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Abstract

We consider the multidimensional aggregation equation ∂tρ−div(ρ∇K∗ρ) = 0 in which the
radially symmetric attractive interaction kernel has a mild singularity at the origin (Lipschitz
or better). We review recent results on this problem concerning well-posedness of nonnegative
solutions and finite time blowup in multiple space dimensions depending on the behavior of
the kernel at the origin. We consider the problem with bounded initial data, data in Lp ∩L1,
and measure-valued solutions.
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1 Introduction

The study of active scalar problems has roots in both classical problems in fluid dynamics, such
as 2D vortex dynamics [40, 52] and quasi-geostrophic equations [25]. At the same time there is
a body of work in which the scalar generates a gradient flow which can lead to aggregative or
dispersive behavior [47, 48]. The general problem can be written as

∂ρ

∂t
− div(ρ~v) = 0, ~v = ~Ks ∗ ρ+∇K ∗ ρ, ρt=0 = ρ0(x) ≥ 0, x ∈ Rn (1.1)

where ρ is convected by a vector field obtained from itself via a convolution operator. The general
velocity field has two unique components – a divergence free part, Ks ∗ u, and a gradient part,
∇K ∗ u, which we focus on here. Examples of the former case include the vorticity-stream form
of the Euler equations in 2D, for which Ks is the well-known Biot-Savart kernel 1

2π
x⊥

|x|2 , and
quasi-geostrophic models for which Ks = ∇⊥(−∆)−α involving the fractional Laplacian. The
model with both incompressible and gradient flow parts was proposed in 2D for vortex motion in
superconductors [27] and for flocking problems [47] as a generalization of 1D nonlocal swarming
models [42]. The purely gradient flow case has been studied for self-interacting individuals via
pairwise potentials arising in the modelling of animal collective behavior: flocks, schools or swarms
formed by insects, fishes and birds. The simplest models based on ODEs systems [15, 24, 29,
43, 44] led to continuum descriptions [19, 18, 14, 37, 42, 47, 48] for the evolution of densities of
individuals. It is this class of models that we focus on here, although we will draw parallels to
well-known problems and results from the incompressible flow literature.

For simplicity, we refer to the gradient flow problem as an ‘aggregation equation’ taking the
form

∂ρ

∂t
− div(ρ∇K ∗ ρ) = 0, ρt=0 = ρ0 ≥ 0. (1.2)

This model shares some features with the classical Patlak-Keller-Segel model for chemotaxis
[33, 46] without diffusion, see [16, 12, 13, 26] for the state of the art in this problem. Here, the main
similarity is the possible formation of a finite time point concentration and the main difference
the strong singularity of the potential in the Patlak-Keller-Segel system. Following estimates
from the quasi-geostrophique literature, equation (1.2) with additional fractional diffusion also
has some prior and recent study in the literature, namely [11, 35, 36]. In the case of fractional
diffusion and Lipschitz kernels, there is a critical diffusion exponent for which the solution no
longer blows up in finite time.

In this paper, we focus on the case involving only attractive forces [7, 9, 34, 47] and no
diffusion. Individuals attract each other under the action of a radially symmetric Lipschitz
interaction potential K(x) = k(|x|) with k(r) increasing in r, smooth away from zero and bounded
below. Since potentials are defined up to constant, we assume without loss of generality that
k(0) = 0. Some examples appearing in applications are K1(x) = 1 − e−|x|, K2(x) = 1 − e−|x|2 ,
and Kα(x) ' |x|α locally near 0 with α ≥ 1.

This class of equations belongs to the same family of nonlinear friction equations that appear
in the modelling of granular media [6, 21, 22, 38, 49]. In those references, several results regarding
the long time asymptotics and rates of equilibration were obtained in cases in which the potential
K(x) is smooth and convex. In our typical cases, convexity fails. In fact, the equation (1.2) can
be formally considered as a gradient flow of the energy functional:

E(ρ) =
1
2

∫
RN

∫
RN

K(x− y)ρ(x)ρ(y) dx dy (1.3)
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with respect to the Euclidean Wasserstein distance as introduced in [45] and generalized to a large
family of PDEs in [3, 22]. Its connection to optimal transport theory comes from the convexity
properties of the energy functional with respect to geodesic convexity in this distance, called
displacement convexity [41]. A nice introduction to this different point of view can be seen in
[50].

In this paper we review some recent results from the literature – in particular the role of the
Osgood property for the potential, ∫ 1

0

dr

k′(r)
=∞ (1.4)

which guarantees global existence of bounded solutions and solutions in some Lp spaces. Simul-
taneously, when the Osgood condition in violated,∫ 1

0

dr

k′(r)
<∞, (1.5)

then solutions blow up in finite time. Note that the number
∫ 1
0

dr
k′(r) has a natural interpretation:

it can be thought as the time it takes for a particle obeying the ODE ẋ = −∇K(x) to reach the
origin if it starts at a distance 1 from the origin. This number quantifies the attractive strength
of the potential: the smaller it is, the more attractive the potential is. We discuss this in more
detail in later sections.

This review article is organized as follows: Section 2 reviews the discrete particle problem
which motivates results in sections 3, 4, and 5 on the continuum problem and blowup. Section 3
reviews recent results connecting the Osgood condition to global and local existence of solutions
of the continuum equations, from bounded initial data. Section 4 discusses the shape of the
blowup in the special case of kernel K(x) = |x|, which arises in a number of models from biology
and materials science. Section 5 reviews the recent well-posedness theory for general measure
solutions. Section 6 discusses the special case of solutions with initial data in Lp, and critical p
for local well-posedness.

2 The discrete particle problem

When the solution is represented by L particles {x1, ..., xL} of respective mass {m1, . . . ,mL} the
evolution equation reduces (at least formally) to a coupled set of ODEs for the particle paths:

dxi
dt

= −
∑
j 6=i

mj∇K(xi − xj) = −
∑
j 6=i

mj
xi − xj
|xi − xj |

k′(|xi − xj |) , i = 1, . . . , L, (2.6)

with xi(t) ∈ RN for all t ≥ 0. Note that these equations preserve the total mass M :=
∑

jmj

of the system and the center of mass cM :=
∑

j xjmj/(
∑

jmj). The latter is true because of
the symmetry of K. Assume that the L-particles with total mass M and zero center of mass are
initially inside the ball of radius R0. Denote by R(t) the distance between the center of mass and
the particle situated the furthest apart from the center of mass, i.e., R(t) = |xi(t)− cM | = |xi(t)|
with i being its label. Thus, due to (2.6), we have

d

dt
R(t)2 =

d

dt
|xi|2 = −2

∑
j 6=i

mj
(xi − xj) · xi
|xi − xj |

k′(|xi − xj |) .
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Since the ith particle is the one furthest away from the center of mass, we have that (xi−xj)·xi ≥ 0
and that |xi − xj | ≤ 2R(t) for j 6= i. Assume that

k′(r)
r

is decreasing for r > 0 . (2.7)

Putting together the previous information, we deduce

d

dt
R(t)2 ≤ −k

′(2R(t))
R(t)

∑
j 6=i

mj(xi − xj) · xi .

Due to conservation of mass and center of mass, we get∑
j 6=i

(xi − xj) · ximj =
∑

(xi − xj) · ximj = M |xi|2 = MR(t)2,

and thus,
d

dt
R(t) ≤ −M

2
k′(2R(t)) . (2.8)

If the potential K(x) = k(|x|) satisfies the non-Osgood condition (1.5), then the ODE dR/dt =
−M k′(2R)/2 with initial data R = R0 touches down to zero in finite time, and therefore the
particles aggregate in a single particle with the total mass M located at the center of mass before
the touch-down time of the ODE (2.8). This time is uniform for particles inside a fixed ball of
radius R0 initially with total mass M . This argument is inspired by and extends previous work
in the control theory literature on cooperative motion with first order control laws involving
pairwise interaction potentials (see [24] for the case of attractive-repulsive potentials and [28] for
quadratic potentials). The argument is proved rigorously in the following theorem:

Theorem 2.1 (Collapse of the ODEs [8]) Consider the ODE system (2.6) satisfying k′(r)/r
monotone decreasing, with k′′(r) defined and nonnegative on (0,∞). If K satisfies the Osgood
condition (1.4) then there exists a unique global-in-time forward solution with no collisions, in
which the particles converge to their center of mass in infinite time. If K satisfies the non-Osgood
condition (1.5) then there exists a unique global-in-time forward solution with collisions, in which
the particles all merge at their center of mass in finite time. In the latter case, for a given
potential, an upper bound on the merger time is a function of the radius of support of the initial
data and the total mass only.

Remark 2.2 (Non-uniqueness) We note that in the non-Osgood case, uniqueness of the ODE
does not hold going backward in time because merger of particles destroys information. This is
a classical result of uniqueness of solutions of ODEs [4]. This is, in some sense, analogous to
shocks in conservation laws, where information goes into the shock and is lost afterwards. In
the case of Osgood vector fields, the solution is unique going forward and backward in time. For
linear equations, existence of signed measure-valued solutions is recently discussed in the literature
[2]. Here we consider a nonlinear problem where the solution itself determines the transporting
vector field (the hallmark of an active scalar problem). In Section 5 we discuss uniqueness of
measure-valued solutions of the nonlinear problem using optimal transport theory and the gradient
structure of the problem.

In the next subsection we show how this collapsing support argument can be used to prove
finite time blowup of the continuum problem in the case of non-Osgood potentials. We consider
bounded initial data, therefore the characteristic paths are smoother than the point particle case
considered in this subsection. However we can still implement the estimate on the size of the
support of the solution, proving finite time blowup of the continuum problem.
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3 The continuum problem with bounded data

3.1 Blowup for non-Osgood potentials

Let us first review the well-posedness of the continuum problem with bounded data. We build
primarily on the work of [7, 9, 34]. These papers establish the existence and uniqueness theory for
(1.2) in dimensions two and higher, in the case of an acceptable potential satisfying the following
criteria:

Definition 3.1 ([34]) The potential K on RN , N ≥ 2 is acceptable if ∇K ∈ L2(RN ) and ∆K ∈
Lp(RN ) for some p ∈ [p∗, 2], where 1

p∗ = 1
2 + 1

N . In the case of compactly supported initial data,
we can take ∇K ∈ L2

loc(RN ) and ∆K ∈ Lploc(R
N ).

We note that the typical kernels considered in this paper satisfy the acceptability condition.
In particular, K Lipschitz satisfies ∇K bounded a. e. and thus is in L2

loc(RN ). Moreover, the
most singular case at the origin is ∆K ∼ 1

|x| which satisfies the Lp condition above in dimensions
two and higher. The case of one space dimension has special issues and we discuss that at the
end of this section.

The continuum model assumes a nonnegative density ρ(t, x) at position x ∈ RN and time
t > 0 satisfying

∂ρ

∂t
(t, x) + div [ρ(t, x)v(t, x)] = 0 t > 0 , x ∈ RN ,

with velocity field v(t, x) := −∇K ∗ ρ(t, x) t > 0 , x ∈ RN ,

u(0, x) = u0(x) ≥ 0 x ∈ RN .

(3.9)

where v is the velocity field under which individuals in the swarm are moving obtained through
the “averaging” of the pairwise potential by the distribution of mass.

It is clear that solutions of (3.9) formally preserves the total mass of the system∫
RN

ρ(t, x) dx =
∫

RN

ρ0(y) dy := M (3.10)

and the center of mass ∫
RN

x ρ(t, x) dx =
∫

RN

x ρ0(y) dy := M cM (3.11)

where for the last one, we use that ∇K is anti-symmetric, ∇K(−x) = −∇K(x). We now review
the well-posedness theory for Hs-solutions.

Theorem 3.2 (Existence theory for Hs data [9, 34]) Given initial data ρ0 ∈ Hs(RN ), N ≥
2, for positive integer s ≥ 2, there exists a unique weak solution ρ(x, t) of (3.9) and a maximal
interval of existence [0, T ∗) such that either T ∗ = ∞ or limt→T ∗ sup0≤τ≤t ‖ρ(·, τ)‖Lq = ∞. The
result holds for all q ≥ 2 for N > 2 and q > 2 for N = 2.

It is shown in [9] that as long as the Lq-norm of the solution is bounded, then the Hs-norm of
the solution must also remain bounded [9, Proposition 2]. In other words, the Lq-norm controls
the Hs-norm. This is why in the above theorem the eventual blow-up first occurs in Lq.

When the kernel K is C2, one can derive an a priori bound for ρ in L∞ (see [47, 34]) thereby
guaranteeing global existence of an Hs solution. Moreover, when the kernel has a Lipschitz
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point at the origin, for example the Morse potential K(x) = 1 − e−|x|, one can have finite time
blowup. The proof in [9] uses the energy (1.3) and provides an a priori lower bound for E while
simultaneously proving an a priori upper bound for the rate of decrease for the energy E when
the data is radially symmetric and smooth. More recently these results have been extended in
[7] to the case of solutions with (weaker) initial data in L1 ∩L∞. With mild decay conditions at
infinity and the same conditions on the kernel K as above, we have local in time well-posedness
of the problem and continuation of solutions. For simplicity we state the result for data with
compact support.

Theorem 3.3 (Existence theory for L1 ∩ L∞ data [7]) Given compactly supported initial data
ρ0 ∈ L1(RN ) ∩ L∞(RN ), N ≥ 2, there exists a unique weak solution ρ(x, t) of (3.9) and a max-
imal interval of existence [0, T ∗) such that either T ∗ = ∞ or limt→T ∗ sup0≤τ≤t ‖ρ(·, τ)‖Lq = ∞.
The result holds for all q ≥ 2 for N > 2 and q > 2 for N = 2.

Existence of solutions for L1 ∩L∞ data is proved by constructing first the characteristics for
the weak problem. This approach requires unique solutions to the characteristic equation, which
requires a certain degree of regularity of the velocity field v. Provided ρ is bounded, it is shown
in [7] that v is Lipschitz continuous and moreover div(v) is log-Lipschitz continuous (Lipschitz
continuous) in dimension two (three and higher).

Since the mass of the solution is conserved on its interval of existence, another way to prove
finite time blowup is to derive an estimate for the size of the support of the solution. If an upper
bound for the size of the support shrinks to zero in finite time, this also guarantees that the time
interval of existence of the L1∩L∞ solution is less than infinity. We will now show how to extend
the analysis from the ODE case (section 2 of this paper) to the continuum problem.

Proposition 3.4 (Frozen-in-time velocity estimate [8]) Assume k′(r)/r is a monotone de-
creasing function of r. Consider a nonnegative function ρ : RN → R with total mass M, first
moment zero and compact support. Consider any BR(0) containing the support of ρ. Then, for
any x ∈ ∂BR(0) we have

v(x) · x ≤ −k
′(2R)R

2
M ≤ 0.

where v = −∇K ∗ ρ.

The above proposition is now used to prove the following theorem. This is a generalization of
[9, Theorem 6] and [7, Theorem 6.2] to the the case of less singular kernels satisfying (1.4) and
the monotonicity conditions in Proposition 3.4. Also, significantly, the radial symmetry of the
initial data, required in the proofs from [9, 7] is no longer necessary.

Theorem 3.5 (Finite time blowup for compactly supported solution in L∞ [8]) Let ρ
be a weak solution of (3.9) with nonnegative compactly supported initial data in L∞(RN ). Let
K satisfy the conditions (1.5) and k′(r)/r monotone decreasing, k′(r) > 0. Then there exists a
maximal time T ∗ <∞ and a unique weak solution ρ to the problem (3.9) on the interval [0, T ∗).
Moreover

lim
t→T ∗

sup
0≤τ≤t

‖ρ(·, τ)‖Lq =∞ for q ∈ [2,∞] if N > 2 and q ∈ (2,∞] if N = 2.

Proof. Given the existing continuation theorem, it suffices to prove that the solution ceases to
exist in finite time. To do that, we prove a comparison principle for the support of the solution:
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Proposition 3.6 (Comparison principle [8]) Let ρ(x, t) be the weak solution in Theorem 3.5.
Let BR0(cM ) contain the support of the solution at time zero. Let R̃(t) be the unique solution of
the ordinary differential equation dR/dt = −Mk′(2R)/2. On any time interval of existence of
the L1 ∩ L∞(RN ) solution ρ(x, t), the support of ρ must lie inside BR̃(t)(cM ).

We briefly discuss the aggregation equation in one space dimension. This case is somewhat
special. First of all, k′′ plays an important role in the blowup dynamics because the amplification
factor for ρ along characteristics is k′′ ∗ ρ. In the case of a kernel with a Lipschitz point at the
origin, one has finite time blowup because k′′ is a delta function to leading order, and thus the
blowup is driven by a quadratic function of ρ. This argument was presented in [30] and made
rigorous in [14]. For power-law potentials smoother than the Lipschitz case, one can read the
paper by Li and Toscani [38]. In both [14, 38] the transformation w =

∫ x
−∞ ρ is used resulting in

a nonlocal scalar conservation law for w:

wt − k′′ ∗ wwx = 0. (3.12)

We see now that when k′′ is a delta, the problem reduces to Burgers equation and the blowup
is simply shock formation in w. For more regular kernels than Lipschitz, one needs an existence
theory. The work of [34] proves local existence in one dimension for sufficiently smooth initial
data and kernels satisfying k′′ = Cδ + P where P is L1. To the best of our knowledge, the full
existence and continuation theory for general K and bounded initial data, in 1D, has not been
derived in the most general setting - however the a priori bounds presented in this section still
hold and apply to this problem. For completeness, we remind the reader that in dimensions
two and higher, if the kernel K has a Lipschitz point at the origin, then ∆K∗ as a convolution
operator provides additional smoothness (typically a gain of N − 1 derivatives in dimension N),
that is lacking in one dimension.

3.2 Global existence of solutions for Osgood potentials

In this section we review recent results for global existence of solutions in the case of Osgood
potentials satisfying monotonicity conditions. To do this, we obtain refined estimates on the
L∞-norm of div(v). Note first that the Osgood condition is more general than K ∈ C2. For
example, K(x) = |x|2| ln |x|| satisfies this condition. Moreover, one does not, in general, have
boundedness of div(v) whenever the density is given by a general nonnegative measure µ, so
that one has to rely on the nonlinearity in the evolution equation to provide an a priori bound
for ‖ρ‖L∞ . For example, if v is log-Lipschitz then the modulus of continuity ρ only guarantees
particle paths that are Hölder continuous, which is insufficient to guarantee that they would map
L∞ densities to L∞. Instead, we have to examine the evolution equation and use the fact that a
smoother density yields a more regular velocity field.

We begin by reviewing the C2 case, which has already been studied in the literature. Along
characteristics, we have ∂tρ+ v · ∇ρ = −ρ div(v), and this holds in the integral form [7], for the
case of L∞-weak solutions. Thus, by taking the L∞-norm along all characteristics, we have a
bound on the time evolution of ‖ρ‖L∞

d

dt
‖ρ‖L∞ ≤ ‖∆K ∗ ρ‖L∞‖ρ‖L∞ . (3.13)

In the case where K is C2, we immediately get that

‖∆K ∗ ρ‖L∞ ≤ ‖∆K‖L∞‖ρ‖L1
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which is a priori bounded and thus by Grönwall’s lemma, gives a global bound for ‖ρ‖L∞ .
Combining this with Theorem 3.3 provides the following result (the a priori bound has been
proved in [47]):

Theorem 3.7 (Global-in-time solutions for C2 potentials) Let K be an admissible C2 ker-
nel. Then the weak solution of Theorem 3.3 exists for all time and we have a global in time bound

‖ρ(·, t)‖L∞ ≤ eCt‖ρ(·, 0)‖L∞

where C depends on ‖∆K‖L∞ and the mass of ρ.

We also obtain the following corollary of the previous section:

Corollary 3.8 (Infinite time blow-up for C2 potentials) Let K be an admissible C2 kernel
satisfying the conditions of Proposition 3.4. If the global-in-time weak solution of Theorem 3.7
has compact support, then it converges to a Dirac mass at the center of mass cM as t→∞.

Proof. The proof follows by applying Proposition 3.6 to the global solution, and noting that the
solution R̃ of the ODE goes to zero as t→∞. �

We now show that the same result holds for potentials satisfying the weaker Osgood condition∫ 1

0

1
k′(r)

dr =∞.

Theorem 3.9 (Global-in time L∞ and infinite time blow-up for Osgood potentials [8])
Assume k′′(r) > 0 and that k′(r)/r monotone decreasing in r. Then on the interval of existence
(0, T ∗)

d

dt
‖ρ‖−1/N

L∞ ≥ −C(N,M) k′
(
M1/N‖ρ‖−1/N

L∞

)
(3.14)

holds. As a consequence, if K satisfies the Osgood condition (1.4) then for any compactly sup-
ported nonnegative L∞ solution of the aggregation equation stays bounded for all time and con-
verges as t→∞ to a Dirac mass of size M located at its center of mass cM .

Proof. The proof involves an estimate for the characteristic lengthscale associated with a possible
blowup. We would like to obtain a bound using only the L∞ and L1 norms, the latter of which
is conserved for nonnegative solutions. There is only one lengthscale that one can construct out
of these norms, it is

δ = (
M

‖ρ‖L∞
)1/N . (3.15)

One obtains

δ̇ = − 1
N
M1/N‖ρ‖−1−1/N

L∞
d

dt
‖ρ‖L∞ ≥ −

1
N
M1/N‖ρ‖−1/N

L∞ ‖∆K ∗ ρ‖L∞ = − δ

N
‖∆K ∗ ρ‖L∞ .

In [8] a refined potential theory calculation proves that

‖∆K ∗ ρ‖L∞ ≤ CMk′(δ)/δ.

The proof uses the fact that k′(r)/r is monotone decreasing so that k′′(r)/r− k′(r)/r2 ≤ 0 away
from the origin and thus 0 < k′′(r) ≤ k′(r)/r away from the origin. The upshot is that we have
an a priori estimate on δ, namely

δ̇ ≥ −C(N,M)k′(δ).

If k is Osgood, then δ can not go to zero in finite time, which in turn provides an a priori bound
for ‖ρ‖L∞ .
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4 Shape of the blowup for K = |x|
In this section, we explore the possibility of describing more in detail the finite-time blow-up
proved in previous sections. With this purpose, we focus on finding certain blow-up self-similar
solutions of (1.2) with homogeneous potentials. Suppose K(x) is a potential with a Lipschitz
point at the origin:

K(x) ∼ C|x| as x→ 0 (4.16)

and suppose ρ is a solution of (1.2) which blows up at t = T ∗. We choose this special kernel for
the following reasons: (1) kernels with Lipschitz points are one of the most common examples
in the aggregation literature, (2) the special homogeneity of this kernel simplifies some of the
analysis, and (3) when the blowup occurs at a point, it is only the local structure of the kernel at
the origin that is important and moreover, to do similarity analysis we take it to be homogeneous.
Close to the blow up time, one would expect ρ to have small support (or at least to be highly
concentrated). Therefore the velocity can be well approximated by

v = −Cρ ∗ ∇|x|.

From this remark, one would expect that the blow-up profile of (1.2) with a potential K(x)
satisfying (4.16) can be well approximated by the blow up profile of (1.2) with K(x) = C|x|.

4.1 One dimension

In one space dimension, the kernel K(x) = |x| reduces to Burgers equation via the formula
ψ(x, t) =

∫ x
0 ρ(x, t)dx; one can easily see that ψ satisfies a form of inviscid Burgers equation

[31, 14]. This gives families of exact solutions yielding finite-time blowup including the well-
known textbook linear-shock example which for ρ gives an exact similarity solution

ρS(x, t) :=
1

R(t)
U

(
x

R(t)

)
,

where U(x) is the uniform distribution on [−1, 1] and R(t) = T ∗ − t. This is an exact solution
that concentrates mass at the blowup time. It is an example of a ‘first kind’ [5] similarity solution
in which the timescale of the blowup (namely R(t)) can be predicted by dimensional analysis
combined with mass conservation.

There is another class of exact similarity solutions for the Burgers blowup. They have the
form

ρS(x, t) =
1

(R(t))α
U(

x

(R(t))β
), R(t) = T ∗ − t,

however in this case the similarity solution does not conserve mass. Dimensional analysis still
implies α = 1, however β is determined by a matching condition to the far field. The details
of this calculation can be found in [31] with a local Taylor expansion result derived in [14], the
upshot is that there is a global similarity solution for the Burgers blowup, that describes shock
formation from generic odd initial data for Burgers, and hence blowup from even initial data for
the aggregation problem. This exact solution has β = 3/2 and there is a one parameter family
of such solutions through a rescaling. This is an example of a ‘second kind’ similarity solution as
in [5].
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4.2 On the non-existence of ‘first kind’ similarity in higher odd dimensions

In [8] it was proved that first kind similarity solutions can not exist with support on open sets
in any odd dimension larger than one.

The argument establishes that a first kind similiarity solution must satisfy

v = −λx (4.17)

for some constant λ, on the support of the solution. Using this fact, we arrive at the following
nonexistence theorems for radially symmetric similarity solutions in odd dimensions N higher
than one.

Theorem 4.1 (Non-existence of Lp similarity solutions [8]) Let N be an odd space dimen-
sion larger than one and K(x) = |x|. Then there does not exist a nonnegative similarity solution
in Lp(RN ) for p > 1 whose support contains an open set.

Proof. The proof is elementary so we repeat it here. We start with the 3D case. Note that div(v)
is a constant times the Newtonian potential convolved with ρ. Therefore, the distributional
Laplacian of div(v) is a constant multiple of the Lp function ρ. But from (4.17) it is clear that
∆(div(v)) = 0 on any open set on the support of ρ. Therefore ρ is zero a.e. in any open set inside
its support.

To extend this result from 3D to odd higher dimensions, we note that there is always some
power of the Laplacian that can be applied to div(v) to obtain a constant times the identity
functional, since the Newtonian potential is a constant multiple of 1/|x|2−N in N dimensions.
The rest of the argument follows in higher dimensions as well. �

Theorem 4.2 (Non-existence of measure similarity solutions [8]) Let N be an odd space
dimension larger than one and K(x) = |x|. Then there do not exist any nonnegative nontrivial
measure-valued similarity solutions, compactly supported on RN , whose support contains an open
set.

Proof. The proof is similar to that of Theorem 4.1 except that we now consider ρ to be a
compactly supported measure. This means that ∇K ∗ ρ and 1/|x| ∗ ρ can be understood in
the sense of distributions (a distribution convolved with a distribution of compact support is a
distribution). The distributional Laplacian of ∇ · v equals a constant times ρ in the sense of
distributions and due to (4.17) as above, the distributional Laplacian is zero on any open set
contained in the support of ρ. Thus ρ has no support on open sets. �

Remark 4.3 (Even dimensions) Note that the argument fails in even dimensions because
there is no local differential operator that inverts the convolution operator 1/|x|. Rather the
appropriate operator is a non-local pseudo-differential operator.

4.3 Numerical simulations of radial blowup in multiple dimensions, K = |x|

Blowup in multiple dimensions has recently been studied numerically by Huang and the first
author in [31]. We review those results in this subsection. The code uses a Lagrangian formulation
of the problem and integrates the solution along characteristics, thereby eliminating numerical
diffusion typically found in finite difference discretizations of Eulerian formulations of transport
problems. Here we take advantage of the fact that our problem is a first order conservation
law and thus we can use the method of characteristics to solve two coupled ODEs, one for the
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radial position r and the other for the solution ρ. This method provides a natural ‘adaptive
grid scheme’ to concentrate spatial resolution near the blowup point or set, and was employed to
investigate gravitational collapse by Brenner and Witelski [17]. Moreover, for nonnegative initial
data, we have the monotonicity condition ∂

∂rK ∗ ρ ≥ 0,∆rK ∗ ρ > 0, i.e the points always move
towards to the origin and the magnitude is always increasing. Thus our scheme preserves the
positivity of the solution. The numerical results indicate that this simple scheme resolves the
profiles quite well, both near the core and far away from it. If the self-similarity were first kind,
then the characteristics would exactly preserve the spatial resolution going into the blowup. For
a second-kind similarity solution with anomalous scaling (i.e. the characteristics do not scale
in time as the similarity variable) we loose resolution over time, however at a relatively slow
rate compared with the dynamics of blowup. In radial coordinates, the original equation can be
written as

ρt =
∂ρ

∂r

∂

∂r
K ∗ ρ+ ρ∆rK ∗ ρ, (4.18)

where ∆r = ∂rr + N−1
r ∂r. The system of ODEs along the characteristics is thus

dr

dt
= − ∂

∂r
K ∗ ρ, dρ

dt
= ρ∆rK ∗ ρ. (4.19)

Instead of calculating K ∗ ρ once and taking the numerical derivatives to solve (4.19), we find
∂
∂rK ∗ ρ and ∆rK ∗ ρ directly by computing the derivatives of the kernel, i.e

∂

∂r
K ∗ ρ = cN

∫ ∞
0

ρ(r′)r′N−1

∫ π

0

r − r′ cos θ√
r2 + r′2 − 2rr′ cos θ

sinN−2 θdθdr′,

∆rK ∗ ρ = (N − 1)cN
∫ ∞

0
u(r′)r′n−1

∫ π

0

1√
r2 + r′2 − 2rr′ cos θ

sinN−2 θdθdr′, (4.20)

where cN is an constant arising from integration of angular variables. The computation can still
be expensive, because at each point we have to perform a double integration. The expense can
be reduced by observing the homogeneity of the kernel, which gives the following formulation

∫ π

0

r − r′ cos θ√
r2 + r′2 − 2rr′ cos θ

sinN−2 θdθ =


∫ π
0

(1−ρ̃ cos θ) sinN−2 θ√
1+ρ̃2−2ρ̃ cos θ

dθ, if r′ ≤ r∫ π
0

(ρ̃−cos θ) sinN−2 θ√
1+ρ̃2−2ρ̃ cos θ

dθ, if r′ ≥ r
,∫ π

0

1√
r2 + r′2 − 2rr′ cos θ

sinN−2 θdθ =
1

max(r, r′)

∫ π

0

1√
1 + ρ̃2 − 2ρ̃ cos θ

sinN−2 θdθ, (4.21)

where ρ̃ = min(r, r′)/max(r, r′). In this way, the integrations of the kernel with respect to the
angular variable have only to be calculated once at the very beginning as functions of ρ̃ ∈ [0, 1],
i.e we only need to perform numerical integrations once for the auxiliary functions

I1(ρ̃) =
∫ π

0

(1− ρ̃ cos θ) sinN−2 θ√
1 + ρ̃2 − 2ρ̃ cos θ

dθ, I2(ρ̃) =
∫ π

0

(ρ̃− cos θ) sinN−2 θ√
1 + ρ̃2 − 2ρ̃ cos θ

dθ, (4.22)

I3(ρ̃) =
∫ π

0

sinN−2 θ√
1 + ρ̃2 − 2ρ̃ cos θ

dθ. (4.23)

In odd dimension, using the fact that the successive derivative of the kernel K(x) = |x| is
proportional to the fundamental solution of the Laplace equation, one can further reduce the
computation to be O(N1) per time step, where N1 is the number of grid points.
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Figure 1: The exponents characterizing the blowup in different spatial dimensions: β(Left) and
α(right) [31]. The comparison of the estimated α is in perfect agreement with dimensional
analysis.

The computations are performed, tracking the blowup over many orders of magnitude, for
example with ρ well-resolved up to 1040 or higher. Exponents α and β are estimated from the
numerical data and shown in Fig. 1. The graph on the right clearly shows α = β(N − 1) + 1 as
predicted from dimensional analysis, however conservation of mass, which would give α = Nβ is
not satisfied. The values of β shown in Fig. 1 on the left reveal a second kind similarity solution,
where the initial blowup does not concentrate mass, but instead exhibits a power-law behavior
at the origin. At the blowup time, the profile behaves as ρ(x, T ∗) = |x|−β1 where β1 = α/β. We
conjecture that the solution concentrates mass immediately after the initial blowup time and that
these blowup solutions for higher dimensions are analogues of the β = 3/2 second kind similarity
solution for the Burgers singularity in one space dimension. Note that this power law blowup
implies that ‖ρ(·, t‖Lp → ∞ for all p ≥ N/β1 = 1 + 1+1/β

N−1+1/β . This is larger than the rigorous
theory for Lp blowup discussed in Section 6, and thus consistent with what is proven in that
section.

5 Well-posedness theory for measure solutions

In order to study the porous media equation and the Fokker-Plank equation, Otto [45, 32] (also
in collaboration with Jordan and Kinderlleher) introduced a formal Riemannian structure in the
space P2(RN ) of probability measures of finite quadratic moment. The geodesic distance induced
by this Riemannian structure is the Wasserstein distance (see [3, 50, 51] for a definition of the
Wasserstein distance). The Fokker-Plank equation

∂tu− div (∇u+ u∇V ) = 0

and the porous media equation
∂tu = ∆(um)

can be interpreted as gradient flows in this Riemannian structure for the energy

E(u) =
∫

RN

u (log(u) + V ) dx and E(u) =
1

m− 1

∫
RN

umdx respectively.
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In the same spirit, the aggregation equation can be interpreted as a gradient flow in this Rie-
mannian structure for the interaction energy

EK(µ) =
1
2

∫∫
K(x− y)dµ(x)dµ(y). (5.24)

In the next subsection, we give a brief description of this Riemannian structure and we explain
why, formally, the aggregation equation can be thought as a gradient flow of the interaction energy
with respect to this Riemannian structure. In the second subsection, we will state the rigorous
results which were obtained in [20] using this point of view: in particular a well-posedness theory
for measure solutions is developped. A concept of measure solution for the aggregation equation
is important since it allows us to continue the solution after the initial Lp-blowup discribed in
the previous sections.

5.1 The aggregation equation is a gradient flow of the interaction energy with
respect to the Wasserstein distance

In this subsection, we give a very brief, intuitive and nonrigorous explanation of what is a gradient
flow with respect to the Wasserstein distance. For a complete understanding of this theory we
refer the reader to [3]. Let us first describe the Riemannian structure underlying the Wasserstein
distance. To every point µ ∈ P2(RN ) is associated the tangent space

Tanµ P2(RN ) := completion of {∇φ : φ ∈ C∞c (RN )} in L2(µ,RN )

endowed with the inner product

〈~v, ~w〉µ :=
∫

RN

~v(x) · ~w(x) dµ(x) = 〈~v, ~w〉L2(µ,RN ).

The elements of the tangent space are vector fields. Roughly speaking, these vector fields push
probability measures on the manifold. To be a little more precise, a vector field ~w : RN → RN is
said to be tangent to a curve of probability measure (µt)t∈(0,T ) at time t0 if there exists a family
of vector fields (~vt)t∈(0,T ) such that

~vt ∈ Tanµt P2(RN ), (5.25)
∂tµt + div(µt~vt) = 0, (5.26)

~vt0 = ~w. (5.27)

At time t0 the probability measure µt0 is “pushed” by the vector field ~w according to the continuity
equation (5.26). Given a curve of probability measures which is absolutely continuous with respect
to the metric induced by the Wasserstein distance, it is known (see for example [3]) that there
exists a unique tangent vector to this curve for almost every t.

We say that an absolutely continuous curve of probability measure (µt)t∈(0,T ) is a gradient flow
for the interaction energy (5.24) if at almost every t, the tangent vector to this curve points in the
direction which decreases the interaction energy the fastest. So let us ask the following question:
given a fixed probability measure µ, what is the element of the tangent space Tanµ P2(RN ) which
point in the direction which decreases the interaction energy the fastest? In other words, if one
were to push the density µ according to some vector field ~w what would be the best vector field
to choose in order to decrease the interaction energy the fastest? To do this, let us compute the
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derivative of the energy along a curve (νt)t∈(−ε,ε) starting at µ and being pushed according to the
continuity equation by the vector field ~w, i.e.:{

∂tνt + div(νt ~w) = 0, t ∈ (−ε, ε),
ν0 = µ.

(5.28)

For small t, νt is a small displacement of the probability measure µ in the direction ~w.

d

dt
E(νt) =

d

dt

1
2

∫∫
K(x− y) νt(x)νt(y) dxdy

=
∫∫

K(x− y) νt(y) ∂tνt(x) dxdy by symmetry of K

= −
∫∫

K(x− y) νt(y) div (νt ~w) dxdy by (5.28)

= −
∫

(K ∗ νt) div (νt ~w) dx

=
∫

(∇K ∗ νt) · ~w dνt(x). by integration by parts

Evaluating at t = 0 we find

d

dt
E(νt)|t=0 =

∫
(∇K ∗ µ) · ~w dµ(x). (5.29)

It is then clear that, up to multiplication by a scalar, the optimal ~w to choose in (5.29) in order
to decrease the interaction energy the fastest is ~w = −∇K ∗ µ.

So, a curve of probability measure (µt)t∈(0,T ) is a gradient flow of the interaction energy if at
almost every t the tangent vector to this curve is −∇K ∗ µt. Given the definition of a tangent
vector to a curve in P2(RN ), this can be rephrased as follows: a curve of probability measure
(µt)t∈(0,T ) is a gradient flow of the interaction energy if at almost every t, the probality measure
µt is pushed according to the continuity equation in the direction ~w = −∇K ∗ µt, i.e. (µt)t∈(0,T )

must satisfies the aggregation equation.

5.2 Rigorous results obtained using the gradient flow structure of the aggre-
gation equation

The approach of [3] in proving the existence of an absolutely continuous curve of probability
measure satisfying the gradient flow problem is based on a variational version of the implicit Euler
scheme, sometimes referred to as the Jordan–Kinderlehrer–Otto (JKO) scheme or minimizing
movement scheme [32, 1, 3]. Given an initial measure µ0 ∈ P2 and time-step τ > 0, we consider
a sequence µτk recursively defined by µτ0 = µ0 and

µτk+1 ∈ arg minµ∈P2

{
E[µ] +

1
2 τ

d2
W (µτk, µ)

}
, (5.30)

for k = 0, 1, 2, . . . Here d2
W (µτk, µ) denotes the square of the Wasserstein distance between the

probability measures µτk and µ.
In the case where E is the interaction energy, the well-posedness of definition (5.30) and the

convergence of µτk as τ → 0 (after a suitable interpolation) to a limit which satisfies a weak
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formulation of the aggregation equation is established in [20]. In this work, we require the
potential K to be λ–convex for some λ ∈ R. This means that there must exists a λ ∈ R such
that:

K(x)− λ

2
|x|2 is convex.

Most potentials of interest are λ–convex. For example a pointy potential such as K(x) = 1−e−|x|
is (−1)–convex. Here is the main theorem:

Theorem 5.1 (Existence of measure solutions [20]) Given any µ0 ∈ P2(Rd), then there
exists an absolutely continuous curve (µt)t∈[0,+∞) satisfying

∂tµt + div(µt~vt) = 0 in D′([0,∞)× Rd), (5.31)

~vt = −∂0K ∗ µt, (5.32)

with µ{t=0} = µ0. Moreover, the energy identity

E[µtb ]− E[µta ] = −
∫ tb

ta

‖vt‖L2(µt,RN ) dt

holds for all 0 ≤ ta ≤ tb <∞.

Here ∂0K is the unique element of minimal norm in the subdifferential of K. Simply speaking,
since K is smooth away from the origin and radially symetric, we have ∂0K(x) = ∇K(x) for
x 6= 0 and ∂0K(0) = 0. Note that µt being a measure it is important for ∂0K to be defined for
every x ∈ RN for (5.32) to make sense. We also have:

(∂0K ∗ µ)(x) =
∫
y 6=x
∇K(x− y) dµ(y).

Remark 5.2 Such a problem has been widely studied for smooth convex potentials in [3], where
convergence of the discrete scheme to a suitable limit is shown. However, allowing for K(x) to
have a Lipschitz singularity at the origin (e.g. K(x) = 1− e−|x|) requires some improvements of
the arguments in [3, Part I]. Simplistically speaking, [3, Part I] provide a theory for weak measure
solutions for potentials which do not produce blow-up in finite time whereas [20] provides a theory
for potentials which produce blow-up.

One of the key properties of the constructed solutions is the stability with respect to the
Wasserstein distance dW :

Theorem 5.3 (Uniqueness and dW -Contraction [20]) Given two gradient flow solutions (µ1
t )t∈[0,+∞)

and (µ2
t )t∈[0,+∞) in the sense of the theorem above, we have

dW (µ1
t , µ

2
t ) ≤ e−λt dW (µ1

0, µ
2
0) ∀t ≥ 0

where λ ∈ R is the constant of λ-convexity of the potential K. In particular, we have a unique
gradient flow solution for any given µ0 ∈ P2(Rd).

This stability result is not only useful for showing uniqueness but it is mainly a tool for
approximating general solutions by particle ones: given an initial condition µ0 one can approx-
imate it by a finite number of particles (i.e. dirac delta functions). By increasing the number
of particles this approximation can be made as accurate as we want with respect to the Wasser-
stein distance. The particles approximation obeys the system of ODE’s (2.6) described earlier.
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We have seen in Theorem 2.1 that if the potential does not satisfy the Osgood condition this
system of ODE collapse on itself in finite time. Moreover Theorem 2.1 provides an upperbound
for the collapse time which is independent of the number of particles. Therefore by increasing
the number of particles and by making the approximation more and more accurate one doesn’t
change this upperbound on the collapse time. This shows that the upperbound on the collapse
time holds for the full solution:

Theorem 5.4 (Finite Time Total Collapse [20]) Assume that the potential K(x) = k(|x|)
satisfies

∫ 1
0

dr
k′(r) < +∞ and that k′′(r) is monotone in some neighborhood (0, δ) of the origin.

Let (µt)t∈[0,+∞) denote the unique gradient flow solution starting from the probability measure µ0

with center of mass

xc :=
∫

Rd

x dµ0,

supported in B(xc, R0). Then there exists T ∗, depending only on R0, such that µt = δxc for all
t ≥ T ∗.

In [20], the same strategy of proving results at the ODE level and then extending them to the
full measure solution using the stability Theorem 5.3 is used to prove confinement results for
potentials which are repulsive in the short range and attractive in the long range. In this kind
of problems one derive necessary conditions on the strength of attraction versus the strength of
repulsion of the potential so that solutions stay in a ball of finite radius for all times.

6 Lp theory and instantaneous mass concentration

As we have seen in the previous section, one of the distinctive feature of the aggregation equation
with non-Osgood potential is that, starting from initial data which are absolutely continuous with
respect to the Lebesgue measure, it can generate mass concentration in finite time – in which
case the solution is no longer absolutely continuous with respect to the Lebesgue measure. From
the local existence theory developed in [7], and reviewed in section 3 of this paper, it is clear that
solutions starting with L1 ∩L∞-initial data can not concentrate mass instantaneously, i.e. there
is a least a short time interval during which the solution stay absolutely continuous with respect
to the Lebesgue measure. A natural question to ask is how regular need be the initial data in
order to guarantee that the solution will not concentrate mass instantaneously? In [10], we show
that if the initial data belongs to L1 ∩ Lp for p > N/N − 1 then solution remains in Lp ∩ L1

for some finite time. On the other hand, we believe that one can construct examples for which
p ≤ N/N − 1 and the initial data in L1 ∩ Lp yet the solution concentrates mass instantaneously.
This suggests a critical Lp space for which one can achieve instantaneous mass concentration.
This section summarizes recent existence theory for Lp-data [10].

Theorem 6.1 (Local existence [10]) Suppose ∇K ∈ W 1,q(RN ) and suppose u0 ∈ Lp(RN ) is
nonnegative (p and q are Hölder conjugates). Then there exists a time T ∗ > 0 and a nonnegative
function ρ ∈ C([0, T ∗], Lp(RN )) ∩ C1([0, T ∗],W−1,p(RN )) such that

ρ′(t) + div [ρ(t)v(t)] = 0 ∀t ∈ [0, T ∗] (6.33)
v(t) = −ρ(t) ∗ ∇K ∀t ∈ [0, T ∗] (6.34)

ρ(0) = ρ0 (6.35)

Moreover the solution can be continued up to a time Tmax ∈ (0,+∞], and If Tmax < +∞, then
limt→Tmax supτ∈[0,t] ‖ρ(τ)‖Lp = +∞.

16



To prove this theorem, we use the duality between Lp and Lq, which guaranties enough smooth-
ness in the velocity field ~v = ∇K ∗ ρ to define characteristics. Existence of a solution is proved
using characteristics, as in [52] for 2D incompressible Euler flows and as in [7] for the L∞ theory
for the aggregation problem.

Proving uniqueness for solution which solely belongs to Lp(RN ) is challenging. Instead, we
consider solutions in P2(RN ) ∩Lp(RN ), where P2(RN ) denotes the space of probability measure
with finite second moment [10]. Note that P2(RN )∩Lp(RN ) can also be thought as the space of
nonnegative functions which belong to L1 ∩Lp and whose second moment are bounded. We first
prove that if the initial data is in P2 ∩ Lp then the solution stay in P2 ∩ Lp as long as it exists.
We then prove, using an argument based on optimal transport theory, first introduced by Lopers
in [39] and then used by Carrillo and Rosado in [23], that such solutions are unique:

Theorem 6.2 (Uniqueness of Lp solutions with bounded second moment [10]) Let ρ1,
ρ2 be two solutions of equation (6.33) in the interval [0, T ∗] with initial data ρ0 ∈ P2 ∩ Lp(RN ),
1 < p < ∞ and assume that v is given by v = −∇K ∗ ρ, with K such that ∇K ∈ W 1,q(RN ), p
and q conjugates. Then ρ1(t) = ρ2(t) for all 0 ≤ t ≤ T ∗.

As in the L1 ∩ L∞-theory, the Osgood criteria play an important role to determine wether
or not the aggregation equation is globally well posed. In [10] we have weakened the hypothesis
needed on monotonicity of the potential K in order for the Osgood criteria to be relevant. To be
more precise, we we consider the class of natural potentials. A potential is said to be natural
if

a) it is radially symmetric, i.e.: K(x) = k(|x|),

b) it is smooth away from the origin and it’s singularity at the origin is not worth than Lipshitz,

c) it does not exhibit pathological oscillation at the origin, and

d) its derivatives decays fast enough at infinity.

These conditions are more rigorously stated in [10]. Moreover a natural potential is said to be
repulsive in the short range if it has a local max at the origin and it is said to be strictly attractive
in the short range if it has a strict local min at the origin.

Remark 6.3 The gradient of natural potentials automatically belongs to W 1,q for q < N , there-
fore we have local existence and uniqness in Lp ∩ P2, p > N

N−1 .

Theorem 6.4 (Osgood condition for global well posedness [10]) Suppose K is a natural
potential.

(i) If K is repulsive in the short range, then the aggregation equation is globally well posed in
P2(RN ) ∩ Lp(RN ), p > N/(N − 1).

(ii) If K is strictly attractive in the short range, the aggregation equation is globally well posed
in P2(RN )∩Lp(RN ), p > N/(N − 1), if and only if the Osgood condition (1.4) is satisfied.

By globally well posed in P2(RN )∩Lp(RN ), we mean that a solution of the aggregation equation
which start in P2(RN ) ∩ Lp(RN ) will stay in P2(RN ) ∩ Lp(RN ) for all time. If the equation is
not globally well posed, the Lp-norm of the solution will blowup in finite time. In the above
discussion, the bound p > N/(N −1) holds for a Lipschitz continuous potential K. For smoother
potentials, the bound could be made sharper - the necessary condition being that characteristics
of the velocity field are well-defined.
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7 Conclusions

This review article summarizes a series of recent definitive results on the well-posedness of aggre-
gation equations in multiple space dimensions. For the case of bounded data, we find that the
Osgood condition (1.4) provides a necessary and sufficient condition on an attractive potential
such that the solution exists for all time. For the case of measure-valued data, unique solutions
exist for all time even when the Osgood condition is violated, however there is information loss in
the case of attractive potentials that violate the Osgood condition, which can be seen in the fact
that the solution collapses to a point in finite time. When bounded solutions blowup in finite
time, they are observed in numerical simulations to exhibit second kind scaling in which the
initial blowup does not concentrate mass but rather involves a weaker singularity that remains
in Lp for some range of p. This suggests that one should study well-posedness of solutions in the
Lp-spaces, which we consider for those values of p that give well-defined characteristics. In the
case of Lp initial data, we prove local-well posedness of the problem provided p > pc, where pc is
determined by the regularity of the kernel at the origin. For p smaller than the critical p, one can
construct examples in which the solution instantaneously concentrates mass, thereby suggesting
that bound on p for which the Lp problem is locally well-posed, is sharp. One such example is the
case where k(x) = |x| and the initial density ρ is radially symmetric with a power law behavior
ρ ∼ |x|β1 at the origin, as in the case of the numerical solution described in section 4.
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