5. Vandalized binary image and the solution of Cahn-Hilliard inpainting with
λ0 = 109 and switching ǫ value: u(800) with ǫ = 0.8, u(1600) with ǫ = 0.01

One possible generalization of Cahn-Hilliard inpainting for grayscale images is to split the grayscale
image bit-wise into channels

u(x) 

K
∑

k=1

uk(x)2
−(k−1),

where K > 0. The Cahn-Hilliard inpainting approach is then applied to each binary channel uk
separately, compare Figure 7. At the end of the inpainting process the channels are assembled again
and the result is the inpainted grayvalue image in lower grayvalue resolution, compare Figure 6. In
Figure 8 the application of bitwise Cahn-Hilliard inpainting for the restoration of satellite images of
roads is demonstrated. One can imagine that the black dots in the first picture represent trees that
cover parts of the road. The idea of bitwise binary inpainting is proposed in [30] for the inpainting
with wavelets based on the Allen-Cahn energy.
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Figure 6. Cahn-Hilliard bitwise inpainting with K = 8 binary channels (λ0 = 108,
with ǫ = 0.1 until t = 800 and ǫ = 0.01 until t = 1200)

4. TV-H−1 Inpainting

In this section we discuss convexity splitting for TV-H−1 inpainting (5). To avoid numerical and
theoretical difficulties we approximate an element p in the subdifferential of the total variation func-
tional TV (u) by a smoothed version of ∇ · (∇u/ |∇u|), the square root regularization for instance.
With the latter regularization the smoothed version of (5) reads

(31) ut = −∆∇ ·

(

∇u
√

|∇u|2 + δ2

)

+ λ(f − u),

with 0 < δ ≪ 1. In contrast to its second-order analogue, the well-posedness of (5) strongly depends
on the smoothing used for ∇·(∇u/ |∇u|). In fact there are smoothing functions for which (5) produces
singularities in finite time. This is caused by the lack of maximum principles which in the second-order
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Figure 7. The given image (first row) and the Cahn-Hilliard inpainting result (second
row) for the channels 2, 3 and 5.

Figure 8. Bitwise Cahn-Hilliard inpainting with K = 8 binary channels applied to
road restoration

case guarantee the well-posedness for all smooth monotone regularizations. In [16] the authors consider
(5) with λ = λ0 in all of Ω, i.e., the fourth-order analogue to TV-L2 denoising, which was originally
introduced in [58]. They prove global well-posedness in one space dimension for smooth initial data
for the arctan regularization

(32)

(

2

π
arctan(ux/δ)

)

x

,

where 0 < δ ≪ 1. For the square root smoothing

(33)

(

ux
√

|ux|2 + δ2

)

x

they conjecture, supported by empirical evidence, that singularities occur in infinite time, not finite
time. The behavior of the fourth-order PDE in one dimension is also relevant for two-dimensional
images since a lot of structure involves edges which are one-dimensional objects. In two dimensions
similar results are much more difficult to obtain, since energy estimates and the Sobolev lemma involved
in its proof might not hold in higher dimensions anymore. We also note that in [19] the authors prove
the existence of a weak stationary solution for (5) in two space dimensions.
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In the following we present the convexity splitting method applied to (5) for both the square root
and the arctan regularization. Similarly to the convexity splitting for Cahn-Hilliard inpainting, we
propose the following splitting for the TV-H−1 inpainting equation. The regularizing term in (5) can
be modeled by a gradient flow in H−1 of the energy

E1(u) =

∫

Ω

|∇u| dx,

where |∇u| is replaced by its regularized version, e.g.,

√

|∇u|
2
+ δ2, δ > 0. We split E1 in E1c − E1e

with

E1c(u) =

∫

Ω

C1

2
|∇u|2 dx, and E1e(u) =

∫

Ω

−|∇u|+
C1

2
|∇u|2 dx.

The fitting term is split into E2 = E2c − E2e analogous to Cahn-Hilliard inpainting. The resulting
time-stepping scheme is given by

(34)
Uk+1 − Uk

∆t
+ C1∆∆Uk+1 + C2Uk+1 = C1∆∆Uk −∆

(

∇ · (
∇Uk

|∇Uk|
)

)

+ C2Uk + λ(f − Uk).

We assume that Uk+1 satisfies zero Neumann boundary conditions and use the DCT to solve (34).
The constants C1 and C2 have to be chosen such that E1c, E1e, E2c, E2e are all strictly convex. In

the following we demonstrate how to compute the appropriate constants. Let us consider C1 first. The
functional E1c is strictly convex for all C1 > 0. The choice of C1 for the convexity of E1e depends
on the regularization of the total variation we are using. We use the square regularization (33), i.e.,
instead of |∇u| we have

∫

G(|∇u|) dx, with G(s) =
√

s2 + δ2.

Setting y = |∇u| we have to choose C1 such that C1

2 y
2 −G(y) is convex. The convexity condition for

the second derivative gives us that

C1 > G′′(y) ⇐⇒ C1 >
δ2

(δ2 + y2)3/2
⇐⇒ C1 >

1

δ
,

is sufficient as δ2

(δ2+y2)3/2
has its maximum value at y = 0. In the one dimensional case, we would like

to compare this with the arctan regularization (32), i.e., replacing ux

|ux|
by 2

π arctan(ux

δ ), as proposed

in [16]. Here the convexity condition for the second derivative reads

C1 ±
d

ds

(

2

π
arctan

(s

δ

)

)

> 0.

The ± sign results from the absent absolute value in the regularization definition. We obtain

C1 ±
2

π

1

δ(1 + s2/δ2)
> 0.

The inequality with a plus sign instead of ± is true for all constants C1 > 0. In the other case we
obtain

C1 >
2

π

δ

δ2 + s2
,

which is fulfilled for all s ∈ R if C1 >
2
δπ . Note that this condition is almost the same as in the case

of the square regularization.
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Now we consider E2 = E2c−E2e. The functional E2c is strictly convex if C2 > 0. For the convexity
of E2e we rewrite

E2e(u) =
1

2

∫

Ω

−λ(f − u)2 + C2|u|
2 dx

=

∫

D

C2

2
|u|2 dx+

∫

Ω\D

−
λ0
2
(f − u)2 +

C2

2
|u|2 dx

=

∫

D

C2

2
|u|2 dx+

∫

Ω\D

(
C2

2
−
λ0
2
) |u|

2
+ λ0fu−

λ0
2

|f |
2
.

This is convex for C2 > λ0, e.g., with C2 = λ0 + 1 we can write

E2e(u) =

∫

D

C2

2
|u|2 dx+

∫

Ω\D

(

1

2
u+ λ0f

)2

−

(

λ20 +
λ0
2

)

|f |
2
dx.

4.1. Rigorous Estimates for the Scheme. As in Section 3.1 for Cahn-Hilliard inpainting, we pro-
ceed with a more detailed analysis of (34). Throughout this section we consider the square-root
regularization of the total variation both in our numerical scheme and in the continuous evolution
equation (5). Note that similar results are true for other monotone regularizers such as the arctan
smoothing. Our results are summarized in the following theorem.

Theorem 4.1. Let u be the exact solution of (31) and uk = u(k∆t) be the exact solution at time k∆t
for a time step ∆t > 0 and k ∈ N. Let further Uk be the kth iterate of (34) with constants C1 > 1/δ,
C2 > λ0. Then the following statements are true:

(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical scheme (34) is
consistent with the continuous equation (5) and of order one in time.

(ii) The solution sequence Uk is bounded on a finite time interval [0, T ], for all ∆t > 0. In
particular, for k∆t ≤ T , T > 0 fixed, we have for every ∆t > 0

(35) ‖∇Uk‖
2
2 +∆tK1 ‖∇∆Uk‖

2
2 ≤ eK2T

(

‖∇U0‖
2
2 +∆tK1 ‖∇∆U0‖

2
2 +∆tTC(Ω, D, λ0, f)

)

,

for suitable constants K1, K2, and a constant C, which depends on Ω, D, λ0, f only.
(iii) Let further ek = uk − Uk. For smooth solutions uk and Uk, the error ek converges to zero as

∆t → 0. In particular, for k∆t ≤ T , T > 0 fixed, we have

(36) ‖∇ek‖
2
2 +∆tM1 ‖∇∆ek‖

2
2 ≤

T

M2
eM3T (∆t)2,

for suitable positive constants M1,M2 and M3.

Remark 4.1. For the convergence result in Theorem 4.1 (iii) we assume that smooth solutions to
both the continuous in time problem and the discrete in time approximation exist. The validity of this
assumption is not known in general. Note however that the global regularity results are known in 1D
for the arctan smoothing [16]. Moreover, our numerical results show no indication of singularities in
2D. Therefore, it is not unreasonable to analyze the convergence under these assumptions.

The proof of Theorem 4.1 is split into three separate Propositions 4.1-4.3.

Proposition 4.1. (Consistency (i)) Under the same assumptions as in Theorem 4.1 and in par-
ticular under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical scheme (34) is
consistent with the continuous equation (31) with ‖τk‖−1 = O(∆t) as ∆t → 0, where τk is the local
truncation error.

Proof. The local truncation error is defined over a time step as satisfying

τk = τ1k + τ2k ,

where

τ1k =
uk+1 − uk

∆t
− ut(k∆t), τ2k = C1∆

2(uk+1 − uk) + C2(uk+1 − uk),
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i.e.,

(37) τk =
uk+1 − uk

∆t
+∆

(

∇ ·

(

∇uk
√

|∇uk|2 + δ2

))

− λ(f − uk)

+ C1∆
2(uk+1 − uk) + C2(uk+1 − uk).

Using standard Taylor series arguments and assuming that ‖utt‖−1, ‖∇∆ut‖2 and ‖ut‖2 are bounded
we deduce that

�(38) ‖τk‖−1 = O(∆t) for ∆t → 0.

Proposition 4.2. (Unconditional stability (ii)) Under the same assumptions as in Theorem 4.1
the solution sequence Uk fulfills (35). This gives boundedness of the solution sequence on [0, T ].

Proof. If we multiply (34) with −∆Uk+1 and integrate over Ω we obtain

1

∆t

(

‖∇Uk+1‖
2
2 − 〈∇Uk,∇Uk+1〉2

)

+ C2 ‖∇Uk+1‖
2
2 + C1 ‖∇∆Uk+1‖

2
2

=

〈

∆∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



 ,∆Uk+1

〉

2

+ C1 〈∇∆Uk,∇∆Uk+1〉2

+ 〈∇ (λ(f − Uk)) ,∇Uk+1〉2 + C2 〈∇Uk,∇Uk+1〉2 .

Applying Young’s inequality to the inner products on the right and estimating

‖∇λ(f − Uk)‖
2
2 ≤ 2λ20 ‖∇Uk‖

2
2 + C(Ω, D, λ0, f)

results in

1

2∆t

(

‖∇Uk+1‖
2
2 − ‖∇Uk‖

2
2

)

+ C2 ‖∇Uk+1‖
2
2 + C1 ‖∇∆Uk+1‖

2
2

≤

〈

∆∇ ·





∇Uk
√

|∇Uk|
2 + δ2



 ,∆Uk+1

〉

2

+
C1

δ1
‖∇∆Uk‖

2
2 + C1δ1 ‖∇∆Uk+1‖

2
2

+
2λ20
δ2

‖∇Uk‖
2
2 + δ2 ‖∇Uk+1‖

2
2 +

C2

δ3
‖∇Uk‖

2
2 + C2δ3 ‖∇Uk+1‖

2
2 + C(Ω, D, λ0, f).

Now, the first term on the right side of the inequality can be estimated as follows

〈

∆∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



 ,∆Uk+1

〉

2

= −

〈

∇∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



 ,∇∆Uk+1

〉

2

≤
1

δ4

∥

∥

∥

∥

∥

∥

∇∇ ·





∇Uk
√

|∇Uk|
2
+ δ2





∥

∥

∥

∥

∥

∥

2

2

+ δ4 ‖∇∆Uk+1‖
2
2 .

Applying Poincaré’s and Cauchy’s inequality to the first term leads to

∥

∥

∥

∥

∥

∥

∇∇ ·





∇Uk
√

|∇Uk|
2
+ δ2





∥

∥

∥

∥

∥

∥

2

2

≤
C

δ
(‖∇Uk‖

2
2 + ‖∆Uk‖

2
2 + ‖∇∆Uk‖

2
2).
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Interpolating the L2 norm of ∆u by the L2 norms of ∇u and ∇∆u, we obtain
(

1

2∆t
+ C2(1 − δ3)− δ2

)

‖∇Uk+1‖
2
2 + (C1(1− δ1)− δ4) ‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+

2λ20
δ2

+
C2

δ3
+
C(1/δ,Ω)

δ4

)

‖∇Uk‖
2
2 +

(

C1

δ1
+
C(1/δ,Ω)

δ4

)

‖∇∆Uk‖
2
2

+ C(Ω, D, λ0, f).

For δi = 1/2, i = 1, . . . , 4 we obtain
(

1

2∆t
+
C2 − 1

2

)

‖∇Uk+1‖
2
2 +

C1 − 1

2
‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+ 4λ20 + 2(C2 + C)

)

‖∇Uk‖
2
2 + 2 (C1 + C) ‖∇∆Uk‖

2
2 + C(Ω, D, λ0, f).

Since C1 and C2 are chosen such that C1 > 1/δ > 1 and C2 > λ0 > 1, the coefficients in the inequality
above are positive. The rest of the proof is similar to the proof of Proposition 3.2. We multiply the
inequality by 2∆t and set

Ca = 1 +∆t(C2 − 1), Cb = C1 − 1, Cc = 1 + 2∆t(4λ20 + 2(C2 + C)), Cd = 4(C1 + C).

We obtain

Ca ‖∇Uk+1‖
2
2 +∆tCb ‖∇∆Uk+1‖

2
2 ≤ Cc ‖∇Uk‖

2
2 +∆tCd ‖∇∆Uk‖

2
2 + 2∆tC(Ω, D, λ0, f).

Dividing by Ca (which is > 0) we have

‖∇Uk+1‖
2
2 +∆t

Cb

Ca
‖∇∆Uk+1‖

2
2 ≤

Cc

Ca
‖∇Uk‖

2
2 +∆t

Cd

Ca
‖∇∆Uk‖

2
2 +

2

Ca
∆tC(Ω, D, λ0, f).

We rewrite the right hand side of the inequality such that

‖∇Uk+1‖
2
2 +∆t

Cb

Ca
‖∇∆Uk+1‖

2
2 ≤

CcCd

Ca

(

1

Cd
‖∇Uk‖

2
2 +∆t

1

Cc
‖∇∆Uk‖

2
2

)

+
2

Ca
∆tC(Ω, D, λ0, f).

Since Cd > 1 we can multiply the first term within the brackets on the right hand side of the inequality
with Cd and will only get something which is larger or equal. For the same reason we can multiply
the second term within the brackets with

1 <
CcCb

Ca
=

(1 + 2∆t(4λ20 + 2(C2 + C)))(C1 − 1)

1 + ∆t(C2 − 1)

and we get

‖∇Uk+1‖
2
2 +∆t

Cb

Ca
‖∇∆Uk+1‖

2
2 ≤

CcCd

Ca

(

‖∇Uk‖
2
2 +∆t

Cb

Ca
‖∇∆Uk‖

2
2

)

+
2

Ca
∆tC(Ω, D, λ0, f).

By induction it follows that

‖∇Uk+1‖
2
2 +∆t

Cb

Ca
‖∇∆Uk+1‖

2
2 ≤

(

CcCd

Ca

)k (

‖∇U0‖
2
2 +∆t

Cb

Ca
‖∇∆U0‖

2
2

)

+∆t

k−1
∑

i=0

(

CcCd

Ca

)i
2

Ca
C(Ω, D, λ0, f).

Therefore we obtain for k∆t ≤ T

‖∇Uk‖
2
2 +∆t

Cb

Ca
‖∇∆Uk‖

2
2 ≤ eKT

(

‖∇U0‖
2
2 +∆t

Cb

Ca
‖∇∆U0‖

2
2 +∆tT

2

Ca
C(Ω, D, λ0, f)

)

. �

Finally we show that the discrete solution converges to the continuous one as ∆t tends to zero.

Proposition 4.3. (Convergence (iii)) Under the same assumptions as in Theorem 4.1 (iii) the
error ek fulfills (36).



26 C.-B. SCHÖNLIEB, A. BERTOZZI

Proof. By our discrete approximation (34) and the consistency computation (37), we have for ek =
uk − Uk

ek+1 − ek
∆t

+ C1∆
2ek+1 + C2ek+1

=
1

∆t
(uk+1 − uk)−

1

∆t
(Uk+1 − Uk) + C1∆

2uk+1 − C1∆
2Uk+1 + C2uk+1 − C2Uk+1

= −



C1∆
2Uk −∆



∇ ·





∇Uk
√

|∇Uk|
2 + δ2







+ λ(f − Uk) + C2Uk





−



∆



∇ ·





∇uk
√

|∇uk|
2 + δ2







− λ(f − uk)− C1∆
2uk − C2uk



+ τk

= −

[

−∆



∇ ·





∇Uk
√

|∇Uk|
2 + δ2



−∇ ·





∇uk
√

|∇uk|
2 + δ2









+C1∆
2(Uk − uk) + C2(Uk − uk)− λ(Uk − uk)

]

+ τk.

Taking the inner product with −∆ek+1, we have

1

∆t
〈∇(ek+1 − ek),∇ek+1〉2 + C1 ‖∇∆ek+1‖

2
2 + C2 ‖∇ek+1‖

2
2

=

〈

−∆



∇ ·





∇Uk
√

|∇Uk|
2 + δ2



−∇ ·





∇uk
√

|∇uk|
2 + δ2







 ,∆ek+1

〉

2

+ C1

〈

∆2(Uk − uk),∆ek+1

〉

2
+ 〈∇λ(Uk − uk),∇ek+1〉2

− C2 〈∇(Uk − uk),∇ek+1〉2 −
〈

∇∆−1τk,∇∆ek+1

〉

2

Using the same arguments as in the proof of Proposition 3.3 we obtain

(39)
1

2∆t
(‖∇ek+1‖

2
2 − ‖∇ek‖

2
2) + C1 ‖∇∆ek+1‖

2
2 + C2 ‖∇ek+1‖

2
2

≤

〈

−∆



∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



−∇ ·





∇uk
√

|∇uk|
2
+ δ2







 ,∆ek+1

〉

2

+
C1

δ1
‖∇∆ek‖

2
2 + C1δ1 ‖∇∆ek+1‖

2
2 +

λ20
δ3

‖∇ek‖
2
2 + δ3 ‖∇ek+1‖

2
2

+
C2

δ2
‖∇ek‖

2
2 + C2δ2 ‖∇ek+1‖

2
2 +

1

δ4
‖τk‖

2
−1 + δ4 ‖∇∆ek+1‖

2
2 .

We consider the first term on the right side of the above inequality in detail,

〈

−∆



∇ ·





∇Uk
√

|∇Uk|
2 + δ2



−∇ ·





∇uk
√

|∇uk|
2 + δ2







 ,∆ek+1

〉

2

=

〈

∇



∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



−∇ ·





∇uk
√

|∇uk|
2
+ δ2







 ,∇∆ek+1

〉

2

.(40)
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We get

∇ ·





∇u
√

|∇u|
2
+ δ2



 =
∆u

√

|∇u|
2
+ δ2

−
u2xuxx + 2uxuyuxy + u2yuyy

(|∇u|2 + δ2)3/2
.

Next, we apply the gradient to this expression and obtain

∇



∇ ·





∇u
√

|∇u|
2
+ δ2







 =
∇∆u

√

|∇u|
2
+ δ2

−
∆u

2(|∇u|
2
+ δ2)3/2

· ∇
(

|∇u|2
)

−
∇(u2xuxx + 2uxuyuxy + u2yuyy)

(|∇u|
2
+ δ2)3/2

+
3(u2xuxx + 2uxuyuxy + u2yuyy)

2(|∇u|2 + δ2)5/2
· ∇
(

|∇u|2
)

,

where

∇
(

|∇u|2
)

=









2∇u ·

(

uxx
uyx

)

2∇u ·

(

uxy
uyy

)









= 2

(

uxuxx + uyuyx
uxuxy + uyuyy

)

,

and

∇(u2xuxx + 2uxuyuxy + u2yuyy) = 2(uxuxx + uyuxy)∇ux + 2(uxuxy + uyuyy)∇uy

+ u2x∇uxx + 2uxuy∇uxy + u2y∇uyy.

Reordering the involved terms we have

∇



∇ ·





∇u
√

|∇u|
2
+ δ2







 = H1(∇u) · ∇∆u +H2(ux, uy, uxx, uxy, uyy) · ∇ux

+H3(ux, uy, uxx, uxy, uyy) · ∇uy +H4(ux, uy) · ∇uxx +H5(ux, uy) · ∇uxy +H6(ux, uy) · ∇uyy,

where

H1(∇u) =
1

√

|∇u|
2
+ δ2

,

H2(ux, uy, uxx, uxy, uyy) = −

(

∆uux + 2(uxuxx + uyuxy)

(|∇u|2 + δ2)3/2
−

3(u2xuxx + 2uxuyuxy + u2yuyy)ux

(|∇u|2 + δ2)5/2

)

,

H3(ux, uy, uxx, uxy, uyy) = −

(

∆uuy + 2(uxuxy + uyuyy)

(|∇u|
2
+ δ2)3/2

−
3(u2xuxx + 2uxuyuxy + u2yuyy)uy

(|∇u|
2
+ δ2)5/2

)

,

H4(ux, uy) = −
u2x

(|∇u|2 + δ2)3/2
,

H5(ux, uy) = −
2uxuy

(|∇u|
2
+ δ2)3/2

,

H6(ux, uy) = −
u2y

(|∇u|
2
+ δ2)3/2

.
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Now we are going to insert this into (40). For ease of notation we suppress the time index k for now,
i.e., we define U := Uk, u := uk and e := ek. We obtain

〈

∇



∇ ·





∇Uk
√

|∇Uk|
2
+ δ2



−∇ ·





∇uk
√

|∇uk|
2
+ δ2







 ,∇∆ek+1

〉

2

= 〈H1(∇U) · ∇∆U −H1(∇u) · ∇∆u,∇∆ek+1〉2
+ 〈H2(Ux, Uy, Uxx, Uxy, Uyy) · ∇Ux −H2(ux, uy, uxx, uxy, uyy) · ∇ux,∇∆ek+1〉2
+ 〈H3(Ux, Uy, Uxx, Uxy, Uyy) · ∇Uy −H3(ux, uy, uxx, uxy, uyy) · ∇uy,∇∆ek+1〉2
+ 〈H4(Ux, Uy) · ∇Uxx −H4(ux, uy) · ∇uxx,∇∆ek+1〉2
+ 〈H5(Ux, Uy) · ∇Uxy −H5(ux, uy) · ∇uxy,∇∆ek+1〉2
+ 〈H6(Ux, Uy) · ∇Uyy −H6(ux, uy) · ∇uyy,∇∆ek+1〉2

≤
1

2δ̄
‖H1(∇U) · (∇∆U −∇∆u)‖22 +

1

2δ̄
‖∇∆u · (H1(∇u)−H1(∇U))‖22

+
1

2δ̄
‖H2(Ux, Uy, Uxx, Uxy, Uyy) · (∇Ux −∇ux)‖

2
2

+
1

2δ̄
‖∇ux · (H2(ux, uy, uxx, uxy, uyy)−H2(Ux, Uy, Uxx, Uxy, Uyy)‖

2
2

+
1

2δ̄
‖H3(Ux, Uy, Uxx, Uxy, Uyy) · (∇Uy −∇uy)‖

2
2

+
1

2δ̄
‖∇uy · (H3(ux, uy, uxx, uxy, uyy)−H3(Ux, Uy, Uxx, Uxy, Uyy)‖

2
2

+
1

2δ̄
‖H4(Ux, Uy) · (∇Uxx −∇uxx)‖

2
2 +

1

2δ̄
‖∇uxx · (H4(ux, uy)−H4(Ux, Uy))‖

2
2

+
1

2δ̄
‖H5(Ux, Uy) · (∇Uxy −∇uxy)‖

2
2 +

1

2δ̄
‖∇uxy · (H5(ux, uy)−H5(Ux, Uy))‖

2
2

+
1

2δ̄
‖H6(Ux, Uy) · (∇Uyy −∇uyy)‖

2
2 +

1

2δ̄
‖∇uyy · (H6(ux, uy)−H6(Ux, Uy))‖

2
2

+6δ̄‖∇∆ek+1‖
2
2,

for a suitable constant δ̄ > 0. Next we want to use that the Hi’s are Lipschitz continuous in Ω, with
Lipschitz constants L(1/δ) < ∞ for δ > 0, which grow as δ decreases. For simplicity, we only present
the proof for the first part of H2, i.e., for

H1
2 (ux, uy, uxx, uxy, uyy) = −

∆uux + 2(uxuxx + uyuxy)

(|∇u|
2
+ δ2)3/2

=
ux(3uxx + uyy) + 2uyuxy

(|∇u|
2
+ δ2)3/2

.

The others follow similarily. We have

‖H1
2 (ux, uy, uxx, uxy, uyy)−H1

2 (Ux, Uy, Uxx, Uxy, Uyy‖2

=

∥

∥

∥

∥

∥

ux(3uxx + uyy) + 2uyuxy

(|∇u|
2
+ δ2)3/2

−
Ux(3Uxx + Uyy) + 2UyUxy

(|∇U |
2
+ δ2)3/2

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

ux(3uxx + uyy)

(|∇u|
2
+ δ2)3/2

−
Ux(3Uxx + Uyy)

(|∇U |
2
+ δ2)3/2

∥

∥

∥

∥

∥

2

+ 2

∥

∥

∥

∥

∥

uyuxy

(|∇u|
2
+ δ2)3/2

−
UyUxy

(|∇U |
2
+ δ2)3/2

∥

∥

∥

∥

∥

2

≤

∥

∥

∥

∥

∥

(3uxx + uyy)

(

ux

(|∇u|
2
+ δ2)3/2

−
Ux

(|∇U |
2
+ δ2)3/2

)∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

Ux

(|∇U |
2
+ δ2)3/2

(3exx − eyy)

∥

∥

∥

∥

∥

2

+ 2

∥

∥

∥

∥

∥

uxy

(

uy

(|∇u|2 + δ2)3/2
−

Uy

(|∇U |2 + δ2)3/2

)∥

∥

∥

∥

∥

2

+ 2

∥

∥

∥

∥

∥

Uy

(|∇U |2 + δ2)3/2
exy

∥

∥

∥

∥

∥

2
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From our assumption in Theorem 4.1 (iii) we have a continuous in time smooth solution u on a finite
time interval. In particular this gives us a uniform bound for the second derivatives of the exact
solution u, i.e., there exists a C > 0 such that ‖uxx‖∞ + ‖uxy‖∞ + ‖uyy‖∞ < C on a finite time
interval [0, T ]. Further, with the fact that the function x

(x2+y2+δ2)3/2
is uniformly bounded for δ > 0

and for all x, y ∈ R we have

‖H1
2 (ux, uy, uxx, uxy, uyy)−H1

2 (Ux, Uy, Uxx, Uxy, Uyy‖2

≤ C

∥

∥

∥

∥

∥

ux

(|∇u|
2
+ δ2)3/2

−
Ux

(|∇U |
2
+ δ2)3/2

∥

∥

∥

∥

∥

2

+ C ‖3exx − eyy‖2

+ 2C

∥

∥

∥

∥

∥

uy

(|∇u|2 + δ2)3/2
−

Uy

(|∇U |2 + δ2)3/2

∥

∥

∥

∥

∥

2

+ 2C ‖exy‖2 ,

where we used a universal constant C > 0 for the uniform bounds. Moreover, for a fixed y and
δ > 0 the function x

(x2+y2+δ2)3/2
is Lipschitz continuous with constant L(1/δ), which is increasing as δ

decreases. By additionally applying the triangular inequality once more we eventually have

‖H1
2 (ux, uy, uxx, uxy, uyy)−H1

2 (Ux, Uy, Uxx, Uxy, Uyy‖2 ≤

CL(1/δ)(‖ex‖2 + ‖ey‖2 + ‖∇e‖2) + C(‖exx‖2 + ‖exy‖2 + ‖eyy‖2)

and hence that H1
2 is Lipschitz continuous. Similarly one can show that the other Hi’s are Lipschitz

continuous. Let us further observe that H1, H4, H5, H6 are uniformly bounded for δ > 0. Moreover,
the uniform boundedness of H2 and H3 for the discrete in time solution U on a finite time interval, is
given by the smoothness assumption in Theorem 4.1 (iii) for U . Then, with the Lipschitz continuity
and the uniform boundedness of the Hi’s on a finite time interval, and the uniform boundedness on
a finite time interval of ∇uk, ∆uk and ∇∆uk for the exact solution uk given in Theorem 4.1 (iii), we
eventually obtain an estimate for (40)

(41)

〈

∇



∇ ·





∇Uk
√

|∇Uk|
2 + δ2



−∇ ·





∇uk
√

|∇uk|
2 + δ2







 ,∇∆ek+1

〉

2

≤
C

2δ̄
‖∇∆e‖22 + CL

3

δ̄
‖∇e‖22 +

C

2δ̄
‖∇ex‖

2
2 +

C

2δ̄
‖∇ey‖

2
2 +

CL

δ̄
(‖exx‖

2
2 + ‖exy‖

2
2 + ‖eyy‖

2
2)

+
C

2δ̄
‖∇exx‖

2
2 +

C

2δ̄
‖∇exy‖

2
2 +

C

2δ̄
‖∇eyy‖

2
2 + 6δ̄‖∇∆ek+1‖

2
2,

where L = L(1/δ) denotes a universal Lipschitz constant for the Hi’s and C is a universal constant
for the involved uniform bounds.
Further, having assumed zero Neumann boundary conditions for (5) and (34), i.e.,

∇u · ~n = ∇∇ ·

(

∇u
√

|∇u|2 + δ2

)

· ~n = 0, on ∂Ω,

where ~n is the outward pointing normal on ∂Ω, the second and third derivatives in (41) can be bounded
by

(42) ‖exx‖
2
2 + ‖exy‖

2
2 + ‖eyy‖

2
2 + ‖∇exx‖

2
2 + ‖∇exy‖

2
2 + ‖∇eyy‖

2
2 ≤ B(‖∆e‖22 + ‖∇∆e‖22),
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for a suitable constant B > 0. Because of the Neumann boundary conditions we also get that
∫

Ω ∆e =
0. Hence, we can apply Poincaré’s inequality to ‖∆e‖2 and obtain for (39)
(

1

2∆t
+ C2(1 − δ2)− δ3

)

‖∇ek+1‖
2
2 +

(

C1(1− δ1)− δ4 − 6δ̄
)

‖∇∆ek+1‖
2
2

≤

(

1

2∆t
+
C2

δ2
+
λ20
δ3

3CL

δ̄

)

‖∇ek‖
2
2 +

(

C1

δ1
+
C

2δ̄
+BC

[

5

2δ̄
+ L

1

δ̄

])

‖∇∆ek‖
2
2 +

1

δ4
‖τk‖

2
−1,

where we reintroduced the index notation ek for e. Therefore by following the lines of the proof of
Proposition 3.3 we finally have for k∆t ≤ T

‖∇ek‖
2
2 +∆tM1 ‖∇∆ek‖

2
2 ≤

T

M2
eM3T (∆t)2,

for suitable positive constants M1,M2 and M3. �

Remark 4.2. Note that the Lipschitz continuity of the Hi’s – necessary for the estimates in the
convergence proof – breaks down if δ → 0, where δ is the smoothing parameter in the square-root
regularization (33) of the total variation.

4.2. Numerical results. Numerical results for the TV-H−1 inpainting approach are presented in
Figure 9 and 10. For a comparison of the higher order TV-H−1 inpainting approach with its second
order cousin, the standard TV-L2 inpainting method, in Figure 10 we consider the performance of
both algorithms in a small part of the image in Figure 9. In fact the result shown in Figure 9 and 10
strongly indicates the continuation of the gradient of the image function into the inpainting domain.
A rigorous proof of this observation, as the one for Cahn-Hilliard inpainting (cf. Section 3), is a matter

of future research. In both examples the total variation |∇u| is approximated by

√

|∇u|
2
+ δ and the

time step size ∆t is chosen to be equal to one. The computational time for the example in Figure 9 is
of the order of 100 seconds on a 1.86 GHz processor with 1 GB RAM.

Figure 9. TV-H−1 inpainting: u(1000) with λ0 = 103

5. LCIS Inpainting

Our last example for the applicability of the convexity splitting method to higher-order inpainting
approaches is inpainting with LCIS (6). With f ∈ L2(Ω) our inpainted image u evolves in time as

ut = −∆(arctan(∆u)) + λ(f − u).

In contrast to the other two inpainting methods that we discussed, this inpainting equation is a gradient
flow in L2 for the energy

E(u) =

∫

Ω

G(∆u) dx+
1

2

∫

Ω

λ(f − u)2,
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Figure 10. (l.) u(1000) with TV-H−1 inpainting, (r.) u(5000) with TV-L2 inpainting

with G′(y) = arctan(y). Therefore Eyre’s result in Theorem 2.1 can be applied directly. The functional
E(u) is split into Ec − Ee with

Ec(u) =

∫

Ω

C1

2
(∆u)2 dx+

1

2

∫

Ω

C2

2
|u|

2
dx,

Ee(u) =

∫

Ω

−G(∆u) +
C1

2
(∆u)2 dx+

1

2

∫

Ω

−λ(f − u)2 +
C2

2
|u|

2
dx.

The resulting time-stepping scheme is

(43)
Uk+1 − Uk

∆t
+ C1∆

2Uk+1 + C2Uk+1 = −∆(arctan(∆Uk)) + C1∆
2Uk + λ(f − Uk) + C2Uk.

Again we impose homogeneous Neumann boundary conditions, use DCT to solve (43) and we choose
the constants C1 and C2 such that Ec and Ee are all strictly convex and condition (14) is satisfied.
The functional Ec is convex for all C1, C2 > 0. The first term in Ee is convex if C1 > 1. This follows
from its second variation, namely

∇2E1e(u)(v, w) =

(

d

ds

∫

(C1∆(u+ sw) − arctan(∆(u+ sw)))∆v dx

)

s=0

=

∫ (

C1 −
1

1 + (∆u)2

)

∆v∆w dx.

For E1e being convex ∇2E1e(u)(v, w) has to be > 0 for all v, w ∈ C∞ and therefore

C1 −
1

1 + (∆u)2
> 0.

Substituting s = ∆u we obtain

C1 >
1

1 + s2
∀s ∈ R.

This inequality is fulfilled for all s ∈ R if C1 > 1. We obtain the same condition on C1 for G′(s) =
arctan( sδ ). For the convexity of the second term of Ee, the second constant has to fulfill C2 > λ0, cf.
the computation for the fitting term in Section 4. With these choices of C1 and C2 also condition (14)
of Theorem 2.1 is automatically satisfied.

5.1. Rigorous Estimates for the Scheme. Finally we present rigorous results for (43). In contrast
to the inpainting equations (4) and (5), inpainting with LCIS follows a variational principle. Hence, by
choosing the constants C1 and C2 appropriately, i.e., C1 > 1, C2 > λ0 (cf. the computations above),
Theorem 2.1 ensures that the iterative scheme (43) is unconditionally gradient stable. Additionally to
this property, we present similar results as before for Cahn-Hilliard- and TV-H−1 inpainting.

Theorem 5.1. Let u be the exact solution of (6) and uk = u(k∆t) the exact solution at time k∆t,
for a time step ∆t > 0 and k ∈ N. Let further Uk be the kth iterate of (43) with constants C1 > 1,
C2 > λ0. Then the following statements are true:

(i) Under the assumption that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, the numerical scheme (43) is
consistent with the continuous equation (6) and of order one in time.
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(ii) The solution sequence Uk is bounded on a finite time interval [0, T ], for all ∆t > 0. In
particular, for k∆t < T , T > 0 fixed, we have

(44) ‖∇Uk‖
2
2 +∆tK1 ‖∇∆Uk‖

2
2 ≤ eK2T

(

‖∇U0‖
2
2 +∆tK1 ‖∇∆U0‖

2
2 +∆tTC(Ω, D, λ0, f)

)

for suitable constants K1, K2, and constant C depending on Ω, D, λ0, f only.
(iii) Let further ek = uk − Uk. If

(45) ‖∇∆uk‖
2
2 ≤ K, for a constant K > 0, and for all k∆t < T,

then the error ek converges to zero as ∆t → 0. In particular, for k∆t ≤ T , T > 0 fixed, we
have

(46) ‖∇ek‖
2
2 +∆tM1 ‖∇∆ek‖

2
2 ≤

T

M2
eM3T (∆t)2,

for suitable nonnegative constants M1,M2 and M3.

Remark 5.1. As in Theorem 4.1, cf also Remark 4.1, the convergence of the iterates Uk to the exact
solution is proven under an assumption on the exact solution, i.e., assumption (45), whose validity is
unknown in general. However, previous results in [15] for the denoising case, i.e., for λ(x) = λ0 in
all of Ω, and for smooth initial data and smooth f , suggest the assumption is also reasonable for the
inpainting case.

The proof of Theorem 5.1 is organized in the following three Propositions 5.1-5.3. Since the proof
of consistency follows the lines of Proposition 3.1 and Proposition 4.1, we just state the result.

Proposition 5.1. (Consistency (i)) Under the same assumptions as in Theorem 5.1 and in partic-
ular assuming that ‖utt‖−1 and ‖∇∆ut‖2 are bounded, we have

‖τk‖−1 = O(∆t) for ∆t→ 0.

Next we would like to show the boundedness of a solution of (43) in the following proposition.

Proposition 5.2. (Unconditional stability (ii)) Under the same assumptions as in Theorem 5.1
the solution sequence Uk fulfills (44). This gives boundedness of the solution sequence on [0, T ].

Proof. If we multiply (43) with −∆Uk+1 and integrate over Ω we obtain

1

∆t

(

‖∇Uk+1‖
2
2 − 〈∇Uk,∇Uk+1〉2

)

+ C2 ‖∇Uk+1‖
2
2 + C1 ‖∇∆Uk+1‖

2
2

= 〈∆arctan(∆Uk),∆Uk+1〉2 + C1 〈∇∆Uk,∇∆Uk+1〉2

+ 〈∇ (λ(f − Uk)) ,∇Uk+1〉2 + C2 〈∇Uk,∇Uk+1〉2 .

Using the same arguments as in the proofs of Proposition 3.2 and 4.2 we obtain

1

2∆t

(

‖∇Uk+1‖
2
2 − ‖∇Uk‖

2
2

)

+ C2 ‖∇Uk+1‖
2
2 + C1 ‖∇∆Uk+1‖

2
2

≤ 〈∆arctan(∆Uk),∆Uk+1〉2 +
C1

δ1
‖∇∆Uk‖

2
2 + C1δ1 ‖∇∆Uk+1‖

2
2 +

λ20
2δ2

‖∇Uk‖
2
2

+ δ2 ‖∇Uk+1‖
2
2 +

C2

δ3
‖∇Uk‖

2
2 + C2δ3 ‖∇Uk+1‖

2
2 + C(Ω, D, λ0, f).

Now, the first term on the right side of the inequality can be estimated as follows

(47)

〈∆arctan(∆Uk),∆Uk+1〉2 = −〈∇ arctan(∆Uk),∇∆Uk+1〉2

= −

〈

1

1 + (∆Uk)2
∇∆Uk,∇∆Uk+1

〉

2

≤
1

δ4

∥

∥

∥

∥

1

1 + (∆Uk)2
∇∆Uk

∥

∥

∥

∥

2

2

+ δ4 ‖∇∆Uk+1‖
2
2

≤
1

δ4
‖∇∆Uk‖

2
2 + δ4 ‖∇∆Uk+1‖

2
2 .
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From this we get
(

1

2∆t
+ C2(1 − δ3)− δ2

)

‖∇Uk+1‖
2
2 + (C1(1− δ1)− δ4) ‖∇∆Uk+1‖

2
2

≤

(

1

2∆t
+
λ20
2δ2

+
C2

δ3

)

‖∇Uk‖
2
2 +

(

C1

δ1
+

1

δ4

)

‖∇∆Uk‖
2
2 + C(Ω, D, λ0, f).

Analogously to Section 4.1, with

Ca = 1 +∆t(C2 − 1), Cb = C1 − 1, Cc = 1 + 2∆t(λ20 + 2C2), Cd = 4(C1 + 1),

we obtain

‖∇Uk‖
2
2 +∆t

Cb

Ca
‖∇∆Uk‖

2
2 ≤ eKT

(

‖∇U0‖
2
2 +∆t

Cb

Ca
‖∇∆U0‖

2
2 +∆tT

2

Ca
C(Ω, D, λ0, f)

)

,

which gives boundedness of the solution sequence on [0, T ] for any T > 0 and any ∆t > 0. �

The convergence of the discrete solution to the continuous one as ∆t→ 0 is verified in the following
proposition.

Proposition 5.3. (Convergence (iii)) Under the same assumptions as in Theorem 5.1 and in
particular under assumption (45), the error ek fulfills (46).

Proof. Since all the computations in the convergence proof for (43) are the same as in Section 4.1 for
(34) except of the estimate for the regularizer ∆ (arctan(∆u)), we only give the details for the latter
and leave the rest to the reader. Thus for the inner product involving the regularizer of (43) within
the convergence proof we obtain

〈−∆(arctan(∆Uk)− arctan(∆uk)) ,∆ek+1〉2
= 〈∇ (arctan(∆Uk)− arctan(∆uk)) ,∇∆ek+1〉2
= 〈w(∆Uk)∇∆Uk − w(∆uk)∇∆uk,∇∆ek+1〉2
= −〈w(∆Uk)∇∆ek,∇∆ek+1〉2 − 〈(w(∆Uk)− w(∆uk))∇∆uk,∇∆ek+1〉2

≤
1

2δ
‖w(∆Uk)|∇∆ek|‖

2
2 +

1

2δ1
‖(w(∆uk)− w(∆Uk))|∇∆uk|‖

2
2 +

δ + δ1
2

‖∇∆ek+1‖
2
2,

where we have used that

∇ (arctan(∆u)) =
1

1 + |∆u|2
∇∆u = w(∆u)∇∆u.

Using the uniform boundedness of w(s) for all s ∈ R, the uniform bound on ∇∆uk from assumption
(45) and the Lipschitz continuity of w we get

〈−∆(arctan(∆Uk)− arctan(∆uk)) ,∆ek+1〉2 ≤
C

2δ
‖∇∆ek‖

2
2 +

CL

2δ1
‖∆ek‖

2
2 +

δ + δ1
2

‖∇∆ek+1‖
2
2.

Moreover, because of the zero Neumann boundary conditions fulfilled by solutions of (6) and (43), i.e.,

∇u · ~n = ∇(arctan(∆u)) · ~n = 0, on ∂Ω,

where ~n is the outward pointing normal on ∂Ω, ∆ek has zero mean and we can apply Poincaré’s
inequality to obtain

〈−∆(arctan(∆Uk)− arctan(∆uk)) ,∆ek+1〉2 ≤

(

C

2δ
+
CL

2δ1

)

‖∇∆ek‖
2
2 +

δ + δ1
2

‖∇∆ek+1‖
2
2.

Following the same steps as in the proof of Proposition 4.3 we finally have for k∆t ≤ T

‖∇ek‖
2
2 +∆tM1 ‖∇∆ek‖

2
2 ≤

T

M2
eM3T (∆t)2,

for suitable positive constants M1,M2 and M3. �
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5.2. Numerical results. For the comparison with TV-H−1 inpainting we apply (43) to the same
image as in Section 4.2. This example is presented in Figure 11. In Figure 12 the LCIS inpainting
result is compared with TV-H−1 - and TV-L2 inpainting, for a small part in the given image. Again
the result of this comparison indicates the continuation of the gradient of the image function into the
inpainting domain for the two higher-order methods. A rigorous proof of this observation is a matter of
future research. For the numerical computation of (43) the arctan(s) was regularized by arctan(s/δ),
δ > 0 and ∆t chosen to be equal to 0.01. The inpainted image in Figure 11 has been computed in
about 90 seconds on a 1.86 GHz processor with 1 GB RAM.

Figure 11. LCIS inpainting u(500) with δ = 0.1 and λ0 = 102.

Figure 12. (l.) u(1000) with LCIS inpainting, (m.) u(1000) with TV-H−1 inpainting,
(r.) u(5000) with TV-L2 inpainting

6. Conclusion

In this paper we present several higher order PDE-based methods for image inpainting, along with
unconditionally stable time-stepping schemes for the solution of these equations. Specific examples
discussed include Cahn-Hilliard inpainting, TV-H−1 inpainting, and inpainting with LCIS. The con-
struction of these schemes is based on the idea of convexity splitting, also introduced in this paper.
We study the numerical analysis of the schemes including consistency, unconditional stability, and
convergence. Below we consider some open problems for this class of methods.

• The advantage of fourth order inpainting models, over models of second differential order,
is the smooth continuation of image contents, including direction of edges, across gaps in
the image. Fourth order PDEs require an extra boundary condition compared with second
order equations and this is the motivation for additional geometric content provided by such
methods. However, in general, the additional boundary condition could involve any of the
higher derivatives, and for inpainting is it desirable to continue the first derivative accross the
inpainting region. The methods proposed here are global methods based on an L2 fidelity term
associated with the known information. For the special case of the Cahn-Hilliard equation [14]
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in the limit as λ0 → ∞ a stationary solution is proved to satisfy precisely the desired two
boundary conditions - matching of grey value and matching direction of edges. We conjecture
that analogous results are true for the other methods presented here although a rigorous proof
is beyond the scope of this manuscript.

• For the proofs of convergence of the discrete solution to the exact solution, i.e., for the proofs
of Theorem 4.3 and Theorem 5.3, we had to assume that the exact solution is bounded on a
finite time interval in a certain Sobolev norm. As we already argued in the remarks after the
statement of the theorems, these assumptions seem to be heuristically reasonable considering
earlier results in [15, 16]. Nevertheless a rigorous derivation of such bounds is still missing.

• Besides the fact that rigorous results for fourth-order partial differential equations are rare in
general, an asymptotic analysis of our three inpainting models would be of high (even practical)
interest. More precisely the convergence of a solution of the evolution equations (4), (5), and
(6), to a stationary state is still open. Since the inpainted image is the stationary solution
of those evolution equations, the asymptotic behavior is of course an issue. Also in practice,
the numerical schemes are solved to steady state (up to an approximational error). Note that
additionally to the fourth differential order, a difficulty in the convergence analysis of (4) and
(5) is that they do not follow a variational principle.

• The discrete schemes proposed in this paper are unconditionally stable and their numerical
performance is a matter of 10 to 100 seconds for small to medium-sized images, i.e., 128× 128
to 256 × 256 pixels, and gaps that constitute about one to ten percent of the image domain.
Fast numerical solvers for higher order inpainting models is still a mostly open field of research.
Among such fast solvers we found the recent contribution of Brito-Loeza and Chen [18] very
interesting and forward-looking, who use a multigrid method to solve inpainting with CDD
(Curvature Driven Diffusion). Another approach is the Split Bregman method of Goldstein
and Osher [41, 42], which suggests a splitting of a higher-order variational problem in two
consecutively minimized first-order problems. Although not directly applicable to the non-
variational inpainting techniques (4) and (5), their method promises an efficient solution of,
e.g., (6) LCIS inpainting.
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