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Abstract. Lubrication equations are fourth order degenerate diffusion equations of the form
ht + ∇ · (f(h)∇∆h) = 0, describing thin films or liquid layers driven by surface tension. Recent
studies of singularities in which h → 0 at a point, describing rupture of the fluid layer, show that
such equations exhibit complex dynamics which can be difficult to simulate accurately. In particular,
one must ensure that the numerical approximation of the interface does not show a false premature
rupture. Generic finite difference schemes have the potential to manifest such instabilities especially
when underresolved. We present new numerical methods, in one and two space dimensions, that
preserve positivity of the solution, regardless of the spatial resolution, whenever the PDE has such
a property. We also show that the schemes can preserve positivity even when the PDE itself is only
known to be nonnegativity preserving. We prove that positivity-preserving finite difference schemes
have unique positive solutions at all times. We prove stability and convergence of both positivity-
preserving and generic methods, in one and two space dimensions, to positive solutions of the PDE,
showing that the generic methods also preserve positivity and have global solutions for sufficiently
fine meshes. We generalize the positivity-preserving property to a finite element framework and
show, via concrete examples, how this leads to the design of other positivity-preserving schemes.
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1. Introduction. Lubrication-type equations arise in the study of thin liquid
films and fluid interfaces driven by surface tension. The general problem we consider
is of the form1

ht +∇ · (f(h)∇∆h) = 0,(1.1)

where

f(h) ∼ hn as h→ 0.(1.2)

This equation was first derived in [1] as a model for the surface tension dominated
motion of thin viscous films and spreading droplets. For such problems, the power n
depends on the boundary condition on the liquid solid interface: no-slip gives n = 3
while various Navier slip conditions can yield n < 3. The same equation in one space
dimension with f(h) = h was also shown to model a thin neck in the Hele–Shaw cell
[2]. Other applications include Cahn–Hilliard models with degenerate mobility [3],
population dynamics [4], and problems in plasticity [5]. In all examples, in order to
have a physical solution, h must be nonnegative.

Equation (1.1) describes fourth order degenerate diffusion. Like the second order
porous media equation,

ut = ∆(um), m > 1,(1.3)

∗Received by the editors March 18, 1998; accepted for publication (in revised form) January 19,
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Research via a PECASE award and the Sloan Foundation.
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1Here we use ∆ to denote the Laplacian and later on we use it to denote space or time step. The

meaning of each should be clear from the context.

523

D
ow

nl
oa

de
d 

12
/0

3/
16

 to
 1

28
.9

7.
27

.2
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



524 L. ZHORNITSKAYA AND A. L. BERTOZZI

its solutions are smooth whenever they are positive. This result is known in one space
dimension but only conjectured in more than one space dimension. And where the
solution vanishes, there is typically a loss of regularity. Unlike the (nondegenerate)
heat equation (1.3 with m = 1), periodic solutions of degenerate diffusion equations
can have finite speed of propagation for their support [6, 7]. Second order degener-
ate diffusion equations satisfy a maximum principle; the structure of the differential
operator guarantees that solutions are bounded from above and below by their initial
data.2 The fourth order analogues do not possess such a property. The linear fourth
order heat equation ((1.1) with f(h) = 1) has no maximum principle. In particular,
positive initial data can easily lead to solutions that change sign. This always oc-
curs for the Cauchy problem with L2(Rd) initial data. Other degenerate fourth order
diffusion equations also do not preserve sign of the solutions (see [8]).

What is unusual about (1.1) is that for sufficiently large values of n, the equation
does preserve positivity of the solution. This was proved in one space dimension for
n ≥ 4 [9] and later extended to n ≥ 3.5 [10]. For the two-dimensional (2D) problem,
numerical computations of thin film flows suggest the same may be true. However,
for smaller values of n > 0, numerical simulations [10, 11, 12] show that solutions can
develop singularities of the form h→ 0, which physically describe the rupture of the
liquid film. If the singularity forms in finite time, then the solution past this time can
be defined through a regularization method [9, 13, 14] as a limit of strictly positive
smooth solutions of regularized problems.

We briefly review some properties of positive solutions of (1.1) on a periodic
domain Ω = (S1)d or in Ω = Rd. First note that solutions of (1.1) satisfy conservation
of mass ∫

Ω

h(x, t)dx =

∫
Ω

h(x, 0)dx(1.4)

and surface energy dissipation

d

dt

1

2

∫
Ω

|∇h|2dx = −
∫

Ω

f(h)|∇∆h|2dx.(1.5)

The two results combine to yield an a priori H1 bound for solutions of the PDE (1.1).
Furthermore, positive solutions also satisfy a nonlinear entropy dissipation. Let G(y)
satisfy G′′(y) = 1/f(y). Then

d

dt

∫
Ω

G(h)dx = −
∫

Ω

|∆h|2dx.(1.6)

Bernis and Friedman used these three properties in [9] to prove positivity of solutions
of (1.1) in one dimension with Neumann-type boundary conditions whenever n ≥ 4.

The nonlinear structure of the PDE presents a challenge in the design of effi-
cient and accurate numerical methods. Even when the analytical solution is strictly
positive, the solution of a generic scheme (see 2.2 and Definition 2.1) may become
negative, especially when the grid is underresolved. Since the PDE becomes degener-
ate as h→ 0 this may lead to numerical instabilities. When a positive approximation
of the solution is desired, it may be necessary to do computationally expensive local

2The precise version of this statement of course depends on the boundary conditions for (1.3).
In this paper we consider simple periodic boundary conditions, and in this case the statement holds
as is.
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 525

mesh refinement near the minimum of the solution in order to avoid such premature
or “false” singularities [10]. Physically important examples of situations when such
singularities may arise include flow down an inclined plane [15], where resolution was
required at the apparent contact line [16].

For the computation of nonnegative weak solutions, a nonnegativity-preserving
finite element method is proposed in [17]. Nonnegativity of the solution is imposed as a
constraint, so one has to solve a variational problem involving a Lagrange multiplier at
every time step to advance the nonnegative solution. In this work the authors showed
the convergence of their finite element method to the weak nonnegative solution of
the PDE. The advantage of using this method lies in the fact that computation of
nonnegative solutions requires no regularization of the PDE or initial condition which
seems particularly useful for tracking the moving contact lines. However, this method
allows for solutions with positive initial data to lose positivity, which makes it less
capable of capturing singularity formation comparable to the positivity-preserving
method described here.

There are three main points of this paper. First, we show that it is possible to
design a finite difference (in space) scheme to satisfy discrete analogues of properties
(1.4)–(1.6) above. Such a scheme preserves positivity of the solution (whenever n ≥ 2)
and has solutions that exist at all times, regardless of the size of the grid. This method
improves upon previous methods (e.g., in [10]) that required mesh refinement in order
to avoid a premature “numerical” singularity. Second, we study the convergence
properties of a larger class of finite difference schemes, satisfying discrete analogues
of properties (1.4) and (1.5) but not necessarily (1.6). Although such schemes in
general do not have global solutions for any grid size, we show that for a sufficiently
fine mesh, the solution exists at all times and converges to a positive solution of the
PDE. To our knowledge, this is the first paper to address the order of convergence of
numerical schemes to smooth positive solutions of equations of the type (1.1) in one
and two dimensions. Third, we show that it is possible to generalize the positivity-
preserving property to finite element methods on arbitrary element spaces (including
those involving nonuniform grids). Even though we do not prove convergence of these
finite element methods in this paper, we anticipate that such methods will be useful
for computations involving nonuniform and locally refined meshes.

This paper is organized as follows. We first consider, in section 2, a general finite
difference (in space) scheme and prove local existence and uniqueness of its solution.
The solutions of the difference schemes exist globally in time, provided that they
remain positive. We then show, in section 3, that the key to preserving positivity is
to construct a scheme that dissipates a discrete form of a nonlinear entropy, used in
[9, 14, 13, 18] to prove positivity and existence results of nonnegative solutions for the
continuous PDE. The scheme constructed in section 3 preserves positivity whenever
the exponent in (1.2) satisfies n ≥ 2. Sections 4.1 and 4.2 prove consistency and
stability of general difference schemes. In section 5 we prove that both the generic
and entropy dissipating schemes converge to a positive strong solution, with second
order accuracy, under mesh refinement. Section 6 shows how to modify the entropy
dissipating scheme to preserve positivity whenever 0 < n < 2. Section 7 extends the
results obtained in earlier sections to finite difference schemes in a 2D case. Section 8
generalizes the finite difference schemes to a general finite element framework, yielding
positivity-preserving schemes on more complicated grids with higher order elements.
Section 9 presents a computational example illustrating the advantage of using a
positivity-preserving numerical scheme over a generic one.
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526 L. ZHORNITSKAYA AND A. L. BERTOZZI

2. Finite difference schemes for lubrication-type equations in one space
dimension: Existence, uniqueness, and continuation of solutions. We con-
sider a family of continuous-time, discrete-space finite difference schemes for the one-
dimensional (1D) lubrication equation

∂th+ ∂x(f(h)∂3
xh) = 0, x ∈ S1, f(h) ∼ hn as h→ 0,(2.1)

with periodic boundary conditions and strictly positive initial data h0(x) ∈ H1(S1).
We prove, for positive initial data, local existence and uniqueness of solutions of the
schemes. We also derive a global upper bound for positive solutions and show that
the solution to the scheme can be continued in time, provided it stays positive. In the
next section, we show that a particular choice of scheme guarantees a positive global
solution.

Notation. We divide our periodic domain S1 into N equally spaced regions of
length ∆x and introduce the following discrete analogues of the space derivatives:3

yx,i =
yi+1 − yi

∆x
, yx̄,i =

yi − yi−1

∆x
,

yx̄x,i =
yx̄,i+1 − yx̄,i

∆x
, yx̄xx̄,i =

yx̄x,i − yx̄x,i−1

∆x
.

The discrete H1,∆x norm is

‖y‖1,∆x =

(∑
i

(y2
x̄,i + y2

i )∆x

)1/2

.

This is equivalent to the norm((∑
i

y2
x̄,i∆x

)
+ ȳ2

)1/2

,

where ȳ denotes the mean
∑
i yi∆x.

The numerical scheme

yi,t + (a(yi−1, yi)yx̄xx̄,i)x = 0,

i = 0, 1, . . . , N − 1,(2.2)

yi(0) = h0(xi),

which we can view as a coupled system of ODEs for the yi, is a continuous-time
discrete-space approximation of the PDE (2.1) provided that the nonlinear coefficient
a(s1, s2) satisfies the following conditions.

Definition 2.1 (generic finite difference scheme).
(a) a(s, s) = f(s),
(b) a(s1, s2) = a(s2, s1),
(c) a(s1, s2) ∈ C4((0,∞)× (0,∞)) ∩ C([0,∞)× [0,∞)),
(d) ∀δ > 0, there exists γ > 0 such that s1, s2 > δ =⇒ a(s1, s2) ≥ γ > 0.

3We append the i onto the x and x̄ subscripts to make it clear that we are computing a finite
difference as opposed to a spatial derivative. Throughout the rest of this paper, we use ∂x, ∇, etc.,
to denote space derivatives and subscripts to denote finite differences in space.
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 527

In section 4.1 we use conditions (a)–(c) to show that the scheme (2.2) is second
order consistent with a positive smooth solution of (2.1). Note that condition (c) does
not require a(s1, s2) to be differentiable at the origin. Condition (d) says that a(s1, s2)
is positive whenever both its arguments are positive but may become degenerate if at
least one of its arguments approaches zero. This matches the property of the analytical
solution (2.1) since f(h) ∼ hn is positive whenever h is positive but f(h)→ 0 as h→ 0.
We will need this last property to prove convergence of a solution of the scheme (2.2)
to a smooth positive solution of the PDE (2.1). Both a(s1, s2) = f(0.5(s1 + s2)) and
a(s1, s2) = 0.5(f(s1) + f(s2)) are examples of allowed discretizations. The former
discretization was used, for example, in [10].

First we prove existence and uniqueness of solutions to the system (2.2). In order
to do this we use the following important properties of the numerical scheme, which
are analogues of the continuous case:
• Discrete conservation of mass.

N−1∑
i=0

yi,t∆x+
N−1∑
i=0

(a(yi−1, yi)yx̄xx̄,i)x∆x = 0

or

N−1∑
i=0

yi(t)∆x =
N−1∑
i=0

yi(0)∆x.(2.3)

• Discrete energy dissipation.

1

2

∑
i

(yx̄,i(t))
2∆x+

∫ t

0

∑
i

a(yi−1(s), yi(s))(yx̄xx̄,i(s))
2∆xds =

1

2

∑
i

(yx̄,i(0))2∆x.

(2.4)

The discrete conservation of mass can be obtained by multiplying (2.2) by ∆x,
summation over i = 0, 1, . . . , N − 1, and time integration while the discrete energy
dissipation can be obtained by multiplying (2.2) by yx̄x,i∆x, summation over i =
0, 1, . . . , N − 1, summation by parts, and time integration.

Lemma 2.2 (existence, uniqueness, and continuation of solutions of the numerical
scheme). Given the coupled ODE system (2.2) with strictly positive initial data yi(0)
and diffusion coefficient a(s1, s2) satisfying conditions (a)–(d) from Definition 2.1,
there is a time interval [0, σ] for which there exists a unique positive solution of the
coupled ODE system (2.2). Moreover, there exists a constant C, depending only on
the discrete H1,∆x norm of the initial data yi(0), such that yi(t) ≤ C ∀i and ∀t ≤ σ.
The solution can be continued for arbitrarily long times provided it remains positive.

Proof. The system (2.2) can be rewritten in the form

dY

dt
= F (Y ),

where Y = (y0, y1, . . . , yN−1) and the ith component of the vector F (Y ) is given by

Fi(y0, . . . , yN−1) = − 1

∆x
(a(yi, yi+1)yx̄xx̄,i+1 − a(yi−1, yi)yx̄xx̄,i) .

The standard theory of existence and uniqueness for systems of ODEs (see, for
example, [19]) guarantees the local existence of a unique solution if the function
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528 L. ZHORNITSKAYA AND A. L. BERTOZZI

F (Y ) is uniformly Lipschitz continuous in a neighborhood of the initial data Y (0).
For this function to be Lipschitz continuous in all of its arguments, it suffices if the
functions a(s1, s2), ∂a∂s1 (s1, s2), and ∂a

∂s2
(s1, s2) are bounded. But this is guaranteed

by condition (c) of Definition 2.1 as long as the components of vector Y stay away
from zero and infinity. This proves the local existence and uniqueness of system (2.2).
Now, assuming that the solution exists and is unique, we will prove the existence of
the uniform upper bound.

The discrete energy dissipation property implies that the discrete H1,∆x norm is

bounded, which gives an upper bound on the discrete C
1/2
∆x norm:

|yi − yj | ≤ C |(i− j)∆x|1/2 .(2.5)

This fact can be proved by applying the Sobolev lemma to piecewise linear functions.
Let i∗(t) denote a position where the maximum of yi(t) occurs. Then (2.5) implies

yi∗ − yj ≤ C
∀j. Multiplication by ∆x and summation over j give

yi∗ −
∑
j

yj(t)∆x ≤ C

or

max
i
yi(t) = yi∗ ≤

∑
j

yj(0)∆x+ C.

Classical continuation theory for ODEs guarantees that we can continue the so-
lution until it leaves the region in which F (Y ) is uniformly Lipschitz. Thus we have
global existence whenever we can guarantee that each component yi of the solution
stays bounded away from zero and infinity. We have proved a uniform upper bound
depending only on the H1,∆x norm of the initial data. Thus, either mini yi(t) stays
positive at all times, in which case we have a global in time solution or there is a
maximal time of existence T̃ < ∞ which is defined to be the earliest time when one
of the yi’s goes to zero.

In the next section we show that if n ≥ 2 in (2.1), then there exists a way to
choose the function a(s1, s2) in (2.2) so that, for positive initial data, the solution
of (2.2) stays positive at all times. This property is a discrete analogue of the weak
maximum principle for the PDE (2.1).

3. A positivity-preserving finite difference scheme. In the previous section
we introduced a general finite difference scheme

yi,t + (a(yi−1, yi)yx̄xx̄,i)x = 0,

i = 0, 1, . . . , N − 1,(3.1)

yi(0) = h0(xi)

for the 1D lubrication equation

∂th+ ∂x(f(h)∂3
xh) = 0, x ∈ S1, f(h) ∼ hn as h→ 0.(3.2)

We showed that such a scheme satisfies the discrete versions (2.3) and (2.4) of the
conservation of mass (1.4) and energy dissipation (1.5) of the continuous PDE. In
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 529

addition, solutions of the PDE dissipate a nonlinear entropy (1.6) which can be used
to prove positivity of the solution for sufficiently large n. Our goal is to choose a(s1, s2)
so that the numerical scheme (3.1) satisfies a discrete form of (1.6) and show that this
is sufficient to guarantee that its solutions also preserve positivity.

Lemma 3.1. Let G′′(v) = 1
f(v) be a nonlinear entropy function. If we choose

a(s1, s2) in (3.1) to satisfy

a(s1, s2) =

{
s1−s2

G′(s1)−G′(s2) if s1 6= s2,

f(s1) if s1 = s2,
(3.3)

then the solution of (3.1), with positive initial data, satisfies the following discrete
entropy dissipation property:∑

i

G(yi(t))∆x+

∫ t

0

{∑
i

(yx̄x,i(s))
2∆x

}
ds =

∑
i

G(yi(0))∆x.(3.4)

Proof . First we would like to remark that a(s1, s2) defined in (3.3) satisfies all
of the properties in Definition 2.1. In particular, (c) can be checked using the Taylor
series expansions near s2 = s1 and the definition of G′(h).

Direct computation shows that

d

dt

∑
i

G(yi)∆x =
∑
i

G′(yi)yi,t∆x

= −
∑
i

G′(yi)(a(yi−1, yi)yx̄xx̄,i)x∆x

=
∑
i

(G′(yi))x̄a(yi−1, yi)yx̄xx̄,i∆x

= −
∑
i

{
(G′(yi))x̄a(yi−1, yi)

}
x
yx̄x,i∆x.

Now we would like the resulting expression to be−∑i(yx̄x,i)
2∆x, which is an analogue

of − ∫ 1

0
h2
xxdx for the continuous case, thus forcing us to choose a(s1, s2) as in (3.3).

Integration in time gives∑
i

G(yi(t))∆x+

∫ t

0

{∑
i

(yx̄x,i(s))
2∆x

}
ds =

∑
i

G(yi(0))∆x.

Note that (3.4) gives an a priori upper bound on
∑
iG(yi(t))∆x. This allows us

to get a positive lower bound on mint mini yi(t).
Proposition 3.2. Let f(h) ∼ hn, as h→ 0, n ≥ 2, and

a(s1, s2) =

{ s1−s2
G′(s1)−G′(s2) if s1 6= s2,

f(s1) if s1 = s2.
(3.5)

Then given positive initial data yi(0) > 0, for every fixed ∆x there exists δ̄ > 0 such
that mint mini yi(t) ≥ δ̄. Moreover, if n ≥ 4, then δ̄ depends only on ‖yi‖1,∆x and
mini yi. In particular, it does not depend directly on ∆x.

Proof. For simplicity, we take f(h) = hn. The more general case is proved in an

analogous fashion. First we prove the result for n ≥ 2. Choose G(v) = v−n+2

(−n+1)(−n+2)

for n > 2 and G(v) = − ln(v) for n = 2.
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530 L. ZHORNITSKAYA AND A. L. BERTOZZI

Using the discrete entropy dissipation property (3.4), we get∑
j

1

yn−2
j

∆x ≤ C̃, if n > 2,

∑
j

ln

(
1

yj

)
∆x ≤ C̃, if n = 2,

where C̃ depends on the uniform positive lower and (for n = 2) upper bounds of the
initial condition yi(0). This implies that

min
t

min
i
yi(t) ≥

(
∆x

C̃

) 1
n−2

≡ δ̄, if n > 2,

min
t

min
i
yi(t) ≥ exp

(
− C̃

∆x

)
≡ δ̄, if n = 2.

This estimate is valid for any n ≥ 2. However, it depends strongly on ∆x; that is, as
∆x gets smaller the lower bound gets smaller as well. Since one can derive a positive
lower bound on the solution of the PDE (3.2) for n large enough [9] (see also [10] for
a sharper result), one would like to obtain a lower bound independent of ∆x for the
discrete case as well. The following argument, similar to that for the continuous case
[9], shows that this indeed is possible for n ≥ 4.

Recall that the discrete energy dissipation property and the Sobolev lemma imply

the existence of an upper bound on the discrete C
1/2
∆x norm (2.5) of yi(t). Let δ(t) =

min0≤i≤N−1 yi(t), which occurs at i(t). Then we get

C̃ ≥
∑
j

1

yn−2
j

∆x ≥
∑
j

∆x(
δ(t) + C |(j − i(t))∆x|1/2

)n−2

≥ 2
∑
j

∆x(
δ(t) + C (j∆x)

1/2
)n−2 ≥ 2

∑
j

∆x/δ2

δn−4
(

1 + C (j∆x/δ2)
1/2
)n−2

≥ 2
1

δn−4

∫ 1/δ2

0

ds(
1 + s1/2

)n−2 .

Now to obtain a bound independent of ∆x, we consider two cases: δ > 1 and
δ ≤ 1. In the former case we already have the bound we wanted. In the latter case
we get

C̃ ≥ 2
1

δn−4

∫ 1/δ2

0

ds(
1 + s1/2

)n−2 ≥ 2
1

δn−4

∫ 1

0

ds(
1 + s1/2

)n−2 =
C ′

δn−4
, if n > 4,

C̃ ≥ 2

∫ 1/δ2

0

ds(
1 + s1/2

)2 ≥ C ′ ln( 1

δ2

)
, if n = 4,

which again implies the existence of a lower bound independent of ∆x.
Thus, with the choice of spatial discretization (3.5) the finite difference scheme

(3.1) is positivity-preserving ∀n ≥ 2, and the lower bound is independent of ∆x,
provided n ≥ 4. It is interesting to note that for 2 ≤ n < 3.5, we have proved positivity
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of the numerical scheme when we do not know that such a result is true for the
continuous PDE. Proposition 3.2 can be sharpened slightly following the convergence
argument in section 5. We can show that the solution has a positive lower bound
independent of the grid size ∀n ≥ 3.5 (see Remark 1 at the end of section 5).

Note that the above results, coupled with Lemma 2.2 in section 2, prove global
existence of positive solutions of the scheme (3.1) with the special choice of a(s1, s2)
in (3.5).

Corollary 3.3. Let f(h) ∼ hn with n ≥ 2. The finite difference scheme
(3.1), with the special choice of a(s1, s2) satisfying (3.5), and positive initial data
yi(0) = h0(xi) > 0 has a global in time positive solution yi(t) regardless of the size of
the mesh ∆x.

4. Consistency and stability of difference schemes in one space dimen-
sion. In section 2 we proved the existence and uniqueness of solution of a class of
finite difference schemes (2.2). In section 3 we showed that a special choice of scheme
from this class dissipates a discrete form of an entropy, creating a scheme that pre-
serves positivity of solutions. In this section we prove that the general scheme (2.2)
is second order consistent with a smooth positive solution of the PDE. In section 4.2
we show that the scheme is stable whenever its solution remains bounded away from
zero.

4.1. Consistency. As before, let h(x, t) denote a positive solution of the original
PDE (2.1) and yi(t) denote the solution of the numerical scheme (2.2). To measure
consistency, we introduce the local truncation error τi(t), defined as the result of
substituting the solution of the PDE (2.1) into (2.2):

hi,t + (a(hi−1, hi)hx̄xx̄,i)x = τi(t).(4.1)

Since a positive solution of (2.1) is infinitely differentiable [9], we can use Taylor
series expansions to examine the consistency of the numerical scheme.

Lemma 4.1. Let a(s1, s2) satisfy the conditions (a)–(d) of Definition 2.1 and let
h(x, t) be a smooth positive solution of (2.1). Then the local truncation error τi(t) in
(4.1) is O((∆x)2) uniformly in t.

Proof . By using a Taylor series expansion we obtain4

hx̄xx̄,i =
hi+1 − 3hi + 3hi−1 − hi−2

(∆x)3
= h′′′(xi− 1

2
, t) + α(xi− 1

2
, t)(∆x)2 +O((∆x)4),

a(s1, s2) = a(s+ ∆s, s−∆s) = a(s, s) +
∂a

∂s1
(s, s)∆s− ∂a

∂s2
(s, s)∆s

+ β̃(s, s)(∆s)2 +O((∆s)3) = f(s) + β(s)(∆s)2 +O((∆s)3),

where s = s1+s2
2 , ∆s = s1−s2

2 , α(x, t) = 1
8h

(5)(x, t), and

β̃(s, s) = β(s) =
1

2

(
∂2a(s, s)

∂s2
1

− 2
∂2a(s, s)

∂s1∂s2
+
∂2a(s, s)

∂s2
2

)
.

We used the symmetry of a(s1, s2) to cancel the first order in ∆s terms. Note
that α(x, t) is infinitely differentiable and β(s) is twice continuously differentiable for
s > 0 by property (c) of Definition 2.1.

4Here ′ denotes space derivative.
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532 L. ZHORNITSKAYA AND A. L. BERTOZZI

Therefore,

(a(hi−1, hi)hx̄xx̄,i)x =
1

∆x
(a(hi, hi+1)hx̄xx̄,i+1 − a(hi−1, hi)hx̄xx̄,i)

=
1

∆x

[{
f

(
hi + hi+1

2

)
+ β

(
hi + hi+1

2

)(
hi+1 − hi

2

)2

+O((∆x)3)

}
(
h′′′(xi+ 1

2
) + α(xi+ 1

2
)(∆x)2 +O((∆x)4)

)
(4.2)

−
{
f

(
hi−1 + hi

2

)
+ β

(
hi−1 + hi

2

)(
hi − hi−1

2

)2

+O((∆x)3)

}
(
h′′′(xi− 1

2
) + α(xi− 1

2
)(∆x)2 +O((∆x)4)

)]
.

Note that for any twice continuously differentiable function g(s)

g

(
hi + hi+1

2

)
= g(hi+ 1

2
) + g′(hi+ 1

2
)
h′′
i+ 1

2

2

(
∆x

2

)2

+O((∆x)4),(4.3) (
hi+1 − hi

2

)2

= (h′i+ 1
2
)2

(
∆x

2

)2

+O((∆x)4).(4.4)

By using property (c) of Definition 2.1 we obtain that function β(s) is C2(0,∞),
so we are allowed to use an asymptotic expansion (4.3) for β(s). Taking function g(s)
in (4.3) to be f(s) and β(s) and plugging the results into (4.2) gives

(a(hi−1, hi)hx̄xx̄,i)x = (f(hi)h
′′′(xi, t))′ +O((∆x)2).

Note that the error depends on the size of the higher derivatives of h, which are
known empirically [10, 11] to become unbounded when a positive solution approaches
zero.

4.2. Stability near flat steady state. We now show that the flat steady state
solutions of the finite difference schemes introduced in the previous sections are stable.
The results of this subsection are not needed to prove convergence in the next section.

Consider the inhomogeneous numerical scheme

yi,t + (a(yi−1, yi)yx̄xx̄,i)x = fi(t)(4.5)

with periodic boundary conditions, positive initial data yi(0), and small right-hand
side fi(t).

From the results of section 2 we know that the following is true for the homoge-
neous problem:
• For any constant c > 0, {yi ≡ c} is a solution.
• If the initial condition is positive, then the solution is bounded and can be

continued in time, provided it stays positive.
In this subsection we prove that if the initial data is close to the constant solution,

then the solution of the forced (inhomogeneous) equation will stay close to the solution
of the unforced equation provided that fi(t) are small. Moreover, for positive initial
data and bounded fi(t) the solution of the forced equation is bounded and can be
continued in time, provided it stays positive. While the results of this section are
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independent of the results of the next section on convergence, the energy methods
used here are similar to some of the arguments used there for convergence.

Theorem 4.2. Let yi(t) be a solution of (4.5) with positive initial data yi(0).
(1) Suppose fi(t) is small in C([0, T ];H1,∆x) and yi(0) = ȳ(0) + εi(0), where

ȳ =
∑
i yi∆x is the mean of y and

∑
i εx̄,i(0)2∆x is small in H1,∆x. Then yi(t) =

ȳ(0) + εi(t) with εi(t) small in C([0, T ];H1,∆x).
(2) Suppose fi(t) is bounded in C([0, T ];H1,∆x). Then there exists a constant

C > 0 such that yi(t) ≤ C ∀i and t provided that yi(t) > 0.
Proof. Multiply (4.5) by yx̄x,i∆x, sum in i over a period, and apply summation

by parts to the left-hand side. We get

d

dt

{
1

2

∑
i

y2
x̄,i∆x

}
+
∑
i

a(yi−1, yi)y
2
x̄xx̄,i∆x = −

∑
i

fiyx̄x,i∆x.(4.6)

Using the fact that the second term on the left-hand side of (4.6) has a fixed
sign, we apply summation by parts to the right-hand side of (4.6) and the Schwarz
inequality to obtain

d

dt

{
1

2

∑
i

y2
x̄,i∆x

}
≤
(∑

i

f2
x̄,i∆x

)1/2(∑
i

y2
x̄,i∆x

)1/2

.

Dividing by
(∑

i y
2
x̄,i∆x

)1/2
and integrating in time give(∑

i

y2
x̄,i(t)∆x

)1/2

≤
(∑

i

y2
x̄,i(0)∆x

)1/2

+

∫ t

0

(∑
i

f2
x̄,i(s)∆x

)1/2

ds.(4.7)

To prove part (1) we use the fact that
∑
i y

2
x̄,i(t)∆x =

∑
i ε

2
x̄,i(t)∆x to obtain(∑

i

ε2x̄,i(t)∆x

)1/2

≤
(∑

i

ε2x̄,i(0)∆x

)1/2

+

∫ t

0

(∑
i

f2
x̄,i(s)∆x

)1/2

ds.(4.8)

The mean of the numerical solution satisfies

d

dt

∑
i

yi(t)∆x =
∑
i

fi(t)∆x,

which implies that∑
i

yi(t)∆x =
∑
i

yi(0)∆x+

∫ t

0

(∑
i

fi(s)∆x

)
ds(4.9)

or

ē(t) =

∫ t

0

(∑
i

fi(s)∆x

)
ds.(4.10)

Combining (4.8) and (4.10) proves that the discrete H1,∆x norm of εi(t) is controlled
by the discrete H1,∆x norm of the initial data and the C([0, T ];H1,∆x) norm of fi,
concluding the proof of part (1).

To prove the second part of the statement we note that (4.7) and (4.9) imply
that the discrete H1,∆x norm of yi(t) is bounded. By applying the discrete Sobolev

lemma we conclude that the discrete C
1/2
∆x norm is bounded, which gives an a priori

upper bound on the solution yi(t) by the same argument as we used at the end of
section 2.
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5. Convergence of finite difference schemes in one space dimension. In
this section, we prove convergence of finite difference schemes to positive solutions of
the PDE

ht + ∂x(f(h)∂3
xh) = 0, x ∈ S1.(5.1)

Convergence of finite difference methods in two space dimensions is considered in
section 7.

Recall that the continuous time-discrete space numerical method

yi,t + (a(yi−1, yi)yx̄xx̄,i)x = 0,

i = 0, 1, . . . , N − 1,(5.2)

yi(0) = h0(xi)

with a(s1, s2) satisfying Definition 2.1 is a generic scheme (GS) for solving (5.1). The
special finite difference scheme (5.2) with a(s1, s2) defined by

a(s1, s2) =

{
s1−s2

G′(s1)−G′(s2) if s1 6= s2,

f(s1) if s1 = s2

(5.3)

is an entropy dissipating scheme (EDS) that preserves positivity of the solution for
sufficiently degenerate f . This scheme is a special case of GS.

In section 2 we proved the local existence and uniqueness of solutions to GS. At
the end of section 3, in Corollary 3.3, we proved that the EDS is guaranteed to have
global positive solutions whenever f(h) ∼ hn as h → 0, n ≥ 2. In this section we
investigate the question of global existence of solutions of GS as well as convergence
of solutions of the numerical schemes to the solution of PDE (5.1) as ∆x → 0. We
prove the following result.

Theorem 5.1. Let h(x, t) be a smooth solution of (5.1) such that h(x, t) ≥ δ > 0
for some δ > 0 and t ∈ [0, T ]. Then for ∆x sufficiently small there exists a unique
solution yi(t) of GS ∀t ∈ [0, T ]. Moreover, there exists a constant C > 0 such that
supt∈[0,T ] ‖ yi(t)− h(xi, t) ‖1,∆x≤ C∆x2.

Proof. By Lemma 2.2 of section 2 a solution of the numerical scheme can be
continued as long as it stays positive. In Corollary 3.3 we proved that the EDS
has globally positive solutions whenever n ≥ 2. In the case of GS, or EDS with
n < 2, the numerical solution may not exist globally ∀∆x. However, it exists globally
(∀t ∈ [0, T ]) if ∆x is small enough. To prove this we use the fact that the analytical
solution h(x, t) ≥ δ > 0.

At time t = 0 we have yi(0) = hi(0) ≡ h(xi, 0) ≥ δ/2 ∀i. According to Lemma 2.2
of section 2, for every ∆x there exists a time interval [0, σ], σ < T such that ∀t ∈ [0, σ]

yi(t) ≥ δ/2 ∀i.(5.4)

We now estimate, on this time interval, the difference between the exact solution
hi(t) ≡ h(xi, t) and the approximate solution yi(t) on [0, σ]. From section 4.1, we
know that the solution of the PDE (5.1) satisfies the finite difference equation

hi,t + (a(hi−1, hi)hx̄xx̄,i)x = τi(t)(5.5)

with a local truncation error τi(t) = O((∆x)2) uniformly in t. Define an error ei(t) =
yi(t)− hi(t). Subtracting (5.5) from (5.2) gives an equation for the error

ei,t + [hx̄xx̄,i(a(yi−1, yi)− a(hi−1, hi))]x + [a(yi−1, yi)ex̄xx̄,i]x = −τi(t).(5.6)
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Multiplication by ex̄x,i∆x, summation over i, and summation by parts give

d

dt

[
1

2

∑
i

e2
x̄,i∆x

]
+
∑
i

hx̄xx̄,i(a(yi−1, yi)− a(hi−1, hi))ex̄xx̄,i∆x(5.7)

+
∑
i

a(yi−1, yi)e
2
x̄xx̄,i∆x =

∑
i

τiex̄x,i∆x.

To estimate the second term on the left we first use the continuity of hxxx and
the Schwarz inequality:∣∣∣∣∣∑

i

hx̄xx̄,i(a(yi−1, yi)− a(hi−1, hi))ex̄xx̄,i∆x

∣∣∣∣∣
≤ C

[∑
i

(a(yi−1, yi)− a(hi−1, hi))
2∆x

]1/2 [∑
i

e2
x̄xx̄,i∆x

]1/2

.(5.8)

Using property (c) of Definition 2.1, the fact that both the analytical and numer-
ical solutions are bounded away from zero and infinity, and the mean value theorem
give

|a(yi−1, yi)− a(hi−1, hi)| ≤ ‖∇a‖L∞([δ/2,M ]2) (|ei−1|+ |ei|).
Therefore,∑

i

(a(yi−1, yi)− a(hi−1, hi))
2∆x ≤ C

∑
i

e2
i∆x ≤ C

(
ē2 +

∑
i

e2
x̄,i∆x

)
(5.9)

by the discrete Poincaré inequality, where the constant C = 4 ‖ ∇a ‖2L∞([δ/2,M ]2).

Here ē =
∑
i ei∆x is the mean of the error, which satisfies an ODE

dē

dt
= −

∑
i

τi(t)∆x.

This implies that

ē(t) = −
∫ t

0

(∑
i

τi(s)∆x

)
ds.(5.10)

By Definition 2.1 since yi(t) ≥ δ/2 ∀i there exists γ > 0 such that a(yi−1, yi) ≥ γ.
Therefore, the third term on the left-hand side of (5.7) can be moved to the right with
a negative sign

−
∑
i

a(yi−1, yi)e
2
x̄xx̄,i∆x ≤ −γ

∑
i

∑
i

e2
x̄xx̄,i∆x.

Now by using the discrete Poincaré inequality, the Schwarz inequality, and the
ε-inequality 2ab ≤ (aε)2 + (b/ε)2 we can get rid of the ex̄x and ex̄xx̄ dependence of the
second and the fourth terms in (5.7) to get the differential inequality

d

dt

[
1

2

∑
i

e2
x̄,i∆x

]
≤ C

∑
i

τ2
i ∆x

+ C
∑
i

e2
x̄,i∆x+ C

(∫ t

0

(∑
i

τi(s)∆x

)
ds

)2

,
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where C depends on γ. Since τi = O((∆x)2) uniformly in t ∈ [0, σ],

d

dt

[
1

2

∑
i

e2
x̄,i∆x

]
≤ C

∑
i

e2
x̄,i∆x+ C(∆x)4.

Also, |ē| ≤ C(∆x)2 by (5.10).
This gives the a priori bound on the discrete H1,∆x norm of the error

‖ e(t) ‖21,∆x≤ C1(∆x)4
(
eCT − 1

)
,(5.11)

which proves that ‖ e(t) ‖1,∆x is O((∆x)2) uniformly in t ∈ [0, σ]. Estimate (5.11)

holds any time interval [0, σ] for which (5.4) is true. Now let T̃ ≤ T be the maximal
time interval for which the solution satisfies (5.4). Continuity in time of the solution
y guarantees the existence of such a time. Then the estimate (5.11) holds with σ = T̃ .

We now show that the pointwise lower bound (5.4) persists and we can continue
the solution on [0, T ], provided ∆x is sufficiently small. Note that from the above,∑

i

e2
i∆x ≤ C(∆x)4,

which implies a pointwise estimate

|ei| = |yi − hi| ≤ C(∆x)3/2 → 0 as ∆x→ 0,

and hence

yi(t) ≥ δ − C(∆x)3/2.(5.12)

Suppose ∆x satisfies

C(∆x)3/2 < δ/2(5.13)

and T̃ is strictly less than T . Then (5.12) gives a better bound than (5.4), contra-
dicting the assumption that T̃ is a maximal time for which (5.4) holds. Thus for
sufficiently small ∆x, we can continue the solution yi(t) ∀t ∈ [0, T ] so that (5.11) still
holds.

Remark 1. Note that the results of this theorem allow us to sharpen the last
sentence in Proposition 3.2. That is, the solution of EDS of section 3 is bounded away
from zero uniformly in ∆x whenever n ≥ 3.5. This is because (1) from Proposition 3.2
we have a lower bound δ(∆x) whenever n ≥ 2, where the function δ is monotone
decreasing as ∆x→ 0; (2) the numerical solution converges to the analytical solution,
which is guaranteed to remain positive whenever n ≥ 3.5. Combining these results
gives a uniform lower bound for the solution of EDS whenever n ≥ 3.5.

6. Modified entropy dissipating scheme. In Corollary 3.3 of section 3 we
showed that if n ≥ 2, then ∀∆x there exists a unique positive solution of the EDS ∀t.
However, for n < 2 the EDS (5.2)–(5.3) may not be positivity-preserving. In examples
such as Hele–Shaw (n = 1), we may wish to use a positivity-preserving scheme to
approximate a positive solution. We now present a modification of the EDS that
yields a positivity-preserving scheme ∀n > 0. To accomplish this, we introduce the
regularization of the PDE, which was introduced in [9] and later used by [13],

hεt + ∂x(fε(hε)∂
3
xhε) = 0, fε(hε) =

h4
εf(hε)

εf(hε) + h4
ε

,
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and the corresponding numerical scheme

yε,i,t + (aε(yε,i−1, yε,i)yεx̄xx̄,i)x = 0,

i = 0, 1, . . . , N − 1,(6.1)

yε,i(0) = h0(xi),

aε(s1, s2) =

{ s1−s2
G′ε(s1)−G′ε(s2) if s1 6= s2,

fε(s1) if s1 = s2.
(6.2)

Note that numerical method (6.1)–(6.2) depends on two independent parameters,
namely, ∆x and ε. However, we could choose ε = ε(∆x) to be a function of the grid
size.

Since fε(hε) ∼ h4
ε

ε as hε → 0 we know that ∀ε > 0 and ∆x > 0 the solution of
(6.1)–(6.2) is positive. Moreover, the following theorem shows that the solution of
the modified EDS converges to the solution of the original (nonregularized) PDE as
ε→ 0 and ∆x→ 0 as long as the solution of the latter stays positive. The proof relies
on the fact that ∀δ̄ > 0, m,n ∈ N, there exists a constant C(m,n, δ̄) so that∥∥∥∥ ∂n+m

∂sn1∂s
m
2

aε(s1, s2)− ∂n+m

∂sn1∂s
m
2

a(s1, s2)

∥∥∥∥
L∞([δ̄,M ]2)

≤ C(m,n, δ̄)ε.(6.3)

Theorem 6.1. Let h(x, t) be a smooth solution of (5.1) such that h(x, t) ≥ δ > 0
for some δ > 0 and t ∈ [0, T ]. Then ∀∆x and ε there exists a unique solution yε,i(t)
of the modified EDS (6.1)–(6.2) ∀t ∈ [0, T ]. Moreover, there exists a constant C > 0
independent of ∆x and ε such that

sup
t∈[0,T ]

‖ yε,i(t)− h(xi, t) ‖1,∆x≤ C(∆x2 + ε).

Proof. As in section 4.1, to analyze consistency we introduce the local truncation
error

τε,i(t) = hi,t + (aε(hi−1, hi)hx̄xx̄,i)x.(6.4)

Following the arguments from section 4.1 and using (6.3) gives us τε,i(t) = O((∆x)2 +
ε).

Next note that from Proposition 3.2, the solution yi has an a priori pointwise lower
bound independent of ∆x but possibly depending strongly on ε. Thus the solution yi
exists and remains positive on [0, T ].

Since the positive lower bound of yε,i(t) may depend strongly on ε, to prove
convergence we need to use the inequality h(x, t) ≥ δ > 0. Applying the argument
from the proof of Theorem 5.1 of the previous section, for each ∆x and ε there exists
a time σ = σ(ε,∆x) such that

yε,i ≥ δ/2 ∀i and ∀t ∈ [0, σ].(6.5)

Now we can follow the proof of Theorem 5.1 to obtain

‖ eε(t) ‖1,∆x≤ C(∆x2 + ε) ∀i and t ∈ [0, σ],(6.6)

where eε(t) = yε,i(t)− hi(t).
In order to obtain (6.6) we needed aε(yε,i, yε,i−1) > δ̃ > 0 and ‖∇aε‖L∞ < C̃

for some δ̃ and C̃ independent of ∆x and ε. The existence of these constants is
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538 L. ZHORNITSKAYA AND A. L. BERTOZZI

guaranteed by the inequalities yε,i(t) ≥ δ/2 and the uniform convergence of aε(s1, s2)
and its derivatives to a(s1, s2) on [δ̄,M ]2 (6.3). The inequality (6.6) implies that for
sufficiently small ∆x and ε, the estimate (6.5) can be improved. Thus we can extend
the estimate (6.5) to the whole time interval [0, T ] for sufficiently small ∆x and ε,
following an argument similar to the one at end of the proof of Theorem 5.1.

Remark 2. We can choose ε ∼ (∆x)2 to make the scheme (6.1)–(6.2) second
order in ∆x.

We discuss the relevance of this scheme for weak nonnegative solutions of (5.1)
in the conclusions.

7. Finite difference schemes in two dimensions. In two space dimensions
the lubrication equation with periodic boundary conditions is

ht + ∂x(f(h)∂x(∂2
xh+ ∂2

yh))

+ ∂y(f(h)∂y(∂2
xh+ ∂2

yh)) = 0, x ∈ S1, y ∈ S1.(7.1)

We now show that the ideas used to construct and analyze finite difference schemes in
one space dimension can be extended to two space dimensions. The main difference,
as we show below, is the fact that the Sobolev embedding H1 ⊂ Cα for some positive
α fails in two space dimensions. As a consequence, we need to assume below that we
have an analytical solution that is smooth and bounded from above and below. Let
zij(t) be a solution of the following finite difference scheme:

zi,j,t + (a(zi−1,j , zi,j)(zx̄x,ij + zȳy,ij)x̄)x

+ (a(zi,j−1, zi,j)(zx̄x,ij + zȳy,ij)ȳ)y = 0,(7.2)

where a(s1, s2) is an approximation of f(h) satisfying Definition 2.1.
As in the 1D case, consider the finite difference scheme (7.2) as a coupled system

of ODEs. Given positive initial data there exists, locally in time, a unique solution
of (7.2); the proof follows from the same arguments as in Lemma 2.2. Moreover,
following the argument in Lemma 2.2, we can uniquely continue the solution in time,
provided it stays bounded away from zero and infinity. Therefore, a unique solution
exists globally whenever one can prove the existence of a priori upper and lower
bounds. We now show that a generic finite difference scheme of the form (7.2) always
possesses such an upper bound. We then show that a special entropy dissipating form
of (7.2) has an additional lower bound and hence global solutions.

A genetic finite difference scheme (7.2) has the following properties:
• Discrete conservation of mass

N−1∑
i=0

M−1∑
j=0

zij,t∆x∆y +
N−1∑
i=0

M−1∑
j=0

(a(zi−1,j , zi,j)(zx̄x,ij + zȳy,ij)x̄)x∆x∆y

+
N−1∑
i=0

M−1∑
j=0

(a(zi,j−1, zi,j)(zx̄x,ij + zȳy,ij)ȳ)y∆x∆y = 0,

or

N−1∑
i=0

M−1∑
j=0

zij(t)∆x∆y =
N−1∑
i=0

M−1∑
j=0

zij(0)∆x∆y.(7.3)D
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 539

• Discrete energy dissipation.
Multiplication by (zx̄x,ij + zȳy,ij)∆x∆y, summation over i, j, and integration in

time give

1

2

∑
i,j

{
(zx̄,ij(t))

2 + (zȳ,ij(t))
2
}

∆x∆y

+

∫ t

0

∑
i,j

a(zi−1,j(s), zij(s))(zx̄x,ij(s) + zȳy,ij(s))
2
x̄∆x∆y

 ds(7.4)

+

∫ t

0

∑
i,j

a(zi,j−1(s), zij(s))(zx̄x,ij(s) + zȳy,ij(s))
2
ȳ∆x∆y

 ds

=
1

2

∑
i,j

{
(zx̄,ij(0))2 + (zȳ,ij(0))2

}
∆x∆y.

The above mass conservation and energy dissipation combine to give the following
estimate.

Lemma 7.1. There exists a constant C such that for any zij a positive solution
of (7.2), on the time interval 0 ≤ t ≤ T , with initial data zij(0) = h0(xi, yj) > 0, we
have the a priori upper bound

zij(t) ≤ C‖zij(0)‖1,∆x,∆y√
∆x∆y

,(7.5)

where ‖ · ‖1,∆x,∆y denotes the discrete H1 norm in two dimensions.
Proof. Mass conservation (7.3) and energy dissipation (7.4) imply that the dis-

crete H1 norm of the solution is bounded by the initial data. The discrete Poincaré
inequality then implies a discrete L2 bound, which in turn yields the inequality
(7.5).

We now construct a special entropy dissipating scheme that gives an a priori
pointwise lower bound. The following lemma shows that the same discretization of
the diffusion coefficient that was used to make a scheme dissipate nonlinear entropy
in one dimension works in two dimensions as well.
• Nonlinear entropy dissipation.
Lemma 7.2. Let G′′(v) = 1

f(v) be a nonlinear entropy function. Let f(h) ∼ hn

as h→ 0. Then if we choose

a(s1, s2) =

{ s1−s2
G′(s1)−G′(s2) if s1 6= s2,

f(s1) if s1 = s2,
(7.6)

then any solution of (7.2) with positive initial data zij(0) = h0(xi, yj) > 0 satisfies
the following discrete entropy dissipation property:

∑
i,j

G(zij(t))∆x∆y +

∫ t

0

∑
i,j

(zx̄x,ij(s) + zȳy,ij(s))
2∆x∆y

 ds

=
∑
i,j

G(zij(0))∆x∆y.(7.7)
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540 L. ZHORNITSKAYA AND A. L. BERTOZZI

This property implies that the solution zij(t) has the following pointwise lower bound:

min
t

min
ij

zij(t) ≥
(

∆x∆y

C̃

) 1
n−2

≡ δ̄ if n > 2,(7.8)

min
t

min
ij

zij(t) ≥ exp

(
− C̃

∆x∆y

)
≡ δ̄ if n = 2.(7.9)

Proof. We first prove (7.7) following the same arguments from section 3 for the
1D case:

d

dt

∑
i,j

G(zij)∆x∆y =
∑
i,j

G′(zij)zij,t∆x∆y

= −
∑
i,j

G′(zij)(a(zi−1,j , zi,j)(zx̄x,ij + zȳy,ij)x̄)x∆x∆y

−
∑
i,j

G′(zij)(a(zi,j−1, zi,j)(zx̄x,ij + zȳy,ij)ȳ)y∆x∆y

= −
∑
i,j

{(G′(zij))x̄a(zi−1,j , zi,j)}x (zx̄x,ij + zȳy,ij)∆x∆y

−
∑
i,j

{(G′(zij))ȳa(zi,j−1, zi,j)}y (zx̄x,ij + zȳy,ij)∆x∆y

= −
∑
i,j

(zx̄x,ij + zȳy,ij)
2∆x∆y.

To prove the pointwise lower bound, we again follow the arguments from the 1D case
in section 3, which use the scaling behavior of G near z = 0.

Note that in two dimensions we do not have a uniform lower bound independent
of the grid size for large values of n as we did in the 1D case. This is due to the fact
that the 1D argument used the a priori C1/2 bound, from Sobolev embedding, which
we do not know for the 2D case. The fact that we can derive an a priori pointwise
lower bound implies the following corollary.

Corollary 7.3 (global existence of solutions of the 2D entropy dissipating
scheme). Consider f(h) ∼ hn as h → 0, for n ≥ 2. Then ∀∆x,∆y, the en-
tropy dissipating scheme (7.2) with a(s1, s2) satisfying (7.6) and positive initial data
zij(0) = h0(xi, yj) > 0 has a unique positive global in time solution.

In general the generic scheme (7.2) may have only local solutions in time. The
issue is that the solution may lose positivity at some finite time and can not be
continued after that time. We now show that both the generic and entropy dissipating
schemes converge to positive, bounded smooth solutions of the PDE, which has a
consequence that a generic scheme has global existence for sufficiently small grid size,
as in the 1D case.

The proof of convergence follows the same argument as the one for the 1D case.
We establish first consistency, then stability, and finally convergence.

Lemma 7.4 (consistency). Let h(x, y, t) be a smooth positive solution of the
PDE (7.1) and let a(s1, s2) satisfy the conditions of Definition 2.1. Define the local
truncation error τij(t) to be the error made when plugging the smooth solution of the
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 541

PDE into the scheme. That is, τij(t) satisfies

hi,j,t + (a(hi−1,j , hi,j)(hx̄x,ij + hȳy,ij)x̄)x

+ (a(hi,j−1, hi,j)(hx̄x,ij + hȳy,ij)ȳ)y = τij(t),(7.10)

where hi,j = h(xi, yj). Then there exists a constant C(T ), depending on bounds for
the smooth solutions h and its derivatives, such that the local truncation error τij(t)
satisfies

sup
i,j

sup
0<t<T

|τij(t)| ≤ C(T )((∆x)2 + (∆y)2).

Proof. As in the 1D proof of Lemma 4.1, Taylor series expansions give the desired
result.

In one dimension, we provedH1 stability which implied pointwise stability. Again,
because of the Sobolev lemma, we are not guaranteed pointwise stability from H1 sta-
bility in two dimensions. Nevertheless we can still prove H1 stability of the numerical
scheme. As in the 1D case, we do not directly use the stability lemma to prove
convergence.

Lemma 7.5 (H1-stability). Let zij(t) be a solution of the inhomogeneous problem

zi,j,t + (a(zi−1,j , zi,j)(zx̄x,ij + zȳy,ij)x̄)x + (a(zi,j−1, zi,j)(zx̄x,ij + zȳy,ij)ȳ)y = fij(t)
(7.11)

with positive initial data zij(0).
(1) Suppose fij(t) is small in the C([0, T ];H1,∆x,∆y) norm and zij(0) = z̄(0) +

εij(0), where z̄ =
∑
i,j zij∆x∆y is the mean of z and

∑
i,j(ε

2
x̄,i(0) + ε2ȳ,i(0))∆x∆y is

small. Then zij(t) = z̄(0) + εij(t) with εij(t) small in the C([0, T ];H1,∆x,∆y) norm.
(2) Suppose fij(t) is bounded in C([0, T ];H1,∆x,∆y) norm. Then provided the

solution zij(t) stays positive, it is bounded in the discrete H1,∆x,∆y norm.
Proof. Multiplication of (7.11) by (zx̄x,ij +zȳy,ij)∆x∆y, summation over i, j, and

summation by parts give

d

dt

1

2

∑
i,j

(z2
x̄,ij + z2

ȳ,ij)∆x∆y

+
∑
i,j

a(zi−1,j , zij)(zx̄x,ij + zȳy,ij)
2
x̄∆x∆y

+
∑
i,j

a(zi,j−1, zij)(zx̄x,ij + zȳy,ij)
2
ȳ∆x∆y = −

∑
i,j

fij(zx̄x,ij + zȳy,ij)∆x∆y.

Estimating this expression in the same way as we did in Theorem 4.2, we get∑
ij

(ε2x̄,ij(t) + ε2ȳ,ij(t))∆x∆y

1/2

≤
∑

ij

(ε2x̄,ij(0) + ε2ȳ,ij(0))∆x∆y

1/2

+

∫ t

0

∑
ij

(f2
x̄,ij(s) + f2

ȳ,ij(s))∆x∆y

1/2

ds.

This estimate, together with the identity

∑
i,j

zij(t)∆x∆y =
∑
i,j

zij(0)∆x∆y +

∫ t

0

∑
i,j

fij(s)∆x∆y

 ds,
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542 L. ZHORNITSKAYA AND A. L. BERTOZZI

implies both statements of the lemma.
We now use the above results on existence and consistency to prove convergence

of the scheme to a positive solution of the PDE.
Theorem 7.6 (convergence). Let h(x, y, t) be a smooth solution of (7.1) such

that C ≥ h(x, y, t) ≥ δ > 0 for some C > δ > 0 and t ∈ [0, T ]. Let zij(t) be
a solution of the numerical scheme (7.2) with (∆x)3 � ∆y � (∆x)1/3. Then for
∆x,∆y sufficiently small the solution zij(t) can be continued ∀t ∈ [0, T ] and there
exists a constant C > 0 such that we have the H1 convergence

sup
t∈[0,T ]

‖ zij(t)− h(xi, yj , t) ‖1,∆x,∆y≤ C(∆x2 + ∆y2)

and the pointwise convergence

sup
t∈[0,T ]

sup
i,j
|zij(t)− h(xi, yj , t)|2 ≤ C

(
(∆x)2 + (∆y)2

)2
∆x∆y

.

Proof. As in the proof of Theorem 5.1 we first find a time interval [0, σ] such
that 2C ≥ zij(t) ≥ δ/2 hold ∀i, j and t ∈ [0, σ], then estimate the error between
the analytical and numerical solutions and finally continue numerical solution to the
whole interval [0, T ] for sufficiently small ∆x and ∆y.

The analytical solution satisfies (7.10). By Lemma 7.4 the local truncation error
τij(t) = O((∆x)2 + (∆y)2). Introducing eij(t) = zij(t)−hij(t) and subtracting (7.10)
from (7.2) we obtain

eij(t) + [(hx̄x,ij + hȳy,ij)x̄(a(zi−i,j , zi,j)− a(hi−i,j , hi,j)]x
+ [a(zi−i,j , zi,j)(ex̄x,ij + eȳy,ij)x̄]x
+ [(hx̄x,ij + hȳy,ij)ȳ(a(zi,j−1, zi,j)− a(hi,j−1, hi,j)]y

+ [a(zi,j−1, zi,j)(ex̄x,ij + eȳy,ij)ȳ]y = −τij(t).
Multiplication by (ex̄x,ij+eȳy,ij)∆x∆y, summation over i, j, and summation by parts
gives

d

dt

1

2

∑
i,j

(e2
x̄,ij + e2

ȳ,ij)∆x∆y


+
∑
i,j

(hx̄x,ij + hȳy,ij)x̄(a(zi−1,j , zi,j)− a(hi−1,j , hi,j))(ex̄x,ij + eȳy,ij)x̄∆x∆y

+
∑
i,j

a(zi−1,j , zi,j)(ex̄x,ij + eȳy,ij)
2
x̄∆x∆y(7.12)

+
∑
i,j

(hx̄x,ij + hȳy,ij)ȳ(a(zi,j−1, zi,j)− a(hi,j−1, hi,j))(ex̄x,ij + eȳy,ij)ȳ∆x∆y

+
∑
i,j

a(zi,j−1, zi,j)(ex̄x,ij + eȳy,ij)
2
ȳ∆x∆y = −

∑
i,j

τij(ex̄x,ij + eȳy,ij)∆x∆y.

Using the boundedness of the numerical solution and property (d) in Defini-
tion 2.1, and estimating the second and fourth terms of (7.12) in a way similar to
(5.8) in section 5, we obtain

‖ e(t) ‖21,∆x,∆y≤ C
(
(∆x)2 + (∆y)2

)2 ∀i, j and t ∈ [0, σ].(7.13)
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 543

The constant C is independent of σ < T . Therefore,∑
i,j

e2
ij∆x∆y ≤ C ((∆x)2 + (∆y)2

)2
,

which implies

e2
ij(t) ≤ C

(
(∆x)2 + (∆y)2

)2
∆x∆y

.(7.14)

The expression on the right-hand side of (7.14) tends to zero as ∆x,∆y tend to zero
if (∆x)3 � ∆y � (∆x)1/3. Making this assumption we note that for ∆x,∆y small
enough we can improve the upper and lower bounds, 2C ≥ zij(t) ≥ δ/2, from which
we started. Therefore, for ∆x,∆y sufficiently small we can continue the solution to
the whole time interval [0, T ] so that the bounds (7.13) and (7.14) still hold.

Remark 3. Note that even though, as we mentioned previously, the embedding
L∞ ⊂ H1, which holds in one dimension, fails in two dimensions, we can prove
the pointwise convergence in (7.14). This fact is a consequence of the second order
consistency of the numerical scheme (7.1) with the PDE (7.2).

Remark 4. The convergence theorem shows that we can improve the bound (7.5)
in the case where the scheme is approximating a positive bounded solution of the PDE.
That is, the solution of the numerical scheme has a pointwise upper bound that does
not depend strongly on the grid size, improving estimate (7.5). Likewise, for the EDS
with n ≥ 2, we can improve upon the pointwise lower bound (7.8) or (7.9) when the
scheme approximates a positive bounded solution of the PDE.

Remark 5. We can extend the modified entropy dissipating scheme of section 6
to the 2D case.

Remark 6. If ∆x = ∆y, then one can obtain the following pointwise bound on
the error:

sup
t∈[0,T ]

sup
i,j
|zij(t)− h(xi, yj , t)| ≤ C(a)(∆x)2−a

for arbitrary small a.
To show this we first note that second order convergence in discrete H1 norm

implies the second order convergence in discrete Lq norm for arbitrary large q (see
the appendix for details). Thus

max
l,m
|elm|(∆x)2/q ≤

∑
i,j

|eij |q(∆x)2

1/q

≤ C(q)(∆x)2,

which implies that

max
l,m
|elm| ≤ C(q)(∆x)2− 2

q .

8. Positivity-preserving finite element methods. So far, the schemes pre-
sented in one and two space dimensions have been for fixed uniform Cartesian grids.
Equations of the type (5.1) often arise in the context of moving contact lines in thin
films. For such problems, local mesh refinement must be used to resolve structures
that can develop near the contact line [15]. Also, when schemes of this type are used
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544 L. ZHORNITSKAYA AND A. L. BERTOZZI

to compute finite time singularities describing things such as film rupture [10] or neck
rupture in a Hele–Shaw cell [12], local mesh refinement is crucial to resolve small
scale structures near the point of singularity. Thus, a natural question to consider is
whether one can generalize the positivity-preserving methods, discussed in previous
sections of this paper, to more complicated grid structures.

A natural framework to work in is that of finite elements. We begin by showing
that the 1D EDS ((3.1) with (5.3)) finite difference scheme is equivalent to a finite
element approximation in which a nonlinear function of the solution is represented
in the element basis. This representation suggests a general abstract finite element
approximation of the problem (in any space dimension). We then show that the
2D scheme is another special case of the general finite element approximation. We
present a third example of a new difference scheme that results as a special case of
this approximation. We hope that the methods outlined below will be useful for the
design of schemes on more complicated grids.

Example 1 (1D EDS). First introduce the pressure p = −∂2
xh. The original PDE

ht + ∂x(f(h)∂3
xh) = 0(8.1)

can be rewritten as

ht − ∂x(f(h)∂xp) = 0, p = −∂2
xh.(8.2)

We now present a finite element spatial discretization of (8.2) that we show is
equivalent to the 1D EDS of section 3. Let (η1, η2) denote the standard inner product
on L2(S1), G(y) be a function satisfying G′′(y) = 1/f(y), T∆x be a space of piecewise
linear periodic functions on the spatial grid of size ∆x. We introduce the interpolation
operator π∆x : C(S1)→ T∆x such that (π∆xη)(xj) = η(xj) ∀j. Define a discrete inner
product on C(S1) by

(η1, η2)
∆x def

=

∫
S1

π∆x(η1(x)η2(x))dx ≡
∑
j

η1(xj)η2(xj)∆x.

We now show that the EDS is equivalent to the following finite element approxi-
mation of (8.2):

Find y, w : G′(y) ∈ T∆x, w ∈ T∆x such that

(yt, χ)
∆x

+ (f(y)∂xw, ∂xχ) = 0 ∀χ ∈ T∆x,(8.3)

(∂xy, ∂xχ) = (w,χ)
∆x ∀χ ∈ T∆x.(8.4)

Consider the standard basis {χi(x)}Ni=1 for T∆x:

χi(x) =


x−xi−1

∆x if xi−1 ≤ x ≤ xi,
xi+1−x

∆x if xi ≤ x ≤ xi+1.

Then

(yt, χi)
∆x

= yi,t∆x,

(f(y)∂xw, ∂xχi) =

∫ xi

xi−1

f(y)
wi − wi−1

∆x

1

∆x
dx−

∫ xi+1

xi

f(y)
wi+1 − wi

∆x

1

∆x
dx.

D
ow

nl
oa

de
d 

12
/0

3/
16

 to
 1

28
.9

7.
27

.2
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 545

Note that the integral∫ xi

xi−1

f(y)dx =

∫ xi

xi−1

dx

G′′(y)
=

∫ xi

xi−1

∂xydx

G′′(y)∂xy

=

∫ xi

xi−1

dy(x)

s′(x)
=

∆x

si − si−1
(yi − yi−1) =

∆x(yi − yi−1)

G′(yi)−G′(yi−1)
.

In the last computation we used the substitution s(x) = G′(y(x)) and the fact that
s(x) is a piecewise linear function. From (8.4) it follows that wi = −yx̄x,i. Therefore,

(f(y)∂xw, ∂xχi) = yx̄xx̄,i+1
yi+1 − yi

G′(yi+1)−G′(yi) − yx̄xx̄,i
yi − yi−1

G′(yi)−G′(yi−1)
.

Now (8.3) gives

yi,t +
1

∆x

(
yx̄xx̄,i+1

yi+1 − yi
G′(yi+1)−G′(yi) − yx̄xx̄,i

yi − yi−1

G′(yi)−G′(yi−1)

)
= 0,(8.5)

which indeed is the EDS (3.1) with (3.3).
Remark 7. The same finite element approximation on a nonuniform mesh

produces an analogous scheme (8.5) with nonuniform differences. A variant of this
scheme was used recently in [20] to compute finite time singularities in a long-wave
unstable generalization of (8.1).

Remark 8. The finite element representation (8.3)–(8.4) has a structure similar
to that introduced in [17]. The main difference is that the method in [17] takes the
solution y to be in the subspace T∆x spanned by the element basis, resulting in a
method that requires a Lagrange multiplier to ensure nonnegativity of the solution in
cases where it might otherwise become negative. Here, we take the nonlinear function
G′(y) ∈ T∆x, resulting in a scheme that preserves positivity. Our choice of element
representation has one consequence: we need to ensure that ∇y ∈ L2 in order to make
sense of the inner product on the left-hand side of (8.4). We address this point in
Remark 9 below.

The finite element approach above generalizes to positivity-preserving schemes
in higher dimensions (S1)d and to more complicated finite element subspaces of
H1((S1)d). Consider the following form of the lubrication equation in d space di-
mensions:

ht −∇ · (f(h)∇p) = 0, p+ ∆h = 0, f(h) ∼ hn, h→ 0.(8.6)

Now let (η1, η2) denote an inner product in L2((S1)d), T∆~x be a finite dimensional
subspace of H1((S1)d), πI1 : C((S1)d) → T∆~x be an interpolation operator, and

(η1, η2)I1
def
=
∫

(S1)d
πI1(η1(x)η2(x))dx be an associated inner product on C((S1)d).

For any d-dimensional vectors ξ1, ξ2 ∈ C((S1)d, Rd) let (ξ1, ξ2)I2 denote a numerical
integration rule replacing an L2((S1)d, Rd) inner product.

Consider the following general finite element approximation of (8.6):

Find z, w : G′(z) ∈ T∆~x, w ∈ T∆~x such that

(zt, χ)
I1 + (f(z)∇w,∇χ)I2 = 0 ∀χ ∈ T∆~x,(8.7)

(∇z,∇χ)I2 = (w,χ)
I1 ∀χ ∈ T∆~x.(8.8)
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546 L. ZHORNITSKAYA AND A. L. BERTOZZI

Taking χ = G′(z) in (8.7) and χ = w in (8.8), we obtain

(zt, G
′(z))I1 + (∇w,∇z)I2 = 0,

(∇z,∇w)I2 = (w,w)
I1 ,

or

d

dt

∫
(S1)d

πI1(G(z))dx = − (w,w)
I1 ≤ 0.

This yields the following a priori bound:∫
(S1)d

πI1(G(z(x, t)))dx ≤ C.

Now by using an explicit form of the interpolation operator πI1 we can rewrite
the left-hand side of the above inequality as

∑
i aiG(zi(t)) with ai > 0 ∀i. As before,

this gives a positive (dependent on ∆~x) lower bound on zi(t) for n ≥ 2.

Remark 9. One has to insure that ∇z ∈ L2((S1)d, Rd) to use the finite element
method (8.7)–(8.8). This is guaranteed as long as all zi(t) are bounded from above. In
the special cases of Example 1 above and Example 2 below, additional structure of the
scheme allows us to prove an a priori bound on the discrete H1 norm of the solution
z, independent of the grid size. In general, however, discrete energy dissipation (anal-
ogous to (1.5) may not occur for (8.7)–(8.8). Note that since G′(z) ∈ T∆~x, in general
∇G′(z) = 1

f(z)∇z ∈ L2((S1)d). Thus a sufficient condition for ∇z ∈ L2((S1)d, Rd) is

that f(z) is bounded. This is also a sufficient condition for f(z)∇w ∈ L2((S1)d, Rd)
which is needed to make sense of the nonlinear term in (8.7).

Now let us consider some further examples of the general finite element method
(8.7)–(8.8).

Example 2. In two space dimensions, let ~x = (x, y) and T∆~x be a space of
piecewise bilinear functions on the rectangles of size ∆x × ∆y. Let χij(x, y) be a
basis for this space such that χij(x, y) is equal to 1 at node (xi, yj) and 0 at all other
nodes. As before, let πI1 : C((S1)2) → T∆~x be the interpolation operator such that
for any continuous function η(x, y) (πI1η)(xi, yj) = η(xi, yj) ∀i, j. For any 2D vectors
ξ1, ξ2 ∈ C((S1)2, R2), let

(ξ1, ξ2)I2 =
∑
i,j

∫ xi+1

xi

1

2

(
ξ1
1(x, yj+1)ξ1

2(x, yj+1) + ξ1
1(x, yj)ξ

1
2(x, yj)

)
∆ydx

+
∑
i,j

∫ yj+1

yj

1

2

(
ξ2
1(xi+1, y)ξ2

2(xi+1, y) + ξ2
1(xi, y)ξ2

2(xi, y)
)

∆xdy.

On the product of first components this numerical integration rule performs integra-
tion exactly in the first variable but uses trapezoidal rule instead of integration in the
second variable. Similarly, on the product of second components it performs integra-
tion exactly in the second variable but uses trapezoidal rule instead of integration in
the first variable.

We show that this choice gives us the 2D positivity-preserving scheme (7.2) with
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POSITIVITY-PRESERVING SCHEMES FOR LIQUID FILMS 547

(7.6) from section 7. Taking χ = χij in (8.7) gives

(zt, χij)
I1 = zij,t∆x∆y,

(f(z)∇w,∇χij)I2 =
i∑

k=i−1

j∑
l=j−1

∫ xk+1

xk

1

2

{
f(z(x, yl+1))∂xw

∣∣
y=yl+1

∂xχij
∣∣
y=yl+1

+ f(z(x, yl)) ∂xw|y=yl ∂xχij |y=yl }∆ydx

+

i∑
k=i−1

j∑
l=j−1

∫ yl+1

yl

1

2

{
f(z(xk+1, y))∂yw

∣∣
x=xk+1

∂yχij
∣∣
x=xk+1

+ f(z(xk, y)) ∂yw|x=xk ∂yχij |x=xk }∆xdy.

To compute both double sums in the expression above we have to sum over four
rectangles that have the node (xi, yj) as one of their vertices. Let us consider one of
these rectangles, for instance, the rectangle xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1. Then

w(x, y) = wi+1,j+1
(x− xi)(y − yj)

∆x∆y
+ wi+1,j

(x− xi)(yj+1 − y)

∆x∆y

+ wi,j+1
(xi+1 − x)(y − yj)

∆x∆y
+ wi,j

(xi+1 − x)(yj+1 − y)

∆x∆y
,

∂xw =
wi+1,j+1 − wi,j+1

∆x

y − yj
∆y

+
wi+1,j − wi,j

∆x

yj+1 − y
∆y

,

∂xχij = − 1

∆x

yj+1 − y
∆y

.

Therefore,∫ xi+1

xi

1

2

{
f(z(x, yj+1))∂xw

∣∣
y=yj+1

∂xχij
∣∣
y=yj+1

+ f(z(x, yj))∂xw
∣∣
y=yj ∂xχij

∣∣
y=yj

}
∆ydx

=
∆y

2
∂xw

∣∣
y=yj ∂xχij

∣∣
y=yj

∫ xi+1

xi

f(z(x, yj))dx = −∆y

2

wi+1,j − wi,j
∆x

a(zi,j , zi+1,j),

where a(zi,j , zi+1,j) is defined in (7.6). It is easy to see that we get the same
contribution from the rectangle xi ≤ x ≤ xi+1, yj−1 ≤ y ≤ yj , while the contri-
butions from two other rectangles, xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj and xi−1 ≤
x ≤ xi, yj ≤ y ≤ yj+1, are ∆y

2
wi,j−wi−1,j

∆x a(zi−1,j , zij) each. Therefore, the first
double sum is −∆x∆y (wx̄,ija(zi−1,j , zij))x. Similarly, the second double sum is
−∆x∆y (wȳ,ija(zi,j−1, zij))y. Taking χ = χij in (8.8), we get that wij = −zx̄x,ij −
zȳy,ij . Taking this into account, we obtain

zij,t + (a(zi−1,j , zi,j)(zx̄x,ij + zȳy,ij)x̄)x + (a(zi,j−1, zi,j)(zx̄x,ij + zȳy,ij)ȳ)y = 0,

which is the positivity-preserving 2D scheme (7.2) and (7.6) that we introduced in
section 7.

Both of the examples considered above were introduced in previous sections in
a finite difference framework. Now we introduce a new scheme that arises from a
different choice of inner products in (8.7)–(8.8).

Example 3. In one dimension consider the same scheme as (8.3)–(8.4) except with
trapezoidal rule instead of exact integration for computation of (f(y)∂xw, ∂xχ) and
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548 L. ZHORNITSKAYA AND A. L. BERTOZZI

(∂xy, ∂xχ). Then

(zt, χi)
I1 = zi,t∆x,

(f(z)∂xz, ∂xχi)
I2 =

wi − wi−1

∆x

f(zi−1) + f(zi)

2
− wi+1 − wi

∆x

f(zi) + f(zi+1)

2
,

(∂xz, ∂xχi)
I2 =

∂xz
∣∣
x=xi−1+0 + ∂xz|x=xi−0

2
− ∂xz|x=xi+0 + ∂xz

∣∣
x=xi+1−0

2
.

To compute the last expression we introduce a new variable s(x) = G′(z(x)) which is
linear on each of the intervals [xi−1, xi]. Differentiating and solving for ∂xz(x) gives

∂xz(x) = ∂xs(x)f(z(x)) =
G′(zi)−G′(zi−1)

∆x
f(z(x)) for xi−1 ≤ x ≤ xi.

Therefore,

(∂xz, ∂xχi)
I2 =

G′(zi)−G′(zi−1)

∆x

f(zi−1) + f(zi)

2
−G

′(zi+1)−G′(zi)
∆x

f(zi) + f(zi+1)

2
.

Thus, we obtain the scheme

zi,t − (a(zi−1, zi)wx̄,i)x = 0

with

a(zi−1, zi) =
f(zi−1) + f(zi)

2
and

wi = − ({G′(zi)}x̄ a(zi−1, zi))x .

This shows that we can use a discretization of the diffusion coefficient of the form
a(zi−1, zi) = f(zi−1)+f(zi)

2 and still have a positivity-preserving finite difference scheme
as long as we also change the definition of the numerical second derivative.

9. A computational example. In this section we illustrate the advantage of
using a positivity-preserving scheme over a generic one.

We consider the following example. Solve the equation

ht + ∂x(f(h)∂3
xh) = 0, f(h) = h1/2,(9.1)

with positive initial condition

h0(x) = 0.8− cos(πx) + 0.25 cos(2πx).

It was computationally shown in [16] that the solution of this problem develops
singularity in finite time. The solution past the singularity time can be defined by
introducing, at all times, the regularization

hεt + ∂x(fε(hε)∂
3
xhε) = 0, fε(hε) =

h4
εf(hε)

εf(hε) + h4
ε

,(9.2)

finding the solution of the regularized problem, and taking the regularization pa-
rameter ε to zero [13, 14, 9]. The resulting “weak solution” is guaranteed to be C1

almost every time and to have a bounded second derivative almost every time. Since
fε(hε) ∼ h4

ε/ε as hε → 0 we know that ∀ε > 0 the analytical solution of the regularized
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-1.0 -0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

h ε(
x,

t)
,  

ε=
10

-1
4

 
 

t=0.001
t=0.002
t=0.004
t=0.008
t=0.016
t=0.032
t=0.05

Fig. 9.1. The solution of the regularized problem (9.2) for ε = 10−14 at the time t = 0.001 and
subsequent later times. As ε → 0 at t = 0.001 there is a region, from roughly −0.06 to 0.06, for
which the resulting weak solution is identically zero.

problem is positive. In [16] a nonnegative weak solution was approximated numer-
ically by positive strong solutions of the regularized problems with small ε. That
paper used a generic scheme (2.2) with aε(s1, s2) = fε(0.5(s1 + s2)). The numerical
solutions of the regularization suggested that after the initial singularity, the solution
develops a region where it is identically zero (see Figure 9.1). The regularized solu-
tion stays positive and develops a lot of structure near the edge of the support of the
weak solution. In [16] a fine grid was required in order to resolve the spatial structure
and keep the numerical solution positive. Here we show that an entropy dissipating
scheme does a much better job at computing this problem without requiring excessive
spatial resolution.

The numerical schemes presented in this paper are all discrete in space and contin-
uous in time. For a practical implementation of such a method, we need to discretize
in time as well and choose a time-stepping method. We use the θ-weighted time step
scheme in [10, 11, 18, 12] with θ = 1 (backward Euler). The choice of θ was motivated
by stability and monotonicity issues involving problems with diffusion. We take an
adaptive time step where we ensure that the error over the step is below a threshold
value, and that the minimum of the solution does not decrease below a percentage
of its previous value. The final concern is that the time step is small enough to ac-
curate approximate the system of ODEs (2.2) and in particular to still capture the
positivity-preserving property when solving the EDS. While we have not derived any
analytical measure of the time step constraint for positivity, in the case of the EDS,
empirically, we find that it does not have to be especially small to achieve positivity
on a coarse mesh. In particular, the adaptive time step algorithm (the same that was
used in, e.g., [10]) ensures that the solution stays positive, and the size of the step
chosen by this algorithm, coupled with the EDS, was not unreasonably small. All
computations presented below were performed on a uniform grid. However, a special
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COARSE GRID COMPUTATION.

GENERIC SCHEME.

0.0 0.1
x

0.00000

0.00020

0.00040

0.00060
h ε(

x,
t ε)

ε=10
−11

ε=10
−13

ε=10
−14

Fig. 9.2. Failure to compute the solution of the approximating problem (9.2) up to the time
t = 0.001 on a coarse grid (128 grid points on [0, 1]) using a “generic” numerical method. For each
ε = 10−11, 10−13, and 10−14, the scheme developed a numerical singularity (shown above) at the
respective times t ≈ 0.00086, 0.00076, and 0.00074. We could not continue computing beyond these
times since the numerical solution becomes negative.

routine was used to plot only selected points.

Figure 9.2 shows the computational results obtained by the generic scheme for
three values of the regularization parameter ε = 10−11, 10−13, and 10−14 on a grid
with 128 points on [0, 1]. For each value of ε in (9.2), we tried to compute the solution
until t = 0.001. However, in each case, the solution of this generic scheme developed
a singularity at a time tc earlier, in which mini yi(t) → 0 as t → tc < 0.001. In each
case, the smaller the value of ε, the earlier the time of the numerical singularity.

Figure 9.3 shows the results that the entropy dissipating scheme ((3.1) with (3.3))
gave for the same input. In this case we successfully computed the numerical solution
at t = 10−3. Note that in both cases we used the same purely implicit method for the
time integration, choosing the time step ∆t small enough to ensure that the discrete
time system shows the same behavior as the continuous time one.

The final Figure 9.4 shows the results obtained by the entropy dissipating scheme
on a much finer grid, one with 1024 points on [0,1]. Note that the positive approxi-
mation (9.2) is now well resolved near the edge of the support of the weak solution.
This computation shows that the EDS does a good job on a coarser mesh (compare
with Figure 9.3).

In this example we are in effect using a modified entropy dissipating scheme (as
in section 6) to compute a weak solution of (9.1). Note that both Figure 9.3 and
Figure 9.4 indicate that the method is converging in ε. Unfortunately, the results of
section 6 do not help in identifying the order of convergence in ε since we are computing
a nonnegative solution here. In fact, the computations suggest that convergence in ε
is slower that the first order predicted for strong solutions in section 6. For tracking
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COARSE GRID COMPUTATION.

ENTROPY DISSIPATING SCHEME.

0.0 0.1
x

0.00000

0.00020

0.00040

0.00060
h ε(

x,
0.

00
1)

ε=10
−11

ε=10
−13

ε=10
−14

Fig. 9.3. Successful computation of the solution of the approximating problem (9.2) at the
time t = 0.001 on a coarse grid (128 grid points on [0, 1]) using the EDS of section 3. Shown are
examples for ε = 10−11, ε = 10−13, and ε = 10−14. The minimum time step imposed by adaptive
time-stepping code was log10(min ∆t) = −6.6 for ε = 10−11, −7.2 for ε = 10−13, and −7.4 for
ε = 10−14. The solution on the course grid shows good agreement with the same computation (below
in Figure 9.4) on a fine grid.

FINE GRID COMPUTATION.

ENTROPY DISSIPATING SCHEME.

0.0 0.1
x

0.00000

0.00020

0.00040

0.00060

h ε(
x,

0.
00

1)

ε=10
−11

ε=10
−13

ε=10
−14

Fig. 9.4. Numerical computation of (9.2) at fixed time t = 0.001, ε = 10−11, ε = 10−13, and
ε = 10−14, on a fine grid of 1024 grid points on [0, 1]. For this run, log10(min ∆t) = −6.7 for
ε = 10−11, −7.0 for ε = 10−13, and −7.3 for ε = 10−14.
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the numerical free boundary of the positive region one may choose a function δ(ε) > 0,
δ(ε)→ 0 as ε→ 0 and then define a free boundary as a boundary of the region where
the solution is less than the prescribed δ(ε). The question of how to choose δ(ε) is
a nontrivial one since it is related to the order of convergence of numerical solutions
in ε. Nevertheless, the computations shown on Figure 9.3 suggest that the method
of section 6 may be very useful not only for computing strong solutions but also for
approximating weak solutions by computing the solutions to regularized problems.

10. Conclusions. In this paper we discuss several kinds of finite difference
schemes for solving fourth order degenerate diffusion equations arising in the study of
viscous films and layers driven by surface tension. Previous computational work on
this problem showed that much grid refinement is typically needed in order to resolve
the solution when it approaches a “near” singularity. Underrefinement of the grid can
lead to false premature rupture of the solution and also to inaccurate computations
of weak solutions with moving contact lines.

We show that it is possible to design a finite difference scheme, in one and two
space dimensions, that preserves positivity of the solution. This technique is useful
both for computing solutions that have near singularities when forced (such as flow
down an inclined plane with a precursor layer model (see [15]) and for computing
weak solutions via regularizations, as we demonstrated in section 9 of this paper.
We also showed that the idea for designing the scheme, that of dissipation of a dis-
crete version of a nonlinear entropy function, can be generalized to an abstract finite
element context which suggests ways for designing positivity-preserving schemes on
more complicated grids. Note that in the case where the solution of the PDE has a
finite time singularity in which h → 0, a positivity-preserving approximation of the
PDE will not see the singularity. However, it will resolve the solution, before the
singularity happens, upon successive levels of mesh refinement. Thus such a scheme
could be very useful for careful studies of singularity formation.

There are a number of questions that stem from this work. For example, it
seems worthwhile to examine the question of convergence of schemes that arise from
the general finite element model (8.7)–(8.8), where the elements are generated on
nonuniform grids. In general, such a scheme may not be second order consistent (i.e.,
may not satisfy the equivalent of Lemma 4.1), so that the estimates derived here do not
directly generalize. Another open question concerns the use of positivity-preserving
schemes in the study of weak solutions. In section 7 we introduced a modified entropy
dissipating scheme that has two small parameters involved, namely, grid size ∆x and
the regularization parameter ε. If we take ε = ε(∆x) then the new scheme obtained
can be considered as an alternative positive approximation of a solution of the PDE.
The results of section 10 suggest that this method could be particularly useful for
computing weak solutions. We also expect that the EDS will perform well on 2D
computations since it has the potential to give good results for moving contact lines
without requiring local mesh refinement, a procedure that is much more difficult in
two dimensions than in one dimension.

Finally we note that it would be interesting to try to generalize the method
to implement other standard boundary conditions as well as to apply it to other
problems that possess positivity-preserving entropies, such as lubrication models with
stabilizing or destabilizing forces such as gravity [21] or long range Van der Waals
interactions [18] or driving (convective) terms [15].
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11. Appendix. We derive the following estimate used to prove Remark 6 in
section 7:

‖u‖Lq,∆x,∆y ≤ C(q)‖u‖H1,∆x,∆y,(11.1)

where uij = u(i∆x, j∆y) is a grid function on [0, 1]×[0, 1]; ‖·‖Lq,∆x,∆y and ‖·‖H1,∆x,∆y

are discrete H1 and Lq norms, respectively; and q can be taken arbitrarily large. Since
the domain of u is compact, it suffices to show the following statement similar to that
of Theorem 2.1, p. 181, in [22].

Lemma 11.1. For an arbitrary grid function uij = u(i∆x, j∆y) on [0, 1]× [0, 1]

‖u‖Lq,∆x,∆y ≤ C(p)
(‖u‖Lp,∆x,∆y + ‖ux̄‖Lp,∆x,∆y + ‖uȳ‖Lp,∆x,∆y

)
,(11.2)

where p < 2 is defined by 1
q = 1

p − 1
2 .

Proof . The proof follows that of Theorem 2.1, p. 181, in [22].

Consider the scalar function g(s) = |s| p
2−p . This function is differentiable for

p
2−p > 1,

g′(s) =
p

2− ps
2(p−1)

2−p sign s.

Taylor’s formula gives

|g(s1)− g(s2)| = |s1 − s2|g′(λs1 + (1− λ)s2), λ ∈ (0, 1).

Therefore

|g(s1)− g(s2)| ≤ C(p)|s1 − s2|
{
|s1|

2(p−1)
2−p + |s2|

2(p−1)
2−p

}
.

Take s1 = uij , s2 = ui,j−1. Then

|uij |
p

2−p − |ui,j−1|
p

2−p ≤ C(p)|uȳ,ij |∆y
{
|uij |

2(p−1)
2−p + |ui,j−1|

2(p−1)
2−p

}
.

Summation over j = k + 1, . . . , l gives

|uil|
p

2−p − |uik|
p

2−p ≤ C(p)
∑
j

|uȳ,ij |∆y
{
|uij |

2(p−1)
2−p + |ui,j−1|

2(p−1)
2−p

}
.

The sum on the right-hand side is taken over all indices l. Taking first a sup over
all l, then multiplying by ∆y and summing over k and finally multiplying by ∆x and
summing over i implies∑

i

sup
l
|uil|

p
2−p∆x ≤

∑
i,k

|uik|
p

2−p∆x∆y

+ C(p)
∑
i,j

|uȳ,ij |
{
|uij |

2(p−1)
2−p + |ui,j−1|

2(p−1)
2−p

}
∆x∆y.

Applying Hölder’s inequality to both terms on the right-hand side gives∑
i

sup
l
|uil|

p
2−p∆x ≤ ‖u‖Lp,∆x,∆y‖u‖

q(p−1)
p

Lq,∆x,∆y
+ C2(p)‖uȳ‖Lp,∆x,∆y‖u‖

q(p−1)
p

Lq,∆x,∆y

≤ C3(p)
(‖u‖Lp,∆x,∆y + ‖uȳ‖Lp,∆x,∆y

) ‖u‖ q(p−1)
p

Lq,∆x,∆y
.
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Similarly one can show that∑
l

sup
i
|uil|

p
2−p∆y ≤ C3(p)

(‖u‖Lp,∆x,∆y + ‖ux̄‖Lp,∆x,∆y
) ‖u‖ q(p−1)

p

Lq,∆x,∆y
.

Therefore

‖u‖qLq,∆x,∆y =
∑
i,j

|uij |q∆x∆y ≤
∑
i,j

sup
i
|uij |

p
2−p sup

j
|uij |

p
2−p∆x∆y

=

(∑
i

sup
j
|uij |

p
2−p∆x

)∑
j

sup
i
|uij |

p
2−p∆y


≤ C4(p)

(‖u‖Lp,∆x,∆y + ‖uȳ‖Lp,∆x,∆y
) (‖u‖Lp,∆x,∆y + ‖ux̄‖Lp,∆x,∆y

) ‖u‖ 2q(p−1)
p

Lq,∆x,∆y
.

Dividing both sides by ‖u‖
2q(p−1)

p

Lq,∆x,∆y
and using the inequality

√
ab ≤ a+b

2 we get

‖u‖Lq,∆x,∆y ≤ C5(p)
(‖u‖Lp,∆x,∆y + ‖ux̄‖Lp,∆x,∆y + ‖uȳ‖Lp,∆x,∆y

)
.

Now to finish the proof of inequality (11.1) we note that since the domain of u is
compact, the Hölder inequality implies

‖u‖Lp,∆x,∆y + ‖ux̄‖Lp,∆x,∆y + ‖uȳ‖Lp,∆x,∆y ≤ C‖u‖H1,∆x,∆y

∀p < 2. Taking p→ 2− in (11.2) corresponds to taking q → +∞. Therefore, we can
take q to be arbitrarily large in (11.1).
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