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Abstract. Systems of pairwise-interacting particles model a cornucopia of
physical systems, from insect swarms and bacterial colonies to nanoparticle
self-assembly. We study a continuum model with densities supported on co-
dimension one curves for two-species particle interaction in R2, and apply lin-
ear stability analysis of concentric ring steady states to characterize the steady
state patterns and instabilities which form. Conditions for linear well-posedness
are determined and these results are compared to simulations of the discrete
particle dynamics, showing predictive power of the linear theory. Some intrigu-
ing steady state patterns are shown through numerical examples.

1. Introduction. The collective behavior of interacting particle systems gives rise
to emergent phenomena in physics, biology, chemistry, and other disciplines. Models
of pairwise-interacting agents find applications in the biological contexts of locust
swarms [3, 36, 35], animal flocks [8, 23, 29], and bacterial colonies [37]. These
mathematical approaches to swarming have also inspired algorithms for cooperative
control of robotic vehicles [25]. More questions for nonlocal particle systems arise
in physical chemistry: the self-assembly of nanoparticles [6, 17] and arrangement of
ions into spheres [26, 27] are just two examples. In the physical contexts of granular
gasses [30] and molecular dynamics simulations of matter [16], particle systems also
have a central role.

All of the above models, however multifaceted, share the same footing. Some
number of particles interact with each other pairwise such that any two particles
will repel each other when they are close and attract when they are far; typically, this
attractive force disappears at very long distances. These interactions can generate
rich steady states relevant to the models in which they arise.
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Consider the case when the forces arise due to a pairwise interaction energy

E(x1, . . . ,xN ) =
∑
i6=j

P (|xi − xj |)

where xi denotes the position in Rd of the ith particle and P (r) is the potential
energy between two particles. P (r) is usually a function with a unique minimum
such that the force on one particle due to another, F (r) := −P ′(r), enjoys the
repulsive-attractive properties mentioned above. In this framework, a steady state
pattern can be understood as a minimizer of E.

We call the potential E confining if its minimizing configurations x1, . . . ,xN stay
contained inside a compact set as N →∞. The question of whether or not a given
function P will result in a confining potential has been addressed in terms of the
notion of H-stability in statistical mechanics; see [10]. For confining potentials, par-
ticles in ground states may reside in space-filling, co-dimension zero configurations
or concentrate on co-dimension one manifolds. The question of which occurs is
answered in [2] and the problem of characterizing ground states (or steady states)
has been discussed in [19, 20, 33, 39], and elsewhere. Applications where both co-
dimension zero and one solutions are of importance include bacterial colony growth
under stress, point vortex theory, and the Thomson problem [1, 4, 5, 37].

It is a natural extension of the above work to consider the analogous problems
for two particle species; i.e., when more than one type of particle is present in
the interactions. Two-species models are relevant for the phenomena observed in
[27], where two types of macroions in solution will self-recognize and assemble into
hollow spherical structures. This self-recognition of particle species is a robust
phenomenon observed in many of the numerical experiments considered in this
paper. Two-species models also find application in large scale pedestrian movement
[31], and the well-posedness of said models has been considered in [9]; a general
treatment of well-posedness for the two-species problem is given in [15]. Other
applications include opinion formation in groups consisting of ordinary individuals
and strong leaders [11] and two-species group consensus [12]. Two-species bacterial
aggregation driven by chemotaxis and diffusion is another area of active research,
where [22] employs a two-species model for localized vortex formation in bacterial
colonies. Global existence and finite time blowup are considered in [7] and [13],
[40] treats the n-species problem, and [18] and [34] discuss the stability of uniform
density and homogenous steady states.

Our numerical experiments have revealed phenomena which did not appear in
the single species problem. Particle species either mix or segregate based on the
relative strengths of the inter-species and intra-species forces, and occasionally settle
in domains with irregular boundaries including cusps. Asymmetric steady states
(which represent local minimizers of the potential) can be observed, and nontrivial
structures form when particles are H-stable. These and other features indicate a
substantial increase in complexity of the two-species problem over the single species
problem.

In this paper, our objective is to characterize steady states formed in the two-
species aggregation problem in the absence of diffusion. Inspired by physical [26] and
numerical experiments exhibiting steady states supported on or near co-dimension
one manifolds, we consider the linear stability of such states. In particular, we study
the continuum limit of the problem and the stability of a steady state consisting of
two concentric rings of constant density. The theory put forth accurately predicts
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instabilities observed in numerical experiments and the breakup of ring solutions
into fully two-dimensional patterns. The arguments presented here are restricted to
the two-dimensional problem, but adapting the theory of [39] could generalize the
results to higher dimensions.

2. Problem Description. Consider two species of particles, type I and type II,
which occupy positions x1(t), . . . ,xN1

(t),y1(t), . . . ,yN2
(t) in R2. Steady state pat-

terns are minimizers of the pairwise interaction energy

E(x1, . . . ,xN1 ,y1, . . . ,yN2) (1)

=

N1∑
i,j=1
i 6=j

P1(|xi − xj |) +

N2∑
i,j=1
i6=j

P2(|yi − yj |) +

N1∑
i=1

N2∑
j=1

P3(|xi − yj |)

=:

N1∑
i,j=1
i 6=j

V1

(
1

2
|xi − xj |2

)
+

N2∑
i,j=1
i 6=j

V2

(
1

2
|yi − yj |2

)
+

N1∑
i=1

N2∑
j=1

V3

(
1

2
|xi − yj |2

)
.

Above, Vi(s) := Pi(
√

2s), i = 1, 2, 3, is simply a change of variables to simplify the
calculations.

We are interested in gradient flow equations associated with (1):

dxi
dt

= − ∂E
∂xi

= −∇xi
E

=
1

N1

N1∑
j=1
j 6=i

g1

(
1

2
|xi − xj |2

)
(xi − xj) +

1

N1

N2∑
j=1

g3

(
1

2
|xi − yj |2

)
(xi − yj)

=
1

N1

N1∑
j=1
j 6=i

g1

(
1

2
|xi − xj |2

)
(xi − xj) + µ

1

N2

N2∑
j=1

g3

(
1

2
|xi − yj |2

)
(xi − yj)

(2)

for i = 1, . . . , N1, and
dyi
dt

= − ∂E
∂yi

= −∇yi
E

=
1

N1

N2∑
j=1
j 6=i

g2

(
1

2
|yi − yj |2

)
(yi − yj) +

1

N1

N1∑
j=1

g3

(
1

2
|yi − xj |2

)
(yi − xj)

= µ
1

N2

N2∑
j=1
j 6=i

g2

(
1

2
|yi − yj |2

)
(yi − yj) +

1

N1

N1∑
j=1

g3

(
1

2
|yi − xj |2

)
(yi − xj)

(3)

for j = 1, . . . , N2. The right-hand sides of (2) and (3) have been divided by N1 as
a simple rescaling of time, and in the second line the parameter µ := N2/N1 has
been introduced. The factors 1/N1 and 1/N2 may also be seen as normalizing each
species by its total particle number or ‘mass’, in which case µ represents the relative
mass of species II to species I.
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In the above, gi(s) := −dVi

ds (s) for i = 1, 2, 3 give the ‘forces’ due to the poten-
tials. Note that gi(s) is the derivative of the rescaled potential V with respect to
its argument s = 1

2r
2, where r represents true particle distance. As such, gi(s)

represents the force only with respect to the rescaled space variable 1
2r

2. The true
physical force— the derivative of the potential with respect to true particle dis-
tances r and not just with respect to its argument 1

2r
2— has magnitude rgi( 1

2r
2).

The difference is illustrated in figure 3.
One can think of the gradient flow either as an approximation to overdamped

second order physical dynamics or simply as a means to identify minimizers of
the energy. In the next section, we show that for large numbers of particles the
gradient flow system (2), (3) may be approximated by a nonlocal PDE system of
advection equations similar to the Birkhoff-Rott equation for vortex sheets (c.f.
[28, 32]), for which linear stability is reduced to a sequence of eigenvalue problems.
Criteria for the stability of each element in a basis of perturbations, and for linear
well-posedness of the concentric ring solution, are derived. Numerical examples are
presented, which demonstrate strong agreement with the theory put forth.

In this work we consider the following potentials, which have all been considered
in the literature for the single species problem [10, 20, 24, 39]: the Morse potential

Vi(s) = Crie
−
√
2s/lri − Caie−

√
2s/lai ,

power law forces

gi(s) = spi − sqi ,

and smoothed step discontinuity forces

gi(s) =
tanh

[
ai(1−

√
2s)
]

+ bi√
2s

with steady states pictured in figure 1. Combinations of all three of the above types
(and others) are also plausible; for example, g1 could arise from a power law, g2
from the Morse potential, and g3 from the tanh force. See figure 2.

3. The Continuum Limit. For the two-species case, we will say that an energy
E such as (1) is confining if its minimizing configurations x1, . . . ,xN1

, y1, . . . ,yN2

stay contained inside a compact set as N1 and N2 → ∞. Under the assumption
that the energy E is confining, the configurations of discrete particles approach
continuum spatial densities ρ1 and ρ2.

As we are interested in the stability of concentric ring solutions, we seek densities
which are supported along one-dimensional curves Γ1(t) = Φ1(α, t) and Γ2(t) =
Φ2(α, t) (parameterized by α ∈ D ⊂ R) which evolve with velocity fields v1 and
v2; that is,

∂Φ1

∂t
(α, t) = v1(Φ1(α, t), t)

∂Φ2

∂t
(α, t) = v2(Φ2(α, t), t). (4)
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Figure 1. Steady states of the tanh potential with µ = 1, a1 =
a2 = 10, b1 = b2 = 0.1, a3 = 2 and b3 = −0.7,−0.5,−0.3,−0.1, 0.1,
and 0.3 (from top left to bottom right). Each steady state consists
of 1000 white particles and 1000 black, with (2), (3) evolved to a
final time t = 2000.
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Figure 2. Steady states with g1 and g2 tanh forces and g3 a Morse
force. On the left, a1 = a2 = 10, b1 = b2 = −0.3, Ca = la = Cr = 1
and lr = 0.1. On the right, a1 = a2 = 10, b1 = b2 = 0.1, Ca = la =
Cr = 1 and lr = 0.02.
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Figure 3. Hyperbolic tangent (tanh) and Morse forces g
(
1
2r

2
)

with respect to rescaled space, and rg
(
1
2r

2
)
with respect to physical

space. Tanh parameters a = 10, b = 0.1; Morse parameters Ca =
la = Cr = 1, lr = 0.1.

The velocity fields v1 and v2 are determined from the respective densities by the
continuum limits of equations (2) and (3): for x ∈ R2,

v1(x, t) =

∫
R2

g1

(
1

2
|x− y|2

)
(x− y)ρ1(y, t) + g3

(
1

2
|x− y|2

)
(x− y)ρ2(y, t) dy

v2(x, t) =

∫
R2

g2

(
1

2
|x− y|2

)
(x− y)ρ2(y, t) + g3

(
1

2
|x− y|2

)
(x− y)ρ1(y, t) dy,

(5)

where we must assume that N2/N1 → µ as N1, N2 → ∞. The parameter µ is
absorbed into ρ2 and still represents the relative mass

µ =

∫
R2 ρ2∫
R2 ρ1

.

To determine the dynamics of ρ1, ρ2, Φ1, and Φ2 completely, we impose conserva-
tion of mass:

∂ρ1
∂t

+∇·(ρ1v1) = 0

∂ρ2
∂t

+∇·(ρ2v2) = 0, (6)

which is implicit in the particle formulation of the problem. Equations (4), (5),
and (6) specify a nonlocal coupled advection system determining Φ1 and Φ2, from
which ρ1 and ρ2 will be recovered later; see, for example, [32] and [39].

It is worth pointing out here that the ρi are densities of measures singular with
respect to Lebesgue measure on R2. Therefore, they should solve (6) weakly, or
in the sense of distributions. We will assume there exist fi locally integrable on R
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such that for Borel sets E ⊆ R2,∫
E

ρi(x, t) dx =

∫
{α:Φi(α,t)∈E}

fi(α, t) dα

=:

∫
{α:Φi(α,t)∈E}

ρsi (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣ dα
where ρsi admits the natural interpretation of the density along the surface Γi. It
then follows that for ψ ∈ C∞c (R2 × [0,∞]),∫ ∞

0

∫
R2

ψ(x, t)ρi(x, t) dxdt =

∫ ∞
0

∫
D

ψ(Φi(α, t), t)fi(α, t) dαdt

=

∫ ∞
0

∫
D

ψ(Φi(α, t), t)ρ
s
i (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣ dαdt.
One can now integrate by parts from (6) to define what it means for ρi to be a
solution: for all ψ ∈ C∞c (R2 × [0,∞]),∫ ∞

0

∫
D

(
∂ψ

∂t
+ vi ·∇ψ

)
(Φi(α, t), t)fi(α, t) dαdt = 0.

Noting that
(
∂ψ
∂t + vi ·∇ψ

)
(Φi(α, t), t) = d

dtψ(Φi(α, t), t)), one can integrate by
parts to get

0 =

∫ ∞
0

∫
D

d

dt
ψ(Φi(α, t), t))fi(α, t) dαdt = 0−

∫ ∞
0

∫
D

ψ(Φi(α, t), t))
∂

∂t
fi(α, t) dαdt,

where the boundary term drops out because ψ is compactly supported. It follows
that f(α, t) ≡ f(α, 0) =: f0(α).

We also rewrite (5) in terms of integrals along Γ1 and Γ2:

v1(x, t) =

∫
D

g1

(
1

2
|x−Φ1(α, t)|2

)
(x−Φ1(α, t))f01 (α)+

g3

(
1

2
|x−Φ2(α, t)|2

)
(x−Φ2(α, t))f02 (α) dα,

v2(x, t) =

∫
D

g2

(
1

2
|x−Φ2(α, t)|2

)
(x−Φ2(α, t))f02 (α)+

g3

(
1

2
|x−Φ1(α, t)|2

)
(x−Φ1(α, t))f01 (α) dα.

Appealing to (4) then yields

∂Φ1

∂t
(α, t) = v1(Φ1(α, t), t)

=

∫
D

g1

(
1

2
|Φ1(α, t)−Φ1(α′, t)|2

)
(Φ1(α, t)−Φ1(α′, t))f01 (α′)

+ g3

(
1

2
|Φ1(α, t)−Φ2(α′, t)|2

)
(Φ1(α, t)−Φ2(α′, t))f02 (α′) dα′ (7)
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and
∂Φ2

∂t
(α, t) = v2(Φ2(α, t), t)

=

∫
D

g2

(
1

2
|Φ2(α, t)−Φ2(α′, t)|2

)
(Φ2(α, t)−Φ2(α′, t))f02 (α′)

+ g3

(
1

2
|Φ2(α, t)−Φ1(α′, t)|2

)
(Φ2(α, t)−Φ1(α′, t))f01 (α′) dα′. (8)

The two equations above determine Φi. With these in hand, all that is left is to
determine ρi; for this,

0 =
∂

∂t
fi(α, t) =

∂

∂t

(
ρsi (α, t)

∣∣∣∣∂Φi

∂α

∣∣∣∣)
implies that

∂ρsi
∂t

= −ρsi
∂
∂t

∣∣∂Φi

∂α

∣∣∣∣∂Φi

∂α

∣∣ ,

which is enough.
Note that when ρ1(x, t) =

∑N1

i=1 δ(x − xi(t)) and ρ2(x, t) =
∑N2

i=1 δ(x − yi(t)),
the equations (5) evaluated for v1 at xi and v2 at yi reproduce (2) and (3) exactly,
up to the time scaling introduced.

Before we proceed to the next section and linearize around the concentric ring
steady state, it is worthwhile to consider the existence of such a steady state. If Φ1

and Φ2 parameterize concentric circles of radii R1 and R2, we can take D = [−π, π)
and Φi(s) = Θ(s)Rie1 (as in [39]) with

Θ(s′) =

[
cos s′ − sin s′

sin s′ cos s′

]
.

With no motion in time, equations (7) and (8) give

0 =

∫ π

−π
g1

(
1

2
|Φ1(s)−Φ1(s′)|2

)
(Φ1(s)−Φ1(s′))f01 (s′)+

g3

(
1

2
|Φ1(s)−Φ2(s′)|2

)
(Φ1(s)−Φ2(s′))f02 (s′) ds′,

0 =

∫ π

−π
g2

(
1

2
|Φ2(s)−Φ2(s′)|2

)
(Φ2(s)−Φ2(s′))f02 (s′)+

g3

(
1

2
|Φ2(s)−Φ1(s′)|2

)
(Φ2(s)−Φ1(s′))f01 (s′) ds′.

The (constant) densities and radii must satisfy∫ π

−π
f0i (s′) ds′ = ρsiRi = mi,

where mi =
∫
R2 ρi is the total mass of species i. In the discrete case, mi = Ni and

so m2/m1 = N2/N1 = µ. Note that

f0i (s′) = ρsi

∣∣∣∣∂Φ

∂s′

∣∣∣∣ = ρsiRi,
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so µ = f02 /f
0
1 , and the above equations can be rewritten

0 =

∫ π

−π
g1

(
1

2
|Φ1(s)−Φ1(s′)|2

)
(Φ1(s)−Φ1(s′))+

µg3

(
1

2
|Φ1(s)−Φ2(s′)|2

)
(Φ1(s)−Φ2(s′)) ds′,

0 =

∫ π

−π
µg2

(
1

2
|Φ2(s)−Φ2(s′)|2

)
(Φ2(s)−Φ2(s′))+

g3

(
1

2
|Φ2(s)−Φ1(s′)|2

)
(Φ2(s)−Φ1(s′)) ds′.

From the definition of Φi,

Φi(s)−Φj(s
′) = Θ(s)[RiI −RjΘ(s′ − s)] e1 = Θ(s)

[
Ri −Rj cos(s′ − s)
−Rj sin(s′ − s)

]
,

and so

|Φi(s)−Φj(s
′)|2 = R2

i +R2
j − 2RiRj cos(s′ − s).

We may cancel Θ(s) from both equations and reparameterize the integrals so that
s disappears as well, to reach

0 =

∫ π

−π
g1(R2

1(1− cos s′))

[
R1 −R1 cos s′

−R1 sin s′

]
+

µg3

(
R2

1 +R2
2

2
−R1R2 cos s′

)[
R1 −R2 cos s′

−R2 sin s′

]
ds′,

0 =

∫ π

−π
µg2
(
R2

2(1− cos s′)
)[R2 −R2 cos s′

−R2 sin s′

]
+

g3

(
R2

1 +R2
2

2
−R1R2 cos s′

)[
R2 −R1 cos s′

−R1 sin s′

]
ds′.

The second component of each integral cancels because it is odd on (−π, π), and so
we are left with

0 =

∫ π

−π
R1g1(R2

1(1− cos s′))(1− cos s′)+ (9a)

µg3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
(R1 −R2 cos s′) ds′

0 =

∫ π

−π
µR2g2

(
R2

2(1− cos s′)
)

(1− cos s′)+ (9b)

g3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
(R2 −R1 cos s′) ds′,

which determine R1 and R2. So long as (9a) and (9b) have solutions, the concentric
ring steady state exists. Of course, the integrands of (9a) and (9b) must be in
L1[−π, π], which is true if gi(t)t1/2 ∈ L1[0, 1] and the gi have no singularities away
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from the origin. Assuming also that Vi(t)t−1/2 ∈ L1[0, 1], one can define

F (R1, R2) :=

∫ π

−π

1

2
V1
(
R2

1(1− cos s′)
)

+
µ2

2
V2
(
R2

2(1− cos s′)
)

+

µV3

(
R2

1 +R2
2

2
−R1R2 cos s′

)
ds′

and observe that (9a) arises as ∂F
∂R1

= 0 and (9b) as ∂F
∂R2

= 0. Then if g1, g2, and g3
are continuous (except perhaps at the origin— for commonly encountered potentials
such as the Morse or Lennard-Jones potentials, this is the case) (9a) and (9b) will
be satisfied at a maximum or minimum of F . To show, then, that solutions R1 and
R2 exist, it suffices to show that F attains a minimum for some R1, R2 > 0.

A general proof of this fact is difficult because the potentials Vi will vary, and in
some cases a concentric ring solution may not exist. However, for all cases pursued
below, (9a) and (9b) have solutions R1, R2 which do give rise to a steady state
solution to (7) and (8).

4. Linearization & Eigenvalue Problem. Recall that the rings have been pa-
rameterized as Φi(s) = Θ(s)Rie1 (where Θ is a rotation matrix). Consider now a
small perturbation of each ring in the form

δΦi(s) = Θi(s)
(
Rie1 + eλtεi(s)

)
= Φi(s) + Θ(s)eλtεi(s)

so that (defining Ai,Bi,C,D,E,F)

δΦi(s)− δΦi(s
′) = (Φi(s)−Φi(s

′)) + eλt[Θ(s)εi(s)−Θ(s′)εi(s
′)] =: Ai + eλtBi,

δΦ1(s)− δΦ2(s′) = (Φ1(s)−Φ2(s′)) + eλt[Θ(s)ε1(s)−Θ(s′)ε2(s′)] =: C + eλtD,

δΦ2(s)− δΦ1(s′) = (Φ2(s)−Φ1(s′)) + eλt[Θ(s)ε2(s)−Θ(s′)ε1(s′)] =: E + eλtF.

Linearizing (7) and (8), then canceling the factor of eλt appearing in each term
gives

λΘ(s)ε1(s) =

∫ 2π

0

g1

(
1

2
|A1|2

)
B1 +

dg1
ds

(
1

2
|A1|2

)
(A1 ·B1)A1+

µg3

(
1

2
|C|2

)
D + µ

dg3
ds

(
1

2
|C|2

)
(C·D)C ds′,

λΘ(s)ε2(s) =

∫ 2π

0

µg2

(
1

2
|A2|2

)
B2 + µ

dg2
ds

(
1

2
|A2|2

)
(A2 ·B2)A2+

g3

(
1

2
|E|2

)
F +

dg3
ds

(
1

2
|E|2

)
(E·F)E ds′.

To simplify calculations below, define M = M(s, s′) := Θ−1(s)Θ(s′), and

ui = Θ−1(s)Ai ũi = (I −MT )Rie1

v = Θ−1(s)C ṽ = (R2I −R1M
T )e1

w = Θ−1(s)E w̃ = (R1I −R2M)e1.

Then
Θ−1(s)Ai =(I −M)Rie1 = ui Θ−1(s)Bi = εi(s)−Mεi(s

′)
Θ−1(s)C = (R1I −R2M)e1 = v Θ−1(s)D = ε1(s)−Mε2(s′)
Θ−1(s)E = (R2I −R1M)e1 = w Θ−1(s)F = ε2(s)−Mε1(s′)
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and because Θ and M are unitary,

Ai ·Bi =[Θ(s)(I −M)Rie1] ·[Θ(s)εi(s)]− [Θ(s)(I −M)Rie1]·[Θ(s)Mεi(s
′)]

= (I −M)Rie1 ·εi(s)− (I −M)Rie1 ·Mεi(s
′)

= (I −M)Rie1 ·εi(s) + (I −MT )Rie1 ·εi(s′),
= ui ·εi(s) + ũi ·εi(s′),

C·D = (R1I −R2M)e1 ·ε1(s) + (R2I −R1M
T )e1 ·ε2(s′)

= v·ε1(s) + ṽ·ε2(s′),

E·F = (R2I −R1M)e1 ·ε2(s) + (R1I −R2M
T )e1 ·ε1(s′)

= w·ε2(s) + w̃·ε1(s′).

Finally,

|Ai| = |Θ−1Ai| = |ui|
|Ci| = |Θ−1Ci| = |vi|
|Ei| = |Θ−1Ei| = |wi|.

In terms of these quantities, multiplying the linearized equations by Θ−1 and
collecting terms multiplied by εi(s) and εi(s

′) leaves

λε1(s) =

∫ π

−π

[
g1

(
1

2
|u1|2

)
I +

dg1
ds

(
1

2
|u1|2

)
u1 ⊗ u1+ (10)

µg3

(
1

2
|v|2

)
I + µ

dg3
ds

(
1

2
|v|2

)
v ⊗ v

]
ε1(s) ds′

+

∫ π

−π

[
−g1

(
1

2
|u1|2

)
M +

dg1
ds

(
1

2
|u1|2

)
u1 ⊗ ũ1

]
ε1(s′) ds′

+

∫ π

−π

[
−µg3

(
1

2
|v|2

)
M + µ

dg3
ds

(
1

2
|v|2

)
v ⊗ ṽ

]
ε2(s′) ds′,

λε2(s) =

∫ π

−π

[
µg2

(
1

2
|u2|2

)
I + µ

dg2
ds

(
1

2
|u2|2

)
u2 ⊗ u2+ (11)

g3

(
1

2
|w|2

)
I +

dg3
ds

(
1

2
|w|2

)
w ⊗w

]
ε2(s) ds′

+

∫ π

−π

[
−µg2

(
1

2
|u2|2

)
M + µ

dg2
ds

(
1

2
|u2|2

)
u2 ⊗ ũ2

]
ε2(s′) ds′

+

∫ π

−π

[
−g3

(
1

2
|w|2

)
M +

dg3
ds

(
1

2
|w|2

)
w ⊗ w̃

]
ε1(s′) ds′.

Explicitly,
1

2
|ui(s− s′)|2 = R2

i (1− cos(s− s′))

1

2
|v(s− s′)|2 =

1

2
|w(s− s′)|2 =

1

2

[
R2

1 +R2
2 − 2R1R2 cos(s− s′)

]
ui = Ri

[
1− cos(s′ − s)
− sin(s′ − s)

]
, ũi = Ri

[
1− cos(s′ − s)

sin(s′ − s)

]
v =

[
R1 −R2 cos(s′ − s)
−R2 sin(s′ − s)

]
, ṽ =

[
R1 −R2 cos(s′ − s)
R2 sin(s′ − s)

]
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w =

[
R2 −R1 cos(s′ − s)
−R1 sin(s′ − s)

]
, w̃ =

[
R2 −R1 cos(s′ − s)
R1 sin(s′ − s)

]
and u⊗ v denotes the matrix with i, j entry uivj .

Note that all the above matrices have even, periodic entries along the diagonals
and odd, periodic entries off. With this in mind, consider (10) rewritten as

λε1(s) =

∫ 2π

0

M1(s′−s) ds′ε1(s)+

∫ 2π

0

M2(s′−s)ε1(s′) ds′+

∫ 2π

0

M3(s′−s)ε2(s′) ds′

(the superscripts are used to distinguish matrices, not as powers) where the diagonal
entries of M1,M2, and M3 are even and periodic, and off-diagonal entries are odd
and periodic. It follows that ∫ 2π

0

M1(s′ − s) ds′ε1(s)

is a constant diagonal matrix times ε1(s). For the other two terms, we hope for
similar results to yield an eigenvalue problem in εi and λ. Using the ansatz

ε1(s) =

[
x1 cos(ns)
x2 sin(ns)

]
, ε2(s) =

[
y1 cos(ns)
y2 sin(ns)

]
similar to that of [20], we compute the terms above involving M2 and M3:∫ 2π

0

M2(s−s′)ε1(s′) ds′ =

[∫ 2π

0
M2

11(s− s′)x1 cos(ns′) +M2
12(s− s′)x2 sin(ns′) ds′∫ 2π

0
M2

21(s− s′)x1 cos(ns′) +M2
22(s− s′)x2 sin(ns′) ds′

]
.

The first entry is a linear combination of∫ 2π

0

M2
11(s′ − s) cos(ns′) ds′ =

∫ 2π

0

M2
11(θ) cos(nθ + ns) dθ

= cos(ns)

∫ 2π

0

M2
11(θ) cos(nθ) dθ − sin(ns)

∫ 2π

0

M2
11(θ) sin(nθ) dθ

= cos(ns)

∫ 2π

0

M2
11(θ) cos(nθ) dθ + 0 (because M2

11 is even)

∝ cos(ns), (12a)

and

∫ 2π

0

M2
12(s′ − s) sin(ns′) ds′ =

∫ 2π

0

M2
12(θ) sin(nθ + ns) dθ

= cos(ns)

∫ 2π

0

M2
12(θ) sin(nθ) dθ + sin(ns)

∫ 2π

0

M2
12(θ) cos(nθ) dθ

= cos(ns)

∫ 2π

0

M2
12(θ) sin(nθ) dθ + 0 (because M2

12 is odd)

∝ cos(ns); (12b)

the second entry,

∫ 2π

0

M2
21(s′ − s) ∝ sin(ns) (12c)

and
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∫ 2π

0

M2
22(s′ − s) ∝ sin(ns) (12d)

after similar calculations. All together,∫ 2π

0

M2(s− s′)ε1(s′) ds′ = a(n)ε1(s)

where a is a diagonal matrix. The third term will be similar and will give a diagonal
matrix multiple of ε2, so that the equation for ε1 becomes

λ

[
x1 cos(ns)
x2 sin(ns)

]
= a(n)

[
x1 cos(ns)
x2 sin(ns)

]
+ b(n)

[
y1 cos(ns)
y2 sin(ns)

]
(a and b are matrix-valued functions) and the equation for ε2 is

λ

[
y1 cos(ns)
y2 sin(ns)

]
= c(n)

[
y1 cos(ns)
y2 sin(ns)

]
+ d(n)

[
x1 cos(ns)
x2 sin(ns)

]
.

Comparing coefficients of cos(ns) and sin(ns) results in an eigenvalue problem
for x1, x2, y1, and y2:

λ

[
x1
x2

]
=
(
M1 + M2(n)

)[x1
x2

]
+ M3(n)

[
y1
y2

]
λ

[
y1
y2

]
= M4(n)

[
x1
x2

]
+
(
M5 + M6(n)

)[y1
y2

]
,

or

E(n)

[
x
y

]
= λ(n)

[
x
y

]
, with E =

[
M1 + M2 M3

M4 M5 + M6

]
. (13)

M1, . . . ,M6 are computed as in (12a—12d) and are shown below; here, ui, v,
and w are functions of θ. M1 and M5 are diagonal and do not depend on n.

The first two matrices determine the stability of the species I particle ring with
respect to frequency n perturbations, with the species II ring remaining fixed:

M1
11 =

∫ π

−π
g1

(
1

2
|u1|2

)
+
dg1
ds

(
1

2
|u1|2

)
(R1 −R1 cos(s′))

2
+

µg3

(
1

2
|v|2

)
+ µ

dg3
ds

(
1

2
|v|2

)
(R1 −R2 cos(s′))2 ds′

M1
22 =

∫ π

−π
g1

(
1

2
|u1|2

)
+
dg1
ds

(
1

2
|u1|2

)
R2

1 sin2(s′)+

µg3

(
1

2
|v|2

)
+ µ

dg3
ds

(
1

2
|v|2

)
R2

2 sin2(s′) ds′.
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M2
11(n) =

∫ π

−π

[
−g1

(
1

2
|u1|2

)
cos(θ) +R2

1

dg1
ds

(
1

2
|u1|2

)
(1− cos(θ))2

]
cos(nθ) dθ

M2
12(n) =

∫ π

−π

[
g1

(
1

2
|u1|2

)
sin(θ)+R2

1

dg1
ds

(
1

2
|u1|2

)
(1− cos(θ)) sin(θ)

]
sin(nθ) dθ

M2
21(n) = M2

12

M2
22(n) =

∫ π

−π

[
−g1

(
1

2
|u1|2

)
cos(θ)−R2

1

dg1
ds

(
1

2
|u1|2

)
sin2(θ)

]
cos(nθ) dθ

= 0

after integrating by parts and using (9a).
Due to symmetry in the problem, the off-diagonal blocks M3 and M4 are similar.

M3 represents the effect of a perturbation of the species II particles on the ring of
species I particles; M4, the effect of a perturbation of the species I ring on the
species II ring:

M3
11(n) = µ

∫ π

−π

[
−g3

(
1

2
|v|2

)
cos(θ) +

dg3
ds

(
1

2
|v|2

)
(R1 −R2 cos(θ))2

]
cos(nθ) dθ

M3
12(n) =µ

∫ π

−π

[
g3

(
1

2
|v|2
)

sin(θ)+
dg3
ds

(
1

2
|v|2
)
R2(R1−R2 cos(θ)) sin(θ)

]
sin(nθ)dθ

M3
21(n) = M3

12

M3
22(n) = µ

∫ π

−π

[
−g3

(
1

2
|v|2

)
cos(θ)− dg3

ds

(
1

2
|v|2

)
R2

2 sin2(θ)

]
cos(nθ) dθ.

M4
11(n) =

∫ π

−π

[
−g3

(
1

2
|w|2

)
cos(θ) +

dg3
ds

(
1

2
|w|2

)
(R2 −R1 cos(θ))2

]
cos(nθ) dθ

M4
12(n) =

∫ π

−π

[
g3

(
1

2
|w|2

)
sin(θ)+

dg3
ds

(
1

2
|w|2

)
R1(R2−R1 cos(θ)) sin(θ)

]
sin(nθ)dθ

M4
21(n) = M4

12

M4
22(n) =

∫ π

−π

[
−g3

(
1

2
|w|2

)
cos(θ)− dg3

ds

(
1

2
|w|2

)
R2

1 sin2(nθ)

]
cos(nθ) dθ.

The final two matrices M5 and M6 are analogous to M1 and M2, except they
determine the stability of the species II ring:

M5
11 =

∫ π

−π
µg2

(
1

2
|u2|2

)
+ µ

dg2
ds

(
1

2
|u2|2

)
(R2 −R2 cos(s′))2+

g3

(
1

2
|w|2

)
+
dg3
ds

(
1

2
|w|2

)
(R2 −R1 cos(s′))2 ds′

M5
22 =

∫ π

−π
µg2

(
1

2
|u2|2

)
+ µ

dg2
ds

(
1

2
|u2|2

)
R2

2 sin2(s′)+

g3

(
1

2
|w|2

)
+
dg3
ds

(
1

2
|w|2

)
R2

1 sin2(s′) ds′ = 0
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after integrating by parts and using (9b), and

M6
11(n) =µ

∫ π

−π

[
−g2
(

1

2
|u2|2

)
cos(θ) +R2

2

dg2
ds

(
1

2
|u2|2

)
(1− cos(θ))2

]
cos(nθ) dθ

M6
12(n) =µ

∫ π

−π

[
g2

(
1

2
|u2|2

)
sin(θ)+R2

2

dg2
ds

(
1

2
|u2|2

)
(1− cos(θ)) sin(θ)

]
sin(nθ)dθ

M6
21(n) = M6

21

M6
22(n) = µ

∫ π

−π

[
−g2

(
1

2
|u2|2

)
cos(θ)−R2

2

dg2
ds

(
1

2
|u2|2

)
sin2(θ)

]
cos(nθ) dθ.

5. Linear Well-posedness. Here we consider the limit of the eigenvalue problem
(13) as n → ∞. The goal is linear well-posedness; that is, to determine when
the eigenvalues λ(n) of (13) satisfy λ(n) < 0 as n → ∞. That λ(n) → 0 as
n → ∞ follows immediately from the Riemann-Lebesgue lemma; the requirement
that the eigenvalues approach zero from below is important because it demonstrates
that all but finitely many modes are stable. Intuitively, if modes of arbitrarily high
frequency are unstable, the co-dimension one curve will break apart and the density
will form a fully two-dimensional pattern.

Theorem 5.1 (Linear well-posedness). Assume that the forces have power series
representations

g1(s) = a0s
p0 + a1s

p1 + . . . (14a)
g2(s) = b0s

q0 + b1s
q1 + . . . (14b)

g3(s) = c0s
r0 + c1s

r1 + . . . (14c)

with a0, b0 > 0 and c0 6= 0, valid in some neighborhood of the origin, where p0 <
p1 < . . . etc. Define α = M1

11 and β = M5
11.

If R1 6= R2, then the concentric ring solution to (7, 8) is linearly well-posed if
and only if

α < 0, p0 ∈
(
−1

2
, 0

)
∪
∞⋃
n=0

(2n+ 1, 2n+ 2), (15a)

β < 0, q0 ∈
(
−1

2
, 0

)
∪
∞⋃
n=0

(2n+ 1, 2n+ 2). (15b)

If R1 = R2, g1 = g2, and µ = 1, the concentric ring solution to (7, 8) is
linearly well-posed if and only if (15a) holds and either r0 is a nonnegative integer
or r0 > p0.

Before moving on to the proof, a remark is in order. Theorem 5.1 as stated does
not cover the cases when R1 = R2 but g1 6= g2 or µ 6= 1. However, (9a) and (9b)
point out that unless µ = 1 and g1 = g2, it is very unlikely that R1 = R2; for two
arbitrary potentials g1, g2 and ratio µ, it is a measure-zero type event that the radii
equations would have such solutions.
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Proof of Theorem 5.1. The analysis relies primarily on asymptotic expressions for
the integrals occurring in M1, . . . ,M6, which necessitates the assumptions of (14).
Substituting (14) into the formulas for M1, . . . ,M6 leaves an eigenvalue problem
where each entry of E is a potentially infinite sum of integrals. However, showing
that E has negative eigenvalues is equivalent to showing its leading minors alternate
sign, and it is easy to see that in each entry of E, only those terms which decay
most slowly will affect the eigenvalues in the limit.

In practice, the values α = M1
11 and β = M2

11 must be evaluated analytically
or numerically, because they are independent of n. Other entries of E may be
evaluated asymptotically, and considering one of these entries gives an idea of how
to proceed:

M2
11 ∼ a0R

2p0
1

∫ π

−π
−(1− cos θ)p0 cos(θ) cos(nθ) + p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

∫ π

−π
−(1− cos θ)p0

1

2
[cos(n− 1)θ + cos(n+ 1)θ] +

p0(1− cos θ)p0+1 cos(nθ) dθ

where we used the trig identity

cos(x) cos(y) =
cos(x− y) + cos(x+ y)

2
.

By a similar use similar identities, it turns out that all entries of E reduce to linear
combinations of one integral:

I(c, n, p) =

∫ π

−π
(c− cos θ)p cosnθ dθ,

and we are interested in the behavior of I for fixed c and p as n→∞.
For c = 1 and p > −1/2 (which is necessary for the integrals to converge), an

explicit formula with asymptotics is available from [39]:

I(1, n, p) ∼ −C(p) sin(πp)

n2p+1
(16)

where C(p) > 0 is a positive constant depending on p. This asymptotic form may
also be arrived at by stationary phase analysis.

For c > 1, it can be shown readily via integration by parts that I decays faster
than any polynomial: for any integer k, there exists a constant C(c, p, k) such that

|I(c, n, p)| < C(c, p, k)n−k. (17)

For M2 and M6, (16) gives the relevant rates of decay. M3 and M4 are more
complicated and the analysis breaks into cases.

Case I: R1 6= R2. In this case (17) shows that M3 and M4 approach zero faster
than any of the other entries of E, and (13) asymptotically decouples into two
quasi-single species problems

(M1 + M2)

[
x1
x2

]
= λ(n)

[
x1
x2

]
and (M5 + M6)

[
y1
y2

]
= λ(n)

[
y1
y2

]
. (18)

Before moving on, it is worth pointing out that the decoupling has a pleasant
physical interpretation. M3 represents the effects of perturbations of the species
II particle ring on the species I particle ring, and vice versa for M4. The fact
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that these vanish from (13) as n→∞ means that, when R1 6= R2, high frequency
perturbations of the ring of species I particles have no effect on the eventual stability
of the ring of species II (and vice versa).

For each of the problems in (18) to have negative eigenvalues, it is necessary and
sufficient that

tr(M1 + M2) < 0, det(M1 + M2) > 0

tr(M5 + M6) < 0, det(M5 + M6) > 0. (19)

We turn first to M2: substituting in the assumed power series representation of
g1 and discarding all but the most slowly decaying terms,

M2
11 ∼ a0R

2p0
1

∫ π

−π
−(1− cos θ)p0 cos(θ) cos(nθ) + p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

∫ π

−π
−(1− cos θ)p0

1

2
[cos(n− 1)θ + cos(n+ 1)θ] +

p0(1− cos θ)p0+1 cos(nθ) dθ

= a0R
2p0
1

[
−1

2
I(1, n− 1, p0) + p0I(1, n, p0 + 1)− 1

2
I(1, n+ 1, p0)

]
∼ a0R

2p0
1 C(p0) sin(πp0)

2

[
1

(n− 1)2p0+1
+

1

(n+ 1)2p0+1

]
∼ a0R

2p0
1 C(p0) sin(πp0)

n2p0+1
,

M2
12 ∼ a0R

2p0
1

∫ π

−π
(1− cos θ)p0 sin(θ) sin(nθ) + p0(1− cos θ)p0 sin(θ) sin(nθ) dθ

= a0R
2p0
1

[
p0 + 1

2
I(1, n− 1, p0)− p0 + 1

2
I(1, n+ 1, p0)

]
= −a0R

2p0
1 C(p0) sin(πp0)(p0 + 1)

2

[
1

(n− 1)2p0+1
− 1

(n+ 1)2p0+1

]
∼ −a0R

2p0
1 C(p0) sin(πp0)(p0 + 1)(2p0 + 1)

n2p0+2
,

and M2
21 = M2

12. The final entry is treated by integration by parts:

M2
22 =

∫ π

−π
−g1(R2

1(1− cos θ)) cos θ cos(nθ)− d

dθ

[
g1(R2

1(1− cos θ))
]

sin θ cos(nθ) dθ

= −n
∫ π

−π
g1(R2

1(1− cos θ)) sin θ sin(nθ) dθ

∼ −na0R
2p0
1

2

∫ π

−π
(1− cos θ)p0 [cos(n− 1)θ − cos(n+ 1)θ]

= −na0R
2p0
1

2
[I(1, n− 1, p0)− I(1, n+ 1, p0)]

=
na0R

2p0
1 C(p0) sin(πp0)

2

[
1

(n− 1)2p0+1
− 1

(n+ 1)2p0+1

]
∼ a0R

2p0
1 C(p0) sin(πp0)(2p0 + 1)

n2p0+1
.
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The analogous work for M6 looks almost exactly the same, except with q0 replacing
p0.

With those expansions in hand, one can asymptotically compute the terms ap-
pearing in (19):

tr(M1 + M2) ∼ α
det(M1 + M2) ∼ αM2

22

and so we need only require that α < 0 and M2
22 < 0. The asymptotic expression

for the latter is negative so long as sin(πp0) is, and this leads to (15a). The problem
for M5 + M6 is nearly identical, and yields (15b) in exactly the same way. It is
worth noting here that the criteria for linear well-posedness are very similar to those
for the single-species case explored in [20] and [39].

Case II: R1 = R2 =: R. As mentioned earlier, this is very unlikely unless g1 = g2
and µ = 1; so, we will assume that is the case. Then M1 = M5, M2 = M6, and
M3 = M4, so E simplifies; however, the rate of decay of M3 is not as fast now and
so it must be taken into account. We determine when E has negative eigenvalues by
checking when its leading minors alternate sign. Asymptotics for M3 are necessary,
but M3 has the same form as M2 with g3 replacing g1 and R replacing R1:

M3
11 ∼

c0R
2r0C(r0) sin(πr0)

n2r0+1
,

M3
12 = M3

21 ∼ −
c0R

2r0C(r0) sin(πr0)(r0 + 1)(2r0 + 1)

n2r0+2
,

M3
22 ∼

c0R
2r0C(r0) sin(πr0)(2r0 + 1)

n2r0+1
.

The first minor of E is then (M1 +M2(n))11 → α as n→∞, so we must require
that α < 0 .

The second minor is det(M1 + M2(n)) ∼ αM2
22 (see case I), so we require that

(15a) holds.
The third minor begins to include terms from the cross-particle interaction force

g3, and works out to be (to leading order in n)

α2M2
22 − α(M3

12)2 = −C1n
−(2p0+1) + C2 sin2(πr0)n−(4r0+4)

where C1 and C2 are some positive constants with respect to n. We have already
required for the first and second minors that α < 0 and M2

22 < 0, which is why the
first term is negative and the second is positive. So we must require that

r0 is a nonnegative integer or 2p0 + 1 < 4r0 + 4.

The fourth minor works out to be (again to leading order)

α2
[
(M2

22)2 − (M3
22)2

]
= C1n

−2(2p0+1) − C2 sin2(πr0)n−2(2r0+1)

where C1 and C2 again denote positive constants. So we must require that

r0 is a nonnegative integer or r0 > p0.

These restrictions also imply that the third minor is negative. This last minor gives
the final requirement for the double ring solution to be linearly well-posed and yields
the criterion in the theorem for the R1 = R2 case.
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Figure 4. Left: An alternating particle ring. Forces g1(s) =
g2(s) = 1 + 2(1 − s) + s−1/4 − 0.9357796257, g3(s) = 0.5g1(s).
Center: Separated particle ring. Forces g1 and g2 are the same
as on the left, but g3 = 1.01g1. Right: the true, physical force
rg1(r2/2).

6. Numerical Examples. All numerical solutions here and in figure 1 were com-
puted using a simple forward Euler scheme with an adaptive time step chosen as
large as possible while requiring that the energy of the system (1) decreases at each
time step. A scheme with higher order accuracy is not necessary, since we only
seek a minimizer of the energy (1). Alternatively, choosing a time step based on an
estimate of the local truncation error (as in [21]) is also efficient and yields the same
results. All initial conditions are taken to be independently, uniformly distributed
on a square.

The theoretical predictions agree very well with numerical observations. Figure
4 shows an example in which the two particle species may mix or segregate based
on the relative strengths of the inter-species and intra-species interactions. The
numerical destabilization of the alternating ring structure and appearance of mode
two instability coincides exactly with the negative to positive sign change of an
eigenvalue of (13) with n = 2.

Generally, it was observed that when symmetric intra-species interactions g1 = g2
are stronger near the origin than the inter-species interaction g3, mixing of the
species tends to occur; when g3 is stronger, separation tends to occur. See figure
9. Self-recognition of species (figure 5) may be considered a particular type of
separation, and inasmuch as it can be characterized by a mode one instability it
can be predicted using theorem 5.1.

Figure 5 shows examples of mode five and mode one instabilities. The alternating,
symmetric mode five arises from interaction forces defined in terms of

G3(s) = 1 + (1− s) + (1− s)2, (20)

G5(s) =
3

2
(1− s)2 + (1− s)3 − (1− s)4,

G0(s) = 1 + 2(1− s) + s−1/4 − 0.9357796257,
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Figure 5. Left: symmetric mode five instability. The eigenvector
of E (13) with positive eigenvalue is [0.02,−0.71,−0.02, 0.71]T ; the
positive-negative [a, b,−a,−b] structure corresponds to the sym-
metric steady state observed, where the species II density is per-
turbed with the opposite sign as the species I density. Right: mode
one instability.

as

g1(s) = G5(s) + 1.3 ·G0(s),

g2(s) = G5(s) + 1.3 ·G0(s),

g3(s) = 0.2 ∗G0(s).

The mode one instability is due to the interaction forces defined as

g1(s) = G0(s),

g2(s) = G0(s),

g3(s) = 10−4(Cre
−
√
2s/lr − Cae−

√
2s/la),

where G0 is from (20) and g3 Morse with Ca = 1, la = 5, Cr = 4, lr = 0.5.
Coupling effects of the rings on each other can be seen in figure 6, which shows

coupling between type I particles (white) with a mode three instability and type II
particles (black) with mode five. The interaction forces are defined in terms of (20)
as

g1(s) = G3(s) + 1.1158 ·G0(s),

g2(s) = G5(s) + 1.3 ·G0(s),

g3(s) = −Ks,
with K = 0, 1, and 4, designed in [38] to exhibit pure mode 3 and 5 instabilities.
The sequential disappearance of the instabilities in figure 6 corresponds to the ei-
genvalues of those modes becoming negative (i.e. eigenvalues from (13)), confirmed
numerically.

Even when the concentric ring solution is not linearly well-posed, the stability or
instability of low frequency modes is still borne out in the ground state. Figure 7
shows the occurrence of a mode two instability in such a scenario, which is correctly
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Figure 6. Modes three and five stabilize each other as cross-
particle attraction increases. Bottom right: true forces correspond-
ing to g1, g2, and g3 with K = 1. Changing K scales the coupling
force due to g3.

predicted by the linear stability theory even though the linearized equation is ill-
posed. When multiple modes become unstable, it is possible that one, several, or
all of the unstable modes will appear in the ground state. The question of those
which do, and to what degree, is determined by the particular nonlinearity of the
problem and is outside the scope of the linear theory. For the single species case,
this was pointed out in [38] and the problem of which modes appear is still open.
At this time, even less is known about the two-species problem. Weakly nonlinear
analysis, considered in [33], may prove useful for this purpose and is one of several
considerations for future work.

There are several factors which limit the effectiveness of the linear theory when
the stable ground state is far from the concentric ring solution. When R1 = R2,
as is the case in many examples with g1 = g2, the inter-species interaction g3 must
be o(s−1/2) as s → 0 for the integrals in 13 to exist. This condition is not met in
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Figure 7. Mode two becomes unstable for the power law po-
tential. Left: g1(s) = g2(s) = s−0.15, g3(s) = −s0.15. Right:
g1(s) = g2(s) = s−0.15, g3(s) = −s0.2.

any of the cases of figure 1, and so the theory may not be applied. It is possible to
replace g1(s) by g1((1 + ε)s), and if ε is sufficiently small then the observed steady
state is qualitatively indistinguishable from the unperturbed version but R1 and R2

are no longer equal. The theory does apply to this perturbed problem, but another
difficulty arises: most or all modes are unstable.

This type of total instability also occurs in both panels of figure 2. While the
instability of all low modes is certainly consistent with the observed steady states,
it is largely uninformative. In the majority of cases when a mode 1 instability
appears, all low frequency modes are unstable as well and the stable steady state is
sometimes asymmetric (with the gradient flow coming to rest at a local minimum).
Nevertheless, the linear stability theory may still provide some insight. In the right
hand panel of figure 2, each low mode has one unstable eigenvector except for mode
3, which has two; however, only one and not a linear combination of both appears
in the steady state. Why one and not the other or a combination of both appears
is impossible to determine by the linear theory, similar to the problem encountered
in [38].

That the theory works very well in the cases of figures 4, 5, 6, and 7 but not
for figures 1 and 2 is not surprising– when the stable steady state is far from the
concentric ring solution, the linear theory is less likely to apply.

Two-particle minimizers also occasionally break symmetry (in the sense that
the steady states for the species I and II particles differ by more than a simple
reflection or rotation), pictured in the first panel of figure 2. Particle densities from
figure 1 are asymmetric for certain parameters (see the sixth panel) and may be
supported on domains with irregular geometry, including cusps. Some simulations
show dependence on initial conditions, which did not manifest for the single species
problem. Of course, it is not guaranteed that the gradient flow (2), (3) reach a
global minimizer of the potential (1). This minor dependence on initial conditions
seems to indicate that the energy landscape for the two-species problem is more
complex, and that the gradient flow occasionally comes to rest at local minima.
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Figure 8. Alternating particle chains arising from the Morse
potential, numbers of particles N1 = N2 = N with N =
8, 20, 80, 200, 400, 800 from top left to bottom right. The first few
panels show that the particles seem to form effective dipoles be-
cause the inter-species repulsion length scale is so small. When
the number of particles increases, the confining nature of the po-
tentials causes them to pack closer together and chains form, as
in panel 5. As N increases further, the particles begin to form a
two-dimensional lattice structure (panel 6).

Simple structures directly relevant to self-assembly, such as alternating particle
rings or chains, may also be observed; see figures 4 and 8. The self-recognition and
separation into two rings replicates the phenomena observed in [27], and occurs over
a very long time scale (t ≈ 1.4× 105) relative to that of the formation of the rings
(t ≈ 102).

7. Discussion. Two-species particle aggregation systems have a rich solution struc-
ture, including densities with rings, spots, and radial or bilateral N -fold symmetry
which often concentrate on or near co-dimension one surfaces. Considering a con-
tinuum limit as the number of particles tends to infinity results in a PDE system
formulation similar to that of the vortex sheet problem [28, 32]. Linear stability
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analysis successfully characterizes the steady states which form, verified numerically
in section 6, and linear well-posedness of the PDE system is considered in section
5.

Future work could address the three and higher dimensional versions of the prob-
lem, weakly nonlinear analysis of bifurcations from rings to other steady states,
the second-order problem, the n-species problem, and the inverse problem of con-
structing potentials with prescribed instabilities or patterns [38]. In addition, the
two-species system allows for the unique possibility of nontrivial H-stable ground
states which are outside the scope of the co-dimension one analysis here; c.f. [24].

Figure 9 shows a power law example which completely leaves a co-dimension
one manifold, and seems to exhibit an effective phase separation or surface tension
arising from the nonlocal interactions. As the inter-species repulsion singularity be-
comes weaker than the intra-species repulsion singularity, black and white particles
go from self-segregating to mixing. When the inter-species repulsion is substan-
tially weaker, exhibited in the far right panel of figure 9, a regular alternating
lattice structure emerges in large portions of the steady state. The formation of
lattices in the single species problem is not unfamiliar; see [14] for similar phenom-
ena in the single-species problem. The first two panels of figure 9 correspond to
local, not global minimizers of the potential 1, and a steady state consisting of a
straight line interface between the black and white particles has slightly lower en-
ergy. The steady states in the right two panels, however, have lower energy than
the separated black/white half disks. The analysis carried out in this paper applies
to solutions supported along one-dimensional curves, and as such does not apply to
the phenomena in figure 9; however, the phase separation effects could be observed
on a co-dimension one surface in R3.
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Figure 9. Power laws showing phase separation or surface tension
as parameters vary. Forces are g1(s) = g2(s) = s−1−1, and g3(s) =
s−1+ε − 1 with ε = −0.005,−0.0025, 0.005, 0.025 from upper left
to bottom right.
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