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Abstract

We introduce a fourth-order total variation flow for image
inpainting proposed in [5]. The well-posedness of this new
inpainting model is discussed and its efficient numerical real-
ization via an unconditionally stable solver developed in [15]
is presented.

1 Introduction

An important task in image processing is the process of filling
in missing parts of damaged images based on the information
obtained from the surrounding areas. It is essentially a type of
interpolation and is referred to as inpainting. Given an image
f in a suitable Banach space of functions defined on Ω ⊂ R2,
an open and bounded domain, the problem is to reconstruct
the original image u in the damaged domain D ⊂ Ω, called
inpainting domain. In the following we are especially inter-
ested in so called non-texture inpainting, i.e., the inpainting
of structures, like edges and uniformly colored areas in the
image, rather than texture.
In the pioneering works of Caselles et al. [6] (with the term
disocclusion instead of inpainting) and Bertalmio et al. [2]
partial differential equations have been first proposed for dig-
ital non-texture inpainting. In subsequent works variational
models, originally derived for the tasks of image denoising, de-
blurring and segmentation, have been adopted to inpainting.
The most famous variational inpainting model is the total
variation (TV) model, cf. [8, 10, 13, 14]. Here, the inpainted
image u is computed as a minimizer of the functional

J (u) = |Du| (Ω) +
1
2
‖λ(f − u)‖2

L2(Ω) ,

where |Du| (Ω) is the total variation of u (cf. [1]), and λ is the
indicator function of Ω \D multiplied by a (large) constant,
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i.e., λ(x) = λ0 >> 1 in Ω \D and 0 in D. The corresponding
steepest descent for the total variation inpainting model reads

ut = −p + λ(f − u), p ∈ ∂ |Du| (Ω), (1)

where p is an element in the subdifferential of the total vari-
ation ∂ |Du| (Ω). The steepest-descent approach is used to
numerically compute a minimizer of J , whereby it is itera-
tively solved until one is close enough to a minimizer of J . For
the numerical computation an element p of the subdifferential
is approximated by the anisotropic diffusion ∇ · (∇u/|∇u|ε),
where |∇u|ε =

√
|∇u|2 + ε.

Now, TV inpainting, while preserving edge information in
the image, fails in propagating level lines (sets of image points
with constant grayvalue) smoothly into the damaged domain,
and in connecting edges over large gaps in particular. In an
attempt to solve these issues from second order image diffu-
sions, a number of third and fourth order diffusions have been
suggested for image inpainting, e.g., [7, 9].

In this paper we present a fourth-order variant of total vari-
ation inpainting, called TV-H−1 inpainting. The inpainted
image u of f ∈ L2(Ω), shall evolve via

ut = ∆p + λ(f − u), p ∈ ∂TV (u), (2)

with

TV (u) =

{
|Du| (Ω) if |u(x)| ≤ 1 a.e. in Ω
+∞ otherwise.

(3)

This inpainting approach has been proposed by Burger, He,
and Schönlieb in [5] as a generalization of the sharp interface
limit of Cahn-Hilliard inpainting [3, 4] to grayvalue images.
The L∞ bound in the definition (3) of the total variation
functional TV (u) is motivated by this sharp interface limit
and is part of the technical setup, which made it easier to
derive rigorous results for this scheme. A similar form of this
higher-order TV approach already appeared in the context
of decomposition and restoration of grayvalue images, see for
example [12]. In the following we shall recall the main rigor-
ous results obtained in [5], present an unconditionally stable
solver for (2), and show a numerical example emphasizing the
superiority of the fourth-order TV flow over the second-order
one.

2 Well-Posedness of the Scheme

In contrast to its second-order analogue, the well-posedness
of (2) strongly depends on the L∞ bound introduced in (3).

1



This is because of the lack of maximum principles which, in
the second-order case, guarantee the well-posedness for all
smooth monotone regularizations of p.

The existence of a steady state for (2) is given by the fol-
lowing theorem.

Theorem 1 [5, Theorem 1.4] Let f ∈ L2(Ω). The stationary
equation

∆p + λ(f − u) = 0, p ∈ ∂TV (u) (4)

admits a solution u ∈ BV (Ω).

Results for the evolution equation (2) are a matter of future
research. In particular it is highly desirable to achieve asymp-
totic properties of the evolution. Note that additionally to the
fourth differential order, a difficulty in the convergence anal-
ysis of (2) is that it does not follow a variational principle.

3 Unconditionally Stable Solver

Motivated by the idea of convexity splitting schemes, e.g.,
[11], Bertozzi and Schönlieb propose in [15] the following time-
stepping scheme for the numerical solution of (2):

Uk+1−Uk

∆t + C1∆∆Uk+1 + C2Uk+1 = C1∆∆Uk

−∆(∇ · ( ∇Uk

|∇Uk|ε
)) + C2Uk + λ(f − Uk), (5)

with C1 > 1/ε, C2 > λ0. Here, Uk is the kth iterate of the
time-discrete scheme, which approximates a solution u of the
continuous equation at time k∆t, ∆t > 0. It can be shown
that (5) defines a numerical scheme that is unconditionally
stable, and of order 2 in time, cf. [15].

4 Numerical Results

In Figure 1 a result of the TV-H−1 inpainting model com-
puted via (5) and its comparison with the result obtained by
the second order TV-L2 inpainting model for a crop of the
image is presented. The superiority of the fourth-order TV-
H−1 inpainting model to the second order model with respect
to the desired continuation of edges into the missing domain
is clearly visible.

Figure 1: First row: TV-H−1 inpainting (2): u(1000) with λ0 = 103.
Second row: (l.) u(1000) with TV-H−1 inpainting, (r.) u(5000) with
TV-L2 inpainting (1)
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