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The proposed algorithm for image segmentation is inspired by an algorithm for autonomous environmental boundary
tracking. The algorithm relies on a tracker that traverses a boundary between regions in a sinusoidal-like path. Boundary
tracking is done by efficiently sampling points, resulting in a significant savings in computation time. Page’s cumulative sum
(CUSUM) procedure and other methods are adapted to handle a high level of noise. Applications to large data sets such as
hyperspectral are of particular interest. Irregularly shaped boundaries such as fractals are also treated at very fine detail.

1 Introduction

Interpreting important features in an image often involves some simplification that discards detail in favor
of generality. In image segmentation, two approaches are particularly common: region-based methods and
edge-based methods. Partitioning an image into homogeneous regions gives a “cartoon-like” appearance
which identifies the most important objects and their rough boundaries. Many algorithms using this
approach rely on identifying some feature common to each region and classifying individual pixels
according to how well they match this feature. The classification is often based on matching pixel intensities
with some spatial bias, such as regularity of object boundaries. This idea of image segmentation is the
method adopted in region-based methods like the algorithm of Chan and Vese [15], using the level set
method [49] to minimize the piecewise constant Mumford-Shah functional [47]. In many of these methods,
changes in topology are also allowed, so that multiple objects may be detected.

Another approach is to consider the statistical patterns observed in real data. The seminal work of
Geman and Geman [27] describes attributes such as pixel intensity and image edges as a Markov Random
Field. This model places images in a Bayesian framework, in which features can be described based on
similar features found in the same image or in other data sets that share the same characteristics. Methods
such as region competition rely on this statistical model and are often solved using energy minimization
[68, 62]. Sometimes the segmentation can be successively refined with further user interaction [53].

These approaches are generally less sensitive to noise, due to the spatial regularity requirement and
the use of information from many pixels in the image. This robustness, however, comes at the expense of
computation time, since calculations often must be done on every pixel, even if some pixels are far from
object boundaries or clearly belong to a certain region.

Recent advances have greatly improved the computational efficiency of segmentation methods based
on the Mumford-Shah functional using more efficient methods for energy minimization [28, 21, 24, 25].
Another possibility is to make calculations only in a narrow band around the zero level set, reducing the
need to make irrelevant calculations [51].

Alternatively, tracking edges or boundaries of objects gives the location at which significant changes in
the image take place. Local searching algorithms such as image snakes and gradient vector flow [38, 66] are
designed to work faster than region-based methods. Note that since curves are evolved near the boundaries
of objects, it is only necessary to consider pixels near these boundaries.

In contrast to the region-based methods, noise is often a problem with such local searching methods
since far fewer pixels are used in calculations. Moreover, such methods often use an edge-detection function
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based on a gradient. While the gradient is intended to locate edges, it has the side-effect of making the
edge-detector highly sensitive to noise.

Furthermore, certain shapes such as those with large concavities or sharp corners may not be detected
accurately due to requirements in the regularity of the curve. These points can be somewhat resolved with a
balloon term [19] designed to encourage evolution past local minima of the underlying energy functional or
replacing the second order PDE for snakes evolution with a fourth order PDE designed to preserve corners
[63, 12]. In [10], a new energy was proposed to replace length with local area. This allows irregularly shaped
objects, especially those with fractal-like structure, to be segmented more accurately. Other edge-based
methods include the use of random walks to test hypotheses for the most likely layout of edges [4] and
the Canny edge detector [13].

Theoretically, the use of fewer pixels in local searching gives these methods a shorter run time than with
region-based methods. These algorithms scale only with the number of pixels in the boundary, rather than
the number of pixels in the image. This speed advantage is thus even more pronounced for large images.

In this work, we propose a novel segmentation method that seeks to minimize the number of
calculations. By sampling points, the boundary of an object can be tracked without the need to process
a large number of pixels. The method is based on an algorithm for tracking environmental boundaries
[39, 36] which utilizes robots that walk in a sinusoidal path along the boundary between two regions. The
robots change directions as they cross from one region into another. The robot walking method is related
to the class of “bug” algorithms that seek a target while avoiding obstacles [18, 48]. Such algorithms utilize
only local information and theoretically should not visit the same location twice. Only the points that are
near the boundary in question are tracked, resulting in substantial savings in run-time.

Sinusoidal tracking patterns have been observed in a variety of contexts as an efficient path for travel.
Ants walk in a sinusoidal manner along pheromone trails laid down by other ants, predicting the proper
direction of travel and compensating if they stray too far in a certain direction [32, 20]. For atomic force
microscopy, using a sinusoidal pattern for scanning can avoid imaging points that are irrelevant to the
region of interest [16, 3].

Some “walking” methods for boundary tracking exist in image processing as well. Moore’s algorithm
[29] tracks an edge of a binary image using an ordered search for image intensity values of 1 (alternatively,
0) through a neighborhood of each pixel in the iteration. Another method follows the maximum gradient
magnitude of the 3× 3 neighborhood of each pixel [14]. These methods, however, clearly fail in the presence
of any noise.

As with local searching methods in image processing, noise can cause problems since the tracking
is done as a local search. It was proposed [36] that the use of a change-point detection algorithm such
as Page’s cumulative sum (CUSUM) procedure [50] would allow objects to be tracked in noise. Testbed
implementations of the boundary tracking algorithm suggest that robots can indeed track boundaries
efficiently in the presence of a moderate amount of sensor noise [37].

One of the greatest advantages for using the algorithm for segmentation is the computational efficiency.
By considering only pixels near the boundary of an object, as with local searching methods, many pixels
are not considered. Furthermore, the tracking method travels through each location only once, resulting in
run-time savings even over other local searching methods. As mentioned earlier, noise can be particularly
troublesome when fewer points are considered. Further improvements can be made that are not practical
in the environmental tracking case. Many of these improvements are based on hypothesis testing for two
regions, with the use of the CUSUM algorithm as a special case. Hypothesis testing is an important part of
many statistical segmentation methods [9, 52, 26].

The boundary tracking algorithm in the context of image processing was briefly introduced in [17].
In this work, we give a more detailed treatment with expanded theory and applications. In subsequent
sections, we will adapt the boundary tracking algorithm to the image processing problem and discuss
improvements that can be made in this context. Section 2 briefly reviews the boundary tracking algorithm
and compares the original environmental tracking and image processing problems. In Section 3, various
methods for better performance in the presence of noise are suggested. Other improvements to the
algorithm are discussed in Section 4. Section 5 shows numerical results and images, including examples
with hyperspectral and high resolution data. Finally, discussion and issues for further study are given in
Section 6.

2 A two-step locating and tracking method

The boundary tracking algorithm is first initialized with some given decision function, which determines
whether it is in one of two regions. Boundary tracking is done as a two-step process using the decision
function in both steps. The first step involves locating a boundary point via a global search. The boundary
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point found by this global search serves as an initial point to be used in the local sampling step. At this
second step, boundary points are found by using a tracker that travels near the boundary in a sinusoidal
path. Sometimes the tracker can move off of the boundary, particularly when the noise is high or when
the decision function is not very accurate. When this happens, it is necessary to use the global search step
again to locate the boundary. This paper discusses the global search step briefly, and focusses on the local
sampling algorithm.

2.1 Global search to locate a boundary point

There are several options for the global search step. The simplest is just a user-defined point near the
boundary that can be directly used by the local sampling step. For a more automated approach, a random
initial point in the image can be given. Then the tracker travels in a spiral away from the initial point until
a boundary point is detected (see Fig. 1). It is sometimes necessary to refine this estimate, since the spiral
pattern may not detect the exact crossing point accurately. Another option is to use a Levy flight to detect a
boundary. Levy flights have been observed in a variety of contexts and have certain optimality properties
[41, 64].

A different approach for global search is to use a hybrid method. Boundary location can be done by
using a coarse segmentation by another method. The resulting segmentation gives initial boundary points
to be used in the local sampling step. This method will be explained further in Section 5. For the tracking
of one object, however, global detection is not usually the limiting step in accuracy or in run-time. Thus, in
this work we focus on the local sampling step.

2.2 Local sampling to track the boundary

For the physical problem [36, 39], a robot is used to track an environmental boundary. The robot is placed
near the boundary in question, and it then uses a bang-bang steering controller to move through the
boundary of the two regions.

It is relatively straightforward to adapt the algorithm for images. Let the image domain be represented
by Ω, withB the boundary between two regions Ω1 and Ω2, so that Ω = Ω1 ∪ Ω2 ∪B and Ω1 ∩ Ω2 = ∅. Define
an initial starting point ~x0 = (x10, x

2
0) for the boundary tracker and an initial value θ0, representing the angle

from the +x1 direction, so that the initial direction vector is (cos θ0, sin θ0). Also define the step size V and
angular increment ω, which depend on estimates for image resolution and characteristics of the boundary
to be detected. In general, V is chosen smaller for greater detail, and ω is chosen smaller for straighter
boundaries. A decision function between Ω1 and Ω2 must also be specified and has the following form:

d(~x) =

 1, if ~x ε Ω1,
0, if ~x ε B,
−1, if ~x ε Ω2.

(1)

The simplest example is thresholding of the image intensity I(~x) at a given spatial location ~x (in the case of
a grayscale image):

d(~x) =

 1, if I(~x) > T ,
0, if I(~x) = T ,
−1, if I(~x) < T ,

(2)

where T is a fixed threshold value. Later in this section we use statistical information about prior points
sampled along the path to modify d(~x). At each step k, the direction θk and current location ~xk are updated
recursively. Specifically,

~xk = ~xk−1 + V ∗ (cos θk−1, sin θk−1), (3)

and θk is updated according to the new location of the tracker ~xk. A simple update for θ is the bang-bang
steering controller, defined by

θk = θk−1 + ωd(~xk). (4)

Midpoints of the tracker locations the iteration before and the iteration after change are taken to be
the boundary points. Linear interpolation can be used to obtain a boundary curve. Note that unlike many
other segmentation methods, it is not assumed that the curve is smooth. This allows the detection of very
irregular objects, especially those with large concave regions or high curvature boundaries.

An angle-correction modification [36] can be used for (4) if step k is a region crossing:

θk = θk−1 + d(~xk)(tω − 2θref )/2, (5)
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where t is the number of steps since the last region crossing, and θref is a small fixed reference angle.
The parameter θref is determined empirically with a value of 0.1 giving good results in many images.
Intuitively, θref makes angle correction more conservative so that the direction of travel is not parallel to
the expected direction of the boundary. This results in some distance still being traversed before the next
boundary crossing.

A further consideration is the stopping condition. Several options for the termination of the algorithm
are possible: the tracker completes a certain number of iterations, arrives at the image border, or arrives
near the first boundary point detected with some minimum number of iterations. The latter two were used
for numerical experiments.

Fig. 1. Left: Global search is initialized at point 1, traveling in a spiral-like pattern. At point 2, a boundary
point is found and local sampling starts, tracking the boundary more closely. Right: Basic procedure for the
boundary tracking (local sampling) algorithm. Local sampling works on a sub-pixel level.

There are several differences between the environmental problem and image processing problem. The
primary difference is the conversion from a continuous model to a discrete model. While a robot samples
data wherever it travels, image data is pixelated so that the tracker cannot sample data at the sub-pixel
level. Instead, the nearest neighbor intensity reading is used. Thus, the level of detail is limited by the
image resolution. However, while sampling is only done at the pixel locations, the tracker still travels at
the sub-pixel level, as indicated in Fig. 1. Moreover, the tracker can move with step sizes less than 1. The
redundancy of sampling the same pixel more than once makes the algorithm more robust to noise and
gives a sharper segmentation without increasing computation time much. Indeed, numerical experiments
confirm that the step size giving optimal results is often less than 1.

Conversion to the image segmentation problem also has several advantages. A robot is restricted to
sampling data only at its current location. In images, however, information from the pixels surrounding
the tracker can be used to mitigate mistakes due to noise. Using these extra pixels, of course, negates
some computational benefits, but as long as the number of extra pixels considered is small, the main
advantages are retained. Various methods for using this nonlocal information while preserving the speed
of the algorithm are presented in the next section. Also, robots used in experiments [33, 37] make smooth
changes of direction, but this restriction is not required in the image processing case. Lastly, robots have a
fixed position at any point in time and cannot make instantaneous jumps. In images, however, it is possible
to place the tracker in another location in a single step. This ability allows the boundary tracker to correct
mistakes detected at a later time without having to backtrack through many pixels.

3 Change-Point Decisions

The boundary tracking method presented works well when a clear and accurate decision function can
be defined. However, in many applications a clear distinction between the two regions cannot be made,
particularly in noisy images. For boundary tracking, errors in classification by the decision function can
lead to serious errors in tracking, since the local sampling algorithm is only valid when the tracker is near
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the boundary. With some method to average nearby pixels, however, the algorithm can be made much more
robust to noise.

Change-point detection theory is well-suited to tracking image edges in noise. In particular, the
CUSUM algorithm has been used to improve tracking performance in the environmental tracking problem
[40, 37]. This section reviews relevant information from change-point detection and its application to the
boundary tracking problem.

Change-point problems deal with rapid detection of abrupt changes in statistical properties (distribu-
tions) of data. One standard application of change-point detection is in manufacturing [45, 22, 55]. For a
certain process, it may be acceptable to have a certain failure rate. If the process is able to operate below
this tolerance level, then it is allowed to continue operation. If, however, this tolerance level is exceeded,
one would like to stop as soon as possible to make repairs. Making a false stop, however, is costly as well,
so it is important to balance the two considerations. Other applications include surveillance, computer net-
work security (rapid detection of intrusions), failure detection in dynamical systems and communication
networks, financial markets, seismology, navigation, speech segmentation, etc. See, e.g., [11, 60, 61, 65] and
references therein.

More explicitly, given a sequence of independent observations s1 = I(x1), . . . , sn = I(xn) and two
probability density functions (pdf) f (pre-change) and g (post-change), determine whether there exists N
such that the pdf of si is f for i < N and g for i ≥ N .

One of the most efficient change-point detection methods is the CUSUM algorithm proposed by Page
in 1954 [50]. Write Zk = log[g(sk)/f(sk)] for the log-likelihood ratio and define recursively

Uk = max (Uk−1 + Zk, 0) , U0 = 0 (6)

the CUSUM statistic and the corresponding stopping time τ = min{k | Uk ≥ U}, where U is a threshold
controlling the false alarm rate. Then τ is a time of raising an alarm. In our applications, assuming that f is
the pdf of the data in Ω1 and g is the pdf in Ω2, the value of τ may be interpreted as an estimate of the actual
change-point, i.e., the boundary crossing from Ω1 to Ω2.

Changes from Ω2 to Ω1 can also be tracked in this manner. Analogously to (6) define recursively the
decision statistic Lk = max(Lk−1 − Zk, 0), L0 = 0 and the stopping time τ = min{k | Lk ≥ L}, where L is
a threshold associated with a given false detection rate. The description of the basic boundary tracking
algorithm is now complete; the steps are shown in Fig. 2.

The CUSUM algorithm and optimality can be understood intuitively. Consider two distributions of
data Df and Dg with density functions f and g, respectively. In the change-point detection problem,
observations are conditionally independent given the point of change. Given a sequence of observations
xk−l+1, . . . , xk for a fixed natural number l (the change point), test the hypotheses

H0 : xk−l+1, . . . , xk are all from distribution Df ,

H1 : xk−l+1, . . . , xk are all from distribution Dg.

Then the likelihood ratio test gives the procedure g(xk−l+1)···g(xk)
f(xk−l+1)···f(xk)

≥ α.
This test, however, requires k − l + 1 observations after a change has actually occurred, since the

hypotheses are that the observations all come from one distribution or the other. Instead, the number of
observations l can be allowed to vary, which is beneficial for our applications where the point of change
from Df to Dg is not known in advance. In this case, a reasonable approach is to declare that a change is in
effect if there exists some l = 1, . . . , k such that g(xl)···g(xk)

f(xl)···f(xk)
≥ α for some k ≥ 1. In other words, the change

is declared when it is reasonably certain that some number of the most recent entries provides evidence
that a change has occurred. The threshold α describes the confidence level for the change. This modification
allows for the reduction of the number of false alarms due to noise while still allowing rapid detection in
case of an actual change.

Taking the logarithm, this rule can be associated with the stopping time

τ = min{k |
k∑
i=l

log
g(xi)

f(xi)
≥ U for some l = 1, . . . , k}

= min{k | max
1≤l≤k

k∑
i=l

Zi ≥ U}

where U is a certain threshold that controls the rate of false alarms and Zi = g(xi)
f(xi)

is the log-likelihood ratio
for the ith observation.
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It is easily seen that the trajectories of the statistic max1≤l≤k
∑k

i=l Zi coincide with the trajectories of the
CUSUM statistic Uk = maxl≥1

∑k
i=l Zi on the positive half-plane. Note that the CUSUM statistic also obeys

the recursion (6) (i.e., it is a reflected from the zero barrier random walk). Therefore, whenever the threshold
U is positive (which is usually the case) the stopping time τ is nothing but the CUSUM algorithm that can
be equivalently written as

τ = min{k | Uk ≥ U}

where Uk is the CUSUM statistic given in (6).

Fig. 2. Flowchart of the boundary tracking algorithm.

A few basic observations from (6) can be made. As mentioned earlier, the algorithm indicates a change
from Ω1 to Ω2 only when observations generated by Ω2 accumulate. Furthermore, an accumulation of many
(negative) values from Ω1 does not affect performance since the minimum value for U is 0. Lastly, the
CUSUM procedure can be interpreted as a collection of one-sided sequential probability ratio tests (in this
connection, see Lorden [42]) .

The pdf f, g for the two regions can be modeled in a variety of ways. The method is sufficiently general
to allow of the use of discriminative or generative statistical models. One simple generative approach is
to assume f and g are generated by Gaussians or a mixture of Gaussians, a common approach in image
processing [30, 58, 35]. In the boundary tracking results for grayscale images, f and g have been assumed to
follow Gaussian distributions.

In adapting change-point detection theory to region changes, the assumption of independent observa-
tions has been made. The samples are not independent, however, since they are taken from the tracking
path. This assumption is not altogether problematic in practice, especially when noise is spatially uncorre-
lated. With a high level of noise, the spatially uncorrelated noise gives approximate independence. For a
low level of noise, using change-point detection is less important.

As alluded to earlier in this section, the effectiveness of a change-point detection algorithm can be
quantified. Generally, the important factors are the delay in detection of a real change (which is random)
and false alarms. Detection delay measures the number of observations it takes to detect a change after it
has actually occurred, while a false alarm occurs when a change is detected but has not actually occurred
(Type 1 errors). In general, the detection delay should be small and the false alarm rate should be low.
Clearly, the two goals are antagonistic. By increasing thresholds U,L the false alarm rate can be lowered,
but this will unavoidably lead to an increase in the detection delay. Thus, one has to adjust parameters in
the change-point detection algorithm to moderate both indices.

Typically, operating characteristics of change-point detection algorithms are expressed via the average
run length (ARL) to detection versus the ARL to false alarm. These performance indices have been first
introduced by Page in [50]. The ARL is the average time to a change detection for a certain scenario. Under
this notation, the false alarm rate is measured by the ARL when no change takes place (i.e., by the mean time
to false detection El(τ |τ < l)), while the average detection delay is measured by the ARL when a change
takes place immediately after observations begin, i.e., E0τ . The ARL is not the only method to measure
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the effectiveness of change-point detection algorithms [11, 42, 59]. For example, why should we restrict
our attention to the detection delay when the change occurs from the very beginning? The conditional
average detection delay El(τ − l|τ > l) for any fixed point of change l > 0 is a more reasonable measure.
Also, in place of measuring the false alarm rate with the ARL to false alarm one may prefer to work with a
probability of false alarm in a fixed time interval. See [59] for a more detailed discussion.

In 1971, Lorden [42] introduced the minimax (worst-worst case) performance measure – the essential
supremum average detection delay DD = ess sup suplEl(τ − l)+|x1, . . . , xl) and proved that the CUSUM
procedure is asymptotically optimal with respect to this detection delay measure for a low false alarm rate
when the ARL to false alarm is large, among all procedures for which the ARL to false alarm is fixed at
a given level. Later, Moustakides [46] proved that actually CUSUM is exactly optimal for any false alarm
rate with respect to Lorden’s criterion. Other optimality properties of CUSUM are discussed in [59]. For
CUSUM, the following relation holds (asymptotically as ARL to false alarm is large):

DD ∼ El(τ − l|τ > l) ∼ logARLFA

K(g, f)
, l ≥ 0,

where ARLFA denotes the ARL to false alarm and

K(g, f) = Eg
(

log
g(x)

f(x)

)
is the Kullback-Leibler information number [11]. It can also be shown that asymptotic detection delay is

DD ∼ U

K(g, f)
.

This form of asymptotic detection delay is used to improve boundary tracking in the following section.

4 Further Improvements to the Boundary Tracking Algorithm

This section introduces further modifications to the algorithm, possible only in the image processing case,
improving performance in the presence of noise. To mitigate the effects of noise further, a mean filter can be
used; that is, the nearest neighbor intensity at the tracker can be replaced by an average of intensity values
of nearby pixels. The idea is that nearby pixels are most likely to be in the same region, so that taking an
average filters noise without using values from the other region. The same principle is at work with region-
based segmentation methods, in which it is assumed that an image can be partitioned into a few contiguous
regions with the same characteristics.

Mean filters can help the performance of the boundary tracker in noise. But since the tracker follows
the boundary closely, it is important to use the uniform region assumption conservatively. Using a large
number of pixels around the tracker would average noise but likely would also use values from the other
region. Using these values can result in a much more serious error. In practice, a 3× 3 window centered
on the tracker works well. Instead of averaging the entries in the window, one can apply reasoning similar
to the hypothesis testing mentioned for the CUSUM algorithm. As with observations along the boundary
tracking path, the entries in the 3× 3 window can also be treated as independent measurements. Thus, in
the hypothesis testing of the CUSUM procedure, the nearest neighbor observation is replaced by the nine
observations in the 3× 3 window.

The replacement of an observation by a window is not standard in change-point detection theory,
since it requires using extra data points not typically available. While the implementation may pose some
difficulty in the environmental boundary tracking problem, there is no such problem for the corresponding
image processing problem.

Besides noise, there can be other difficulties with the boundary tracker. Occasionally, the boundary
tracker becomes stuck in a certain area due to ambiguities in the object boundaries or irregularity of its
shape. To prevent this occurrence, the boundary tracker receives a “kick” if it has not left a certain window
by a certain number of iterations. The kick is in the opposite direction to which the boundary tracker entered
the window.

More explicitly, starting at a point ~xi, let M1 be a constant representing the “window” size that the
tracker must leave, and M2 a constant representing the number of iterations before receiving a “kick.” If
‖~xi − ~xi+j‖2 < M1 for each j ≤M2, then the tracker location ~xi+M2 is moved to ~xi+M2 − 2(~xi+M2 − ~xi), and
the new starting point for the kicking algorithm becomes ~xi+M2

.
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Theoretically, this direction is justified by assuming that the boundary tracker enters the kicking
window due to chance noise effects and that a slightly different path can avoid problems. In experiments,
the efficacy of kicking is confirmed in that after going off course, the tracker often finds its way back to the
boundary after kicking. In the numerical experiments following, the tracker receives a kick in the opposite
direction if it has stayed in the same 5 × 5 window for 200 iterations.

Another improvement is to use the theoretical average detection delay to backtrack along the path.
In cases where the structure of noise is known or can be estimated, the average detection delay can
often be calculated. Since this is the average time to detection after a change-point has actually occurred,
backtracking along the path by this amount will give the correct change-point on average. This results in a
more accurate detection of the actual boundary points.

For the grayscale numerical experiments, average detection delay was approximated by the asymptotic
detection delay, U

K(g,f) . For f generated by N(0, σ2), g generated by N(1, σ2),

K(g, f) = Eg(log
g

f
)

=

∫ ∞
−∞

g(y) log(
g(y)

f(y)
) dy

=

∫ ∞
−∞

[
y2

2σ2
− (y − 1)2

2σ2

]
g(y) dy

=

∫ ∞
−∞

[
(x+ 1)2

2σ2
− x2

2σ2

]
f(x) dx

=
1

2σ2
.

Thus, the asymptotic detection delay is U ∗ 2σ2,. Backtracking by U ∗ 2σ2 steps after each boundary
crossing gives a slightly sharper tracking. The quantity U ∗ 2σ2 is normally small enough (< 1) that there is
little difference in the actual results. For high noise images, however, this backtracking has larger influence
since both σ and U will be larger.

The statistical nature of the CUSUM algorithm can be used to detect inaccurate trackings. The idea is to
observe whether the algorithm is making accurate tracking or detecting an object only because it is forced
between the two classes. If the object is not being tracked accurately, the algorithm should switch from the
local sampling algorithm back to the global searching step to find a boundary point. Once a new boundary
point is found, local sampling can begin again.

Recalling the log-likelihood ratio Zk for each point along the tracking path, tracking the statistic
C = 1

N

∑N
k=1 |Zk|, where N is the total number of points in the path, gives a measurement of the confidence

that the tracking is valid. If C > T for some constant threshold T , then one can be reasonably sure that
a large portion of data points are well-separated by the density functions f, g. In contrast for C < T , the
tracking is likely to be inaccurate as boundary points are classified mainly because they are forced into one
class or the other. This is particularly a problem if the assumption of a two-region decomposition for Ω is
false. The threshold T is determined empirically, and a value of T = 0.3 typically works well.

5 Numerical and Image Examples

In Fig. 3, several results on a “U” image in heavy noise are shown. The results for boundary tracking
are comparable to a region-based method. Furthermore, corners are not rounded as in the case with
many energy-based segmentation methods. This fact can make boundary tracking more well-suited for
segmentation problems with more man-made objects or with sharper edges. Parameters for each of the
numerical examples were ω = 0.5, V = 0.5, U = L = 0.8 unless otherwise indicated.

The segmentation accuracy of the boundary tracking algorithm is comparable to that of other
segmentation methods. The run-time and storage costs, however, are much less for boundary tracking than
for many global methods, especially for high dimensional data.

The algorithm compares favorably with other segmentation methods designed for fast computation
time. The split Bregman globally convex segmentation (GCS) method of [28] is one such method. Table 1
shows a comparison of the two methods. Note that the boundary tracking method scales much better with
an increase in image size.
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Fig. 3. Top Left: A 100 × 100 image was corrupted with additive Gaussian noise, N(0,0.5). Top center:
Boundary tracking without change-detection. Top right: Boundary tracking with CUSUM. Bottom left:
Boundary tracking with CUSUM and a 3× 3 window average. Bottom center: Threshold dynamics [25].
Bottom right: Boundary tracking on a 1000 × 1000 version of the “U” image.

Table 1. A comparison of run-times for various images and segmentation methods. Computations were
done with an Intel Core 2 Duo Processor T8300 (2.4 GHz).

A comparison of run-times (s)

Image Boundary Tracking Split Breg. GCS

100× 100 U 0.0025 0.034
300× 300 U 0.0089 0.620
1000× 1000 U 0.0420 6.600

For the tracking of more than one object, it is possible to use another segmentation method first on
a subsampled version of the image to obtain topology and the rough locations of objects. This has the
added benefit of giving estimates for the mean and variance, which can be used in the case of Gaussian
noise. Furthermore, if the initial segmentation is reasonably accurate, the boundary tracking algorithm can
be restricted to detecting only boundary points close to those detected in the initial segmentation. Thus,
the boundary tracking algorithm acts as a fast refinement to another segmentation method. The resulting
detection can also be used as an initialization to another segmentation method on the full data set. The last
modification would give fast convergence while preserving the strengths of an alternative method.

An example on a simple, noisy image is shown in Fig. 4. The original image is 1000× 1000. Threshold
Dynamics was first applied to a heavily subsampled version (100× 100) of the image. Then one pixel from
each connected component was taken as the starting point for a boundary tracker.

The boundary tracking algorithm is ideally suited for segmentation in large data sets. Detection delays
of boundary points are the same in terms of number of steps, whether for low resolution or high resolution
data. Thus, relative to the size of objects, detection delays are much shorter. Furthermore, steps with smaller
angular increment can be used, effectively taking straighter steps and tracking the boundary more sharply.
Using a lower angular increment also increases the speed of tracking, lowering the number of iterations
needed to track the object completely. A tracking of a 1000× 1000 version of the “U” image is also shown in
Fig. 3. Note that the “unit” of detection delay is in steps. That is, for a high resolution image, the detection
delay is much smaller in terms of the characteristic width of features. Thus, the tracking result looks much



10 A. Chen et al.

Fig. 4. A hybrid threshold dynamics - boundary tracking segmentation on a 1000× 1000 image. Left: Initial
segmentation by threshold dynamics. The image is subsampled by a factor of 10 on each axis. Right: Final
segmentation by boundary tracking, with starting points for the trackers from the initial segmentation.

more accurate. While the jagged tracking of the 100× 100 version still exists in the 1000× 1000 version, the
scale of the jagged behavior is small compared to the features and thus is almost invisible.

In the “San Francisco Bay” data set [1], a multispectral data set taken by the Landsat 7 satellite, the
data is 3000× 3500 pixels, with boundaries of the object of interest touching the edge of the image. The
Normalized Difference Vegetation Index (NDVI), commonly used for water detection [54], is taken as the
decision function. This index is a combination of two images at the same spatial coordinates, taken at a red
wavelength band and an infrared wavelength band.

Fig. 5. Boundary tracking of the San Francisco Bay [1] coastline. In this example, multiple trackers need to
be used since the coastline boundary is not connected.

The boundary tracking method also has a natural extension to hyperspectral data, which consists of
a group of spatially co-registered images taken at different wavelengths in the electromagnetic spectrum.
Thus, each spatial pixel now has a vector-valued “spectral signature” instead of a scalar intensity. In fact,
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it has been observed that different objects have distinct spectral signatures, so that objects are readily
distinguishable by observing spectral signatures.

In the tracking algorithm, all that is required is a decision function that determines whether the tracker
is in one of two regions. Then replacing a simple threshold by a suitable distance can still give a good
boundary detection. One distance that has been found to work especially well with hyperspectral data is
the spectral angle distance [67, 56]:

Spectral angle = cos−1
(

u · v
‖u‖‖v‖

)
(7)

If there are multiple objects to be detected, one may wish to compare two classes of objects, rather than
two specific objects. In this case, the decision function should compare distance to one class (the minimum
distance to an object in the class) and distance to the other class. This comparison is especially useful in
the case of hyperspectral imagery. The theoretical background on using such class comparisons is given
in [59]. The segmentation resulting from a class comparison between building references and background
references for the Urban data set, a hyperspectral data [2] set taken by HYDICE, an airborne sensor, is shown
in Fig. 6.

Fig. 6. Building segmentation of the “Urban” data set [2] with spectral angle decision function.

With the change to a different decision function, the choice of f, g becomes more unclear. It is difficult
or impossible to estimate the structure of the data in terms of spectral angle distance. By choosing a large
number of sample points, it may, however, be possible to create an approximation of f, g from the data itself.

With hyperspectral imagery, the number of spectral bands can number in the hundreds. With this
amount of data, it is often necessary to reduce the size of the data, either in the spectral dimension or
through spatial subsampling. Using the boundary tracking algorithm equipped with the spectral angle
distance, segmentation can be fast and accurate.

The Smith Island H20000508 southendBIP data set [8, 5, 6, 7] is a large hyperspectral data set obtained
by an airborne hyperspectral scanner (HyMAP) on May 8, 2000, over Smith Island, VA, a barrier island
in the Virgina Coast Reserve. The boundary between land and sea is often ambiguous, causing problems
especially when the full spectral information is not used. The NDVI of the data generally gives a good
threshold for land and sea, but sandy and swampy areas occupy a range of values that constitute the
ambiguous region. Considering spectral signatures, however, gives a clearer indication of the various types
of terrain. Moreover, it is also possible to assign these ambiguous areas to either region according to user
preference, simply by changing the reference points for each region.

In Fig. 7, each pixel is unmixed as a linear combination of various reference spectral signatures using the
L1 unmixing model of [31]. The reference signatures used are that of beach, dark dirt, light dirt, vegetation,
light water, and dark water. Each pixel is assigned to either a land class or water water class based on the
maximum abundance of the material at that location. The plots of the reference signatures are shown in
Fig. 8. Fig. 9 shows that tracking the maximum abundance shows the boundary more clearly than using the
NDVI result.

More generally, boundary tracking can be used to efficiently track features that can be derived from the
solution of an inverse problem. Since boundary tracking is a subsampling algorithm, the number of pixels
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Fig. 7. The Smith Island data set [8, 5, 6, 7]. Left: Reference points used in the land/water classification
by full unmixing. The reference signatures are that of 1 - dark dirt, 2 - light dirt, 3 - vegetation, 4 - beach, 5
- dark water, 6 - light water. Right: The land/water classmap using maximum abundance of the unmixed
result.

Fig. 8. Left: Plots of the reflectances of the reference signatures of the land class: dark dirt, light dirt,
vegetation, beach. Right: Plots of the reflectances of the reference signatures of the water class: dark water,
light water.

that require intense processing is minimal. In certain cases, the decision function for each pixel may be a
complex calculation requiring a high run-time. This is especially true when calculating the decision function
accurately is more computationally expensive as the boundary is approximated with greater precision. The
next example for fractals is an example of this fact.

Tracking fractal boundaries such as coastlines is another interesting example of the efficiency of
boundary tracking (see Fig. 5). For fractals such as the Mandelbrot set, the escape algorithm [23] can be used
to calculate whether a point is in the set or outside. While it can be computationally expensive to implement
the algorithm for very fine detail, tracking only the boundary can be much faster. In addition, the potential
detail is unlimited since the fractal is defined in continuous space rather than the discrete space of images.
Moreover, boundary tracking follows rough boundaries without introducing extra smoothing, as in many
segmentation methods with a penalty on the length of the boundary. This fact makes boundary tracking a
method well-suited for dealing with fractal-like structure. Fig. 11 shows various magnifications of boundary
tracking on the Mandelbrot set. Table 2 gives a timing comparison between the boundary tracking algorithm
and the calculation of the escape algorithm at the corresponding resolution. In the results shown in Fig. 11
and 2, the computations on the escape algorithm for boundary tracking were done only at locations that the
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Fig. 9. Tracking the boundary of the “Smith Island” hyperspectral data set. Left: Grayscale boundary
tracking using the NDVI as an indicator between land and sea. Right: Boundary tracking using unmixing
on each pixel of the data set. Only pixels visited by the boundary tracker are unmixed.

Fig. 10. Boundary tracking of the Mandelbrot set at 400× 400 resolution. A higher magnification of the
boxed region is shown in Fig. 11.

tracker visits, not on the entire 400× 400 images. The tracking results are shown overlaid on the full images
for clarity.
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Fig. 11. Tracking the boundary of the Mandelbrot set at increasing levels of magnification with the boxed
region showing the domain for the next highest level of magnification. The resolution of each image is
400× 400. Top: 10 times magnification, 102 times magnification. Middle: 103 times magnification, 104 times
magnification. Bottom: 105 times magnification, 106 times magnification.
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Note that as the magnification is increased, the number of iterations in the escape algorithm needed
to resolve the boundary accurately also increases. This is due to the fact that the points being examined
are much closer to the actual boundary of the Mandelbrot set, so that the escape algorithm for points not
in the Mandelbrot set will diverge much more slowly. This gives an additional savings in the run-time of
boundary tracking relative to computing on the entire domain, as the resolution is increased.

Table 2. A table comparing the run-time of the boundary tracking algorithm (BT) and calculation of the
full domain (FD) for the Mandelbrot set at the corresponding resolution (pixel width). The precision of the
escape algorithm (Escape) was adjusted according to the resolution, as needed.

Mandelbrot set timing comparison

Pixel Width Escape BT (s) Full FD (s)

7.51× 10−3 400 0.7 5.8
7.51× 10−4 103 1.2 21.5
7.51× 10−5 4× 103 7.8 152.6
7.51× 10−6 104 32.6 529.7
7.51× 10−7 4× 104 145.9 2100.4
7.51× 10−8 105 218.6 6078.6
7.51× 10−9 4× 105 861.5 22042.3

By tracking the boundary of the fractal at various magnification factors, it is possible to measure the
fractal dimension using the box-counting method. The fractal dimension of a set is defined to be

D = lim
ε→0

log(N(ε))

log(1/ε)
,

where N represents the number of boxes of size ε that are needed to cover the set. At a given scale ε, there
exists a simple relationship between the length L(ε) and the number of boxes N(ε): L(ε) = εN(ε). Using this
formula, the fractal dimension can be rewritten as

lim
ε→0

log(L/ε)

log(1/ε)
= 1− lim

ε→0

log(L)

log(ε)
.

Using various step sizes V for the scale parameter ε, boundary tracking yields boundary points at
various scales. Thus, a log-log plot of log(L) versus log(V ) is approximately a line with slope equal to
one minus the fractal dimension. A calculation of the boundary for the Julia set with c = 1/4 is shown
in Table 3. The calculated slope is -0.0799, so the measured fractal dimension is 1.0799, which is close
to the theoretical value of 1.0812 [43]. The corresponding set and log-log plot is shown in Fig. 12. Note
that the Mandelbrot has comparatively more complex structure, having a fractal dimension of 2 [57], and
the numerical computation of the fractal dimension is not usually done. The computation of the fractal
dimension here is a demonstration of one application of boundary tracking.

Table 3. A table of the length calculations for the Julia set at various scales.
Julia set lengths

V Boundary Points Length

5× 10−5 42 582 3.7706
10−4 20 152 3.5642

3× 10−4 6210 3.2655
5× 10−4 3538 3.1364
10−3 1668 2.9773

3× 10−3 513 2.7254
5× 10−3 308 2.5925
10−2 137 2.4744

Similar fractal dimension calculations can be done for real coastlines, as long as the resolution of the
data set is sufficient. For the Smith Island data set, a fractal dimension can be calculated using boundary
tracking. The results are shown in Table 4 and Fig. 13. From the fitted slope of -0.1739 for the log-log plot,
the measured fractal dimension is thus 1.1739.
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Fig. 12. Left: The Julia set for c = 1/4. Right: Log-log plot of log10(L) versus log10(V ).

Table 4. A table of the length calculations for the Smith Island set at various scales.
Smith Island set lengths

V Boundary Points Length

0.5 14 431 8162
1 6111 7057
2 2939 6830
4 1271 6024
8 464 4651
16 199 4651
32 93 3976

Fig. 13. Log-log plot of log10(L) versus log10(V ) for Smith Island.

6 Discussion

The greatest advantage of the boundary tracking algorithm over region-based methods for segmentation
is the computation speed. Calculations and measurements are taken over samples, with the number of
samples having the same order as the boundary length of the tracked object. In region-based methods,
however, calculations and measurements are done over the entire image. Thus, boundary tracking is O(n),
while region-based methods areO(n2), where the size of the image is n× n. Then the savings becomes more
apparent for larger images and those with higher resolution.

There is a substantial savings in memory requirements as well. Since only local information is used in
the decision function, it is not even necessary for the entire image to be stored at once. Instead, image values
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can be read as needed whenever the tracker visits a new point. On the other hand, many segmentation
methods require not only the original data to be stored but also evolved data of the same size.

With high-noise data, change-point detection is vital in minimizing mistakes due to noise. Parameters
are often chosen in order to minimize detection delay and false alarms. In the boundary tracking problem,
the former is of paramount importance, since region changes happen very frequently. While false alarms can
be tolerated to some extent, consistent detection delays can seriously hamper the algorithm’s performance,
causing false alarms to increase as well, by leading the tracker away from the boundary. Improving the
algorithm’s ability to recover from such mistakes is an important consideration.

The change-point modifications run very quickly, requiring only a minimal amount of extra storage and
computation over the boundary tracking algorithm alone. Using a window replacement is slightly slower
since more pixels are sampled. In this case, however, the algorithm still operates in O(n). Moreover, the
greater accuracy with which the boundary is tracked can lead to additional savings in computation time, as
fewer tracking mistakes are made and thus fewer iterations are needed.

While it is desirable in general to minimize the false alarms and detection delay, these indices do not
provide a complete understanding of a change detection algorithm’s effectiveness in the boundary tracking
problem. This is due to the fact that a false alarm of just one change point can cause the boundary tracker to
travel far from the boundary. In subsequent readings, change-point detection may be completely accurate
and have low detection delay, but give no useful information about the boundary. Thus, the effectiveness of
a change point detection algorithm must be measured visually with respect to the final segmentation result
as well. Nevertheless, these parameters are useful numerical indicators of a procedure’s effectiveness.

The change-point detection literature studies various measures of false alarms and detection delays.
Due to the interdependency of each change-point detection test that is run, simply tracking these two
indices may not be a good indicator of how the algorithm performs. Also, most of the examples presented
involve some a priori assumption on the probability distribution of the data. This assumption may not be
accurate for some data, especially for complicated data sets like hyperspectral imagery. Some possibilities
from change-point detection [11] have been studied, but it is also not clear whether these would represent
an improvement over a priori assumptions on the distributions.

Another important factor in the effectiveness of the algorithm is the characteristic width of the object
to be tracked. If the step size of the boundary tracker is of the same order of magnitude as the characteristic
width of the object, it can be difficult to track an object effectively. But with a characteristic width
much larger than boundary tracker step size (equivalently, higher resolution) data, the algorithm can be
highly effective without a corresponding large jump in run-time. Note that step size cannot be decreased
arbitrarily; the resolution restricts the amount of data that can be used when the step size becomes too
small. Thus, narrow objects are difficult to track if the resolution of the data is not sufficient. Of course, this
limitation on tracking features smaller than characteristic dimensions is true for all segmentation methods.

When there are more than two regions to be differentiated, different possibilities arise. One method is
a modification to track classes of objects. This is especially relevant to the case with hyperspectral data, in
which there are multiple objects with different spectral signatures. In this case, the decision function can be
altered so that a given pixel is measured against proximity to an entire class, rather than just to one object.
Particular care needs to be taken, however, to choose the classes carefully.

It is also important to take into account the structure of the data when using a different decision
function. In some of the examples presented, images were corrupted with additive Gaussian noise. But
for real images, the noise parameters or structure of the data is not known a priori. The assumption of
Gaussian data, however, does seem to fit a wide variety of data.

An extension to the boundary tracking algorithm is to use multiple trackers. The algorithm is easily
parallelizable, adding a stopping condition for each tracker; for example, the algorithm for one tracker
terminates if it meets the path taken by any other tracker. Aside from parallelization for the sake of run-time,
information from multiple trackers can potentially be used in concert to improve tracking.

The boundary tracking algorithm can be of use in many problems in which run-time is important.
For video tracking, the large number of frames used can lead to a large computation time. By using
the boundary tracking algorithm with initialization taken from previous frames, objects can be found
and tracked quickly through each frame. Other applications include surface segmentation and more
sophisticated parameter estimation models by using shape priors.
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