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We consider flow of a thin film on an incline with negatively buoyant particles. We derive a one-
dimensional lubrication model, including the effect of surface tension, which is a nontrivial extension
of a previous model (Murisic et. al [J. Fluid Mech. 2013]). We show that the surface tension, in the
form of high order derivatives, not only regularizes the previous model as a high order diffusion, but
also modifies the fluxes. As a result, it leads to a different stratification in the particle concentration
along the direction perpendicular to the motion of the fluid mixture. The resulting equations are
of mixed hyperbolic-parabolic type and different from the well-known lubrication theory for a clear
fluid or fluid with surfactant. To study the system numerically, we formulate a semi-implicit scheme
that is able to preserve the particle maximum packing fraction. We show extensive numerical results
for this model including a qualitative comparison with two-dimensional laboratory experiments.

I. INTRODUCTION

Recent development in thin-film flows involves studying the dynamics of films laden with particles flowing
down an inclined plane [7, 8, 20, 29, 32]. Understanding the underlying physics of these flows is important
to a number of industrial and geophysical applications such as food processing [19], coating flow technologies
[6], and landslides and debris flow [14]. These require efficient handling of solids in slurries and uniform
particle distributions. The first thin-film model of particle-laden flow with a free surface is attributed to
Zhou et al. [32], wherein both the effects of hindered settling and surface tension are included and rescaled
properly to account for their physical significance. This model captures the ‘ridged’ regime in which particles
accumulate at a single, particle-rich front. However, the model assumes a rapid vertical diffusion in the bulk
of the fluid, and thereby fails to capture a dominant flow pattern observed in experiments up to moderate
particle concentrations: the ‘settled’ regime in which particles settle towards the subtrate and a clear fluid
layer flows over them. In subsequent studies [7, 9], the mathematical model was improved through the
addition of shear-induced migration, which suggested a balance between hindered settling and shear-induced
migration as the dominant large scale physics for particle/liquid separation. The improved equilibrium
model was used by Murisic et. al. [20] to successfully predict the critical concentration where the suspension
transitions from the ‘settled’ to the ‘ridged’ regime, which depends on the inclination angle and relative
density of particles to fluid. At the critical concentration is an unstable equilibrium (the ‘mixed’ regime) for
which the particles remain uniformly mixed.

The most recent dynamic model based on lubrication theory was proposed by Murisic et. al. in [21].
The derivation follows an asymptotic analysis of the underlying governing equations in the lubrication limit,
incorporating the effects of hindered settling and shear-induced migration but omitting surface tension. The
resulting equations form a hyperbolic system of conservation laws for the film height and integrated particle
concentration. This system is extensively analyzed in the following studies [17, 27, 28]; typical solutions
are shown to be a pair of shocks (for separated fluid and particle wave fronts) in the settled regime and
either a double shock or a singular shock in the ridged regime. The singular shock, in which the particle
concentration achieves the maximum packing fraction, is a novel feature which suggests the accumulation of
particles at the particle-rich ridge.

While previous models have been successful in capturing the dynamics of the bulk flow, they do not
provide a description of the detailed structure of the fluid front. Near the front, surface tension becomes
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a dominant effect, leading to the growth of a capillary ridge and fingering instabilities [13]. In this paper,
we introduce a model for particle-laden flow with surface tension, extending the model of Murisic et al. As
we will demonstrate, there are subtle issues in constructing the model, so we focus on the one dimensional
case where the spanwise variation is neglected. Even in one dimension, the addition of surface tension and
the presence of particles will significantly change the type of the model due to the complicated nonlinear
dependence of the fluid and particle fluxes on the pressure gradient. In the next section, we describe in detail
the derivation of the mathematical model by taking into account the surface tension effect. In Section III,
we derive the equations in the dilute limit (i.e. where the particle concentration is very small), for which
the equations have an explicit form. In Section IV, we propose a semi-implicit numerical scheme for the
new model, taking special care to consistently discretizing both the fluid and particle equations so that
the particle concentration does not exceed the maximum packing fraction. Some numerical simulations are
carried out in Section V, where we compare the solutions with and without surface tension and provide a
preliminary comparison with experimental data. Finally, the paper is concluded in Section VI, where we
discuss some open questions and directions for future research.

II. MATHEMATICAL MODEL

A. Evolution equations

In this section, we derive a lubrication model including the effect of surface tension. The derivation
follows that in [21] with significant changes to account for the dependence of the particle distribution and
fluid velocity on the surface tension. Consider a flow in a rectangular, rigid channel inclined at an angle
α to the horizontal in a two-dimensional coordinate system (x, z), where x and z represent the axial and
normal directions to the flow, respectively (see Fig. 1). Here we ignore the span-wise direction to more clearly

Figure 1: Sketches of the setup. Left: physical parameters and scalings. Right: ‘equilibrium’ scheme; at each
point x along the incline there is an equilibrium particle distribution φ(z, φ0, px) in the z-direction depending on the
depth-averaged concentration φ0(x, t) and pressure gradient px(x, t).

illustrate the the surface tension effect. The mixture is comprised of a fluid with density ρ` and particles with
density ρp > ρ`. We model the mixture as a single (quasi)-Newtonian fluid with a concentration-dependent
density ρ(φ) and viscosity µ(φ). The dynamics of this flow are governed by the incompressible Navier-Stokes
equations {

ρ(φ)(ut + u · ∇u) = −∇p+∇ ·
(
µ(φ)

(
∇uT +∇u

))
+ ρ(φ)g, (1a)

∇ · u = 0. (1b)

Here u = (u,w) represents the velocity field and g = (g sinα,−g cosα). The mixture density is ρ(φ) =
(1 − φ)ρl + φρp and we use the Krieger-Dougherty relation µ(φ) = (1 − φ/φm)−2 with φm the maximum
packing fraction (taken to be φm = 0.61). The particle concentration φ(x, z, t) satisfies a transport equation
which takes into account migration due to advection and flux gradients. It reads

∂tφ+ u · ∇φ+∇ · J = 0, (2)

where the flux J = (J1, J3) represents the total flux of particles due to gravity and shear-induced migration
arising from particle collisions. Solutions of the equations are subject to the no-slip boundary condition and
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continuity of the velocity and stress:{
u(z = 0) = 0, µuz(z = h) = 0, (3a)

p(z = h) = P0 − γ0κ, (3b)

where P0 is the atmospheric pressure, κ is the curvature of the surface and γ0 is the surface tension, which
is considered constant in this work. To justify this assumption, a series of experiments were carried out in
the physical regime of interest, detailed in Appendix A. The flux satisfies the no-flux boundary condition
J · n = 0 at z = 0 and z = h, which implies that the model does not allow for particles to adsorb at the
interface.

Proceeding with the formulation of our model, we introduce the following scalings to render the governing
equations dimensionless:

x̂ =
x

L
, ẑ =

z

H
, ĥ =

h

H
, H = εL, û =

u

U
, ŵ =

w

εU
, t̂ =

tU

L
,

p̂ =
p

P
, µ̂ =

µ

µl
, ρ̂ =

ρ

ρl
= 1 +

ρp − ρl
ρl

φ = 1 + ρsφ ,

where the quantities shown with a hat are dimensionless and ε � 1 represents the lubrication parameter.
The driving mechanism for the flow is gravitational and therefore, it follows from a balance between gravity
and viscosity terms that ρlg sinα = µlU/(ε

2L2), which leads to the velocity scale U = ρlg sinαH2/µl. For
highly viscous flows, it is appropriate to scale the pressure according to P/L = µlU/H

2.

We note that in this setting, the viscous terms are dominant compared to the inertial terms and hence
the Reynolds number, Re = ρlUL/µl � 1 which implies that inertial contributions in (1a) can be ignored.
Rewriting (1a) in terms of the dimensionless variables, we have

ρlUρ̂

(
ût̂
T

+
U

L
ûûx̂ +

εU

H
ŵûẑ

)
= −P

L
p̂x̂ +

2µlU

L2
(µ̂ûx̂)x̂ +

µlU

H2
(µ̂(ûẑ + ŵx̂))ẑ + ρlρ̂g sinα , (4)

and

ρlUρ̂

(
εŵt̂
T

+
εU

L
ûŵx̂ +

ε2U2

H
ŵŵẑ

)
= −P

H
p̂ẑ +

2εµlU

H2
(µ̂ŵẑ)ẑ +

µlU

L2
(µ̂(

1

ε
ûẑ + εŵx̂))x̂ − ρlρ̂g cosα , (5)

in the x− and z− directions, respectively. Let us define the shear stress

σ̂ ≡ µ̂ûẑ. (6)

Then the leading order terms in ε of Eq. (4) are

−p̂x̂ + σ̂ẑ + ρ̂ = 0. (7)

Likewise, the leading order terms of (5) are

−p̂ẑ = 0, (8)

which, together with boundary condition (3b) yields p̂(x̂, ŷ, ẑ) = p̂0− γ0
P κ, where p̂0 = P0

P . As a consequence,

p̂x̂ = −γ0
P
κx̂. (9)

Since (9) and κ ≈ hxx to leading order in ε, we have

p̂x̂ = −γ0
P
κx̂ = − γ0H

3

µlUL3

(
ĥx̂x̂

)
x̂

= − ε3

Ca
ĥx̂x̂x̂ = −βĥx̂x̂x̂ (10)

where β ≡ ε3/Ca and Ca = µlU
γ0

is the capillary number which measures the relative importance between

viscous and surface tension forces. Grouping the information in (7)–(10), we have

σ̂ẑ = −βĥx̂x̂x̂ − ρ̂ . (11)
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Now we non-dimensionalize the particle equation (2). Following the approach in [21], we adopt the scalings
for particle fluxes J1 and J3 as

[J1] = ε[J3], [J3] =
d2U

H2
,

where d is the diameter of the particles. Here J1, J2 ∝ d2 is due to the diffusive flux approach (the explicit
form will be given in the next section) and the ε factor in [J1] is due to the equilibrium requirement in the

next section. The non-dimensionalized fluxes are then Ĵ1 = J1
[J1]

and Ĵ3 = J3
[J3]

. To leading order, Eq. (2)

reduces to (Ĵ3)ẑ = 0, which along with the zero-flux boundary condition leads to

Ĵ3 = 0 , (12)

i.e. the particles are in equilibrium in the z-direction. According to the theory for shear-induced migration,
the flux Ĵ3 depends on the particle concentration φ, the shear rate γ̇ ≈ |ûẑ| and their gradients ∇φ and ∇γ.
Then (12) and (7) form a pair of ODEs for σ̂ and φ that can be used to obtain the particle distribution
and velocity û at each point x̂. This allows us to integrate out the z-dependence in the model and greatly
simplify the equations. For this reason, we define φ0(x̂, t̂) to be the z−averaged particle concentration, i.e.,

φ0(x, t) =
1

h

∫ h

0

φ(x, z′, t)dz′. (13)

Proceeding with the derivation, we integrate the incompressibility condition (1a), using the kinematic

boundary condition ∂t̂ĥ = ŵ − û∂x̂ĥ
∣∣
ẑ=ĥ

along with the no penetration boundary condition ŵ(0) = 0 the

following evolution equations for ĥ:

ĥt̂ +

(∫ ĥ

0

ûdẑ

)
x̂

= 0 . (14)

Indeed,

∂x̂

∫ ĥ

0

ûdz = ĥx̂û(ĥ) +

∫ ĥ

0

∂x̂ûdẑ = ĥx̂û(ĥ)−
∫ ĥ

0

∂x̂ŵdẑ = ŵ(ĥ)− ∂t̂ĥ− ŵ(ĥ) .

The particle transport equation (2), to next order after the leading balance (12), is simply

∂t̂φ+ ∂x̂(ûφ) = 0.

Integrating this equation from ẑ = 0 to ẑ = ĥ and applying the same boundary conditions as above we have

(
ĥφ0

)
t̂

+

(∫ ĥ

0

ûφdẑ

)
x̂

= 0 .

To further simplify the model, we further rescale our variables as

s =
ẑ

ĥ
, σ̃(t̂, x̂; s) =

σ̂(t̂, x̂; ẑ)

ĥ(t̂, x̂)
, ũ(t̂, x̂; s) =

û(t̂, x̂; ẑ)

ĥ2(t̂, x̂)
, φ̃(t̂, x̂; s) = φ(t̂, x̂; ẑ) .

The evolution equations now take the form

ĥt̂ +

(
ĥ3
∫ 1

0

ũds

)
x̂

= 0,
(
ĥφ0

)
t̂

+

(
ĥ3
∫ 1

0

ũφ̃ds

)
x̂

= 0. (15)

Our goal now is to write the integrals in terms of functions only of φ0 and the pressure gradient p̂x̂, thus
completely eliminating the explicit dependence on ẑ. Following a similar approach to the one discussed [21],
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we do so by rewriting (15) in terms of integrals relating to the equilibrium distribution φ̃. In view of Eq. (7)
and the boundary condition σ̃(1) = 0, we have

σ̃(s) = (s− 1)p̂x̂ +

∫ 1

s

(1 + ρsφ̃) ds′, (16)

which combined with (6) gives

ũ(s) =

∫ s

0

σ

µ(φ̃)
ds′. (17)

Now define functions I, I1 (omitting the implied dependence on φ0 and p̂x̂) by

I(s) ≡
∫ s

0

1

µ(φ̃)

∫ 1

s′
(1 + ρsφ̃) ds′′ ds′ , (18)

I1(s) ≡
∫ s

0

(1− s′)
µ(φ̃)

ds′ , (19)

then ũ(s) = I(s)−I1(s)p̂x̂. Integrating (17) and using the boundary conditions (3), the fluxes in (15) become∫ 1

0

ũds = −p̂x̂f1 + f,

∫ 1

0

φ̃ũds = −p̂x̂g1 + g ,

where f, f1, g and g1 are given by

f ≡
∫ 1

0

I(s) ds, f1 ≡
∫ 1

0

I1(s) ds, g ≡
∫ 1

0

φ̃I(s) ds, g1 ≡
∫ 1

0

φ̃I1(s) ds. (20)

As a result, the equations in (15) become:

ĥt̂ +
{
ĥ3 [−f1p̂x̂ + f ]

}
x̂

= 0, (ĥφ0)t̂ +
{
ĥ3 [−g1p̂x̂ + g]

}
x̂

= 0,

where p̂x̂ comes from (10). As we show below, the equilibrium distribution φ̃ and velocity ũ can be
parametrized by φ0 and px̂; it then follows that the fluxes f, f1, g, g1 are functions of φ0 and p̂x̂ only.
In addition, note that the fluxes are each non-negative. This puts the system in a form suitable for analysis,
analogous to the thin film equation without particles or with surface particles (e.g. [11]), but with fluxes that
depend in a non-linear fashion on p̂x̂. Now that the governing equations have been determined, it remains
only to obtain φ̃ from the equilibrium model.

B. Equilibrium solution

To close the model, we follow [21] and choose a particle flux based on the ‘diffusive flux model’ that
describes the balance between the competing effects of sedimentation and shear-induced migration in the
normal direction. The expression is

J3 = −d
2

4

[
Kcφ∂z (γ̇φ) +

Kvφ
2γ̇

µ(φ)

dµ(φ)

dφ
∂zφ

]
+
d2(ρp − ρl)(1− φ)

18µ(φ)
φg cosα.

In the simple geometry of thin-film flow down an incline, the model has been found to be effective in
capturing the qualitative behavior of such flows [20, 21] while being simple enough to reduce in the lubrication
limit to evolution equations of a typical form for thin films. We remark that more complicated models can
be derived through a more rigorous framework (e.g. the suspension balance model [22] or other approaches
[1]); the differences between the equations and behavior between the models would be of interest for future
work.
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With this flux, the dimensionless form in (12) then reads

Kcφ∂ẑ

(
ˆ̇γφ
)

+Kvφ
2 ˆ̇γ

2

φm − φ
∂ẑφ−

2ρs(1− φ)φ

9µ̂(φ)
cotα = 0, (21)

where we have made use of the dimensionless effective viscosity µ̂(φ) =
(

1− φ
φm

)−2
. The shear rate γ̇ is

γ̇ = 1
4 ‖ ∇u +∇uT ‖F= |ûẑ| to leading order in ε. Eq. (21) then becomes an equation for the shear stress

σ̂ = µ̂(φ)ûẑ given by

φ|σ̂|ẑ +

(
1 + C1

φ

φm − φ

)
|σ̂|φẑ + C2(1− φ) = 0, (22)

where C1 = 2(Kv−Kc)
Kc

and C2 = 2ρs
9Kc

cotα. Then the dynamics in the z-direction [see Eqs. (7) and (22)] are
governed by the pair of ODEs

σ̂ẑ = p̂x̂ − ρ̂(φ), φẑ =
C2(φ− 1)− φ|σ̂|ẑ
|σ̂|
(

1 + C1
φ

φm−φ

) .
In the rescaled variables, these equations become

σ̃s = p̂x̂ − (1 + ρsφ̃), φ̃s =
C2(φ̃− 1)− φ̃|σ̃|s
|σ̃|
(

1 + C1
φ̃

φm−φ̃

) ,
subject to the boundary conditions σ̃(1) = 0 and φ0 =

∫ 1

0
φ̃(s) ds. The solution of this system, and conse-

quently the fluxes in (14), are now parametrized by both the averaged volume fraction φ0 and the pressure
gradient p̂x̂. Note that Eqs. (25) and (26) represent a coupled system of ODEs which, as previously men-
tioned, may be solved to obtain profiles of û and φ in the normal direction. In turn, this gives the fluxes
needed in the evolution equations (23) and (24) at each point in the axial direction x̂.

To summarize, we first drop the hats and tilde for brevity as we only work with dimensionless system from
here on. Our dynamic model is then

ht +
{
h3 [−f1px + f ]

}
x

= 0, (23)

(hφ0)t +
{
h3 [−g1px + g]

}
x

= 0, (24)

where the fluxes depend on φ(x, t; s) and u(x, t; s) through Eqs. (18)–(20). From the equilibrium theory
above, φ(x, t; s) and u(x, t; s) and are solutions to the ODE system

σs = px − (1 + ρsφ), σ(s = 1) = 0 , (25)

φs =
C2(φ− 1)− φ|σ|s
|σ|
(

1 + C1
φ

φm−φ

) , φ0(x, t) =

∫ 1

0

φ(x, t; s)ds , (26)

us =
σ

µ
, u(0) = 0 ,

and thus can be parameterized by the depth averaged concentration φ0(x, t) in (13) and pressure gradient
px = −βhxxx, i.e.,

φ(x, t; s) = φ(s, φ0, px), u(x, t; s) = u(s, φ0, px) .

The equilibrium system (25)–(26) is important in determining the regime in which the model resides:
settled or ridged. Therefore, we show the relationship of φ, σ and u with the rescaled normal variable s for
different values of px, parametrized by φ0, in Figs. 2–5. As px and φ0 are varied, the shear rate varies which
results in changes in the velocity profile and, consequently, the particle fluid flow dynamics. We show here
five types of distinct behavior observed with varying px and φ0, summarized in the phase plane of Fig. 6.
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Figure 2: Variation of particle concentration φ, shear stress σ, and velocity u in the normal z-direction with α = 50 deg
for fixed p̂x̂ = 4 and varying φ0. In this case, the shear stress is positive and there exists a critical concentration
φc ∈ (0, φm) that separates the settled regime from ridged regime.
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Figure 3: Variation of particle concentration φ, shear stress σ, and velocity u in the normal z-direction with α = 50 deg
for fixed p̂x̂ = 1.1. In this case, the shear stress changes sign from positive to negative in 0 < s < 1 for settled regime.
Top row: φ0 < φc (settled). Bottom row: φ0 > φc (ridged).
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Figure 4: Variation of particle concentration φ, shear stress σ, and velocity u in the normal z-direction with α = 50 deg
for fixed p̂x̂ = 2 and varying φ0. In this case, the critical concentration φc > φm and thus the solutions are always
settled.

As in the absence of surface tension [21], there exists for some parameter values a critical value φc(px) such
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Figure 5: Variation of particle concentration φ, shear stress σ, and velocity u in the normal z-direction with α = 50 deg
for fixed p̂x̂ = 4 and varying φ0. In this case, the shear stress is negative and there exists a critical concentration
φc ∈ (0, φm) that separates the settled regime from ridged regime.

that φ′ = 0 in (26). If σ is single signed then, as shown in [27], the concentration profile φ(s) is increasing
when φ0 > φc (particles accumulate at the surface) and decreasing when φ0 < φc (particles settle towards
the substrate with a clear fluid layer above). If px ≤ 1, then σ ≥ 0 so solutions are monotonic and the
velocity profile u(s) is positive (shown in Fig. 2 and corresponding to regions R,S in the phase plane in
Fig. 6). If px ≥ 1 + ρsφ0 then σ ≤ 0 and the velocity is negative (Fig. 5). The critical value φc lies above
φm when |px − 1− ρsφm| ≤ c2(1− 1/φm), in which case solutions are always settled (Fig. 4) with negative
velocity.

p
x

0 1 2 3 4

φ
0

0

0.1

0.2

0.3

0.4

0.5

0.6

R

S

R

S

S*

disc.

Figure 6: Phase plane at α = 50 deg indicating types of solutions of Eqs. (25) and (26) for a given average concentration
φ0 and pressure gradient px. The dashed curve is the critical concentration φc(px); the solid curves are the straight
lines px = 1 and px = 1 + ρsφ0. Solution profiles vary discontinuously across the marked segment and otherwise
vary continuously with φ0 and px. Regions R,S and S∗ correspond respectively to ridged, monotonic settled, and
non-monotonic settled solutions where σ changes sign.

The behavior in the region 1 ≤ px ≤ 1 + ρsφ0 is more complicated. Unlike in the case of no surface
tension, the shear changes sign from positive to negative in 0 < s < 1 for settled solutions (S∗ in the
phase plane; shown in top row of Fig. 3). This is similar to what happens in the so-called return flows
[25]. Particles accumulate to φm at the point where σ = 0, now in the interior of the domain, rather than
at the surface. For φ0 > φc solutions are ridged and monotonic (bottom row of Fig. 3). For numerical

convenience (as done in [23]), we introduce a small regularization to the shear stress, |σ| →
√
σ2 + ε2 in

Eq. (26); this has the effect of preventing φ from reaching φm exactly (which is potentially unphysical) but
does not affect the results that follow. The additional ε can be interpreted as a correction to the stress
accounting for finite particle size. We note that the particle profiles vary discontinuously across the critical
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concentration (dashed part of the line in Fig. 6) as they transition from ‘settled’ to ‘ridged’. This is likely
an artifact of the equilibrium assumption, which effectively assumes particles to equilibrate instantaneously.
The discontinuity, however, only occurs in a small range of px and does not appear to be significant.

III. DILUTE APPROXIMATION

In this section, we consider a special case—the dilute approximation, where the fluxes have a closed form.
Herafter, we work only with the non-dimensionalized system and drop hats for brevity. As shown in the end
of this section, the equation for the fluid flow is exactly the same as clear fluid, whereas the equation for
particle transport depends on the flow free surface in a nonlinear fashion. This simpler case will allow us to
better understand how the surface tension modifies the system.

Consider an asymptotic expansion of φ: φ = 0 + δφ1 + δ2φ2 + ... with δ � 1. Then the leading order terms
of the z-component of the Stokes equations (23) in δ are

dσ

dz
= px − 1, (27)

recalling px = −βhxxx from (10). Equation (27) is integrated with respect to z, yielding

σ(z) = (px − 1)(z − h), (28)

where we have used σ(h) = 0. Linearization of the particle transport equation in (23) yields,

|σ|dφ
dz

= −B, (29)

where B = 2ρs cotα/(9Kc). Using Eq. (28) in (29) and, upon integration with respect to z,

φ(z) =

{
B(T−z)
|1−px|h 0 < z < T,

0 T < z < h,

where 0 < z < T defines the region with particles.Therefore, the z-averaged particle volume fraction is
obtained as,

φ0 =
1

h

∫ h

0

φ(z)dz =
BT 2

2|1− px|h2
. (30)

Since the linearization of µ about φ = 0 gives µ = 1, the velocity profile via (6) satisfies

du

dz
= (px − 1)(z − h).

which, upon integration and application of the no-slip condition at z = 0, gives:

u(z) = (px − 1)

(
z2

2
− hz

)
.

The spatiotemporal evolution equations (14) form a 2× 2 system, defined as,

ht + Fx = 0, (hφ0)t +Gx = 0.

The fluxes, F and G are defined as:

F =

∫ h

0

u(z) dz, G =

∫ T

0

φ(z)u(z) dz.

9



It is simple enough to see that F =
1

3
(1− px)h3. Now, for G, integrating across the film, gives

G = B

(
T 3

6
− T 4

24h

)
1− px
|1− px|

.

By making use of Eq. (30) and ignoring terms of O(φ20), we obtain the following relationship for G:

G =

√
2

9B
φ
3/2
0 |1− px|3/2h3

1− px
|1− px|

.

Substituting the full form of the fluxes in Eqs. (III), we get

ht +

(
h3

3
+ βh3hxxx

)
x

= 0, (31)

nt +

√
2

9B

(
φ
3/2
0 |1− px|1/2(1− px)h3

)
x

= 0, (32)

where n = hφ0 and we have made use of px = −βhxxx. We observe from Eqs. (31) and (32) that the particle
dynamics decouple from the fluid motion. Note that Eq. (31) describes the dynamics of the clear, thin-film
fluid. Setting β = 0 recovers the simple model [21] which ignores effects due to surface tension. We note that
in the absence of surface tension effects, the system of Eqs. (31), (32) may be solved exactly. In the presence
of surface tension (β 6= 0) with positive initial conditions, (31) is expected to have a smooth solution (see
[3]) and (32) becomes a scalar conservation law that can be solved exactly.

IV. NUMERICAL SCHEME

In this section, we explain in detail the numerical scheme for solving the system (23) (24). Recalling the
definition of px in (10), the system reads (omitting hats)

ht +
(
h3f

)
x

= −β
(
h3f1hxxx

)
x
, (33)

(hφ0)t +
(
h3g
)
x

= −β
(
h3g1hxxx

)
x
. (34)

Note that fluxes f(φ0, px) and g(φ0, px) depend on px, thus the left hand side of (33) (34) is no longer a
simple hyperbolic system, which makes its discretization ambiguous. To overcome this difficulty, we rewrite
the system (33) and (34) as

ht + (h3f(φ0, 0))x = −β
(
h3f̃1hxxx

)
x

(35)

(hφ0)t + (h3g(φ0, 0))x = −β
(
h3g̃1hxxx

)
x

(36)

where

f̃1 = f1 −
f(φ0, 0)− f(φ0, px)

px
, g̃1 = g1 −

g(φ0, 0)− g(φ0, px)

px
.

Then the left hand side of (35) (36) reduces to the original model without surface tension, which has been

shown to be hyperbolic [27]. The modified fluxes f̃1 and g̃1 are well-defined and bounded as px → 0 due to
the linear dependence of the equilibrium equation (25) on px. In addition, these fluxes remain non-negative.
The main difficulty comes from the fourth order diffusion, for which an explicit treatment poses a constraint
on time step ∆t ∼ ∆x4, whereas implicit treatment necessitates inversion of a nonlinear system. We propose
here a semi-implicit discretization with an explicit discretization of the nonlinear fluxes f̃1 and g̃1 and
implicit for the linear fourth order diffusion. The complicated form of the flux functions and potential lack
of smoothness motivates the choice of a semi-implicit method preferable in which these fluxes are treated
explicitly.
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More precisely, let ∆x be the mesh size and ∆tk be the adpative time step at kth step. Denote hkj =

h(xj , t
k), (fi)

k
j = fi(xj , t

k), and (φ0)kj = φ0(xj , t
k), where xj = j∆x and tk =

∑k−1
l=0 ∆tk. First, we discretize

the fluid flow (35) as

hk+1
j − hkj

∆tk
+

(h3f(φ0, 0))kj − (h3f(φ0, 0))kj−1
∆x

= − β

∆x4

{
(h3f̃1)kj + (h3f̃1)kj+1

2

(
hk+1
j+2 − 3hk+1

j+1 + 3hk+1
j − hk+1

j−1
)

−
(h3f̃1)kj + (h3f̃1)kj−1

2

(
hk+1
j+1 − 3hk+1

j + 3hk+1
j−1 − h

k+1
j−2
)}

. (37)

and we use upwind difference for the transport part as the direction of the flow is downward. The fluxes fi

depend on (φ0)kj =
nk
j

hk
j

and

(px)kj = −β(hxxx)kj = −β
hkj+2 − 2hkj+1 + 2hkj−1 − hkj−2

2∆x3
.

∆x is the spatial grid and we choose it uniformly for simplicity; it can be directly generalized to nonuniform
mesh if we want to refine the resolution at the wave front. The time step ∆t is chosen adaptively according
to some stability condition. In all the examples that follow, we consider Dirichlet boundary condition for
both boundaries and thus we simply set the value of h to be the boundary data near the boundary.

Next, for the particle transport (36), although the fourth order diffusion is in h not in n, it cannot be
considered as part of the flux or the source as it may render the scheme unstable. Instead, we should

discretize β
(
h3g̃1hxxx

)
x

in the same way as β
(
h3f̃1hxxx

)
x

in (35). More precisely, the scheme for (34)

reads

nk+1
j − nkj

∆tk
+

(h3g(φ0, 0))kj − (h3g(φ0, 0))kj−1
∆x

= − β

∆x4

{
(h3g̃1)kj + (h3g̃1)kj+1

2

(
hk+1
j+2 − 3hk+1

j+1 + 3hk+1
j − hk+1

j−1
)

−
(h3g̃1)kj + (h3g̃1)kj−1

2

(
hk+1
j+1 − 3hk+1

j + 3hk+1
j−1 − h

k+1
j−2
)}

. (38)

Without particles, the numerical method reduces to a straightforward semi-implicit method for the well-
studied thin film equation ht + (h3)x = −(h3hxxx)x that is stable [31]. The approach has also been studied
more generally in more recent work [4]. For suspension flow, a semi-implicit method was used to simulate
a coupled system with simpler flux functions and studied numerically [10, 16]. A small diffusion term
arising from shear-inuced migration was included to improve numerical stability. Similar systems that arise
in surfactant spreading have been solved using this approach [11] and using finite element methods with
rigorously established convergence properties [12]. The model here, in contrast, lacks a natural diffusion
term for the particle phase and, crucially, the flux functions degenerate at the maximum packing fraction.

As noticed in [27], one of the most important properties of the solution to the original hyperbolic system

(the one without surface tension) is that φ0(t, x) = n(t,x)
h(t,x) stays in the interval [0, φm] , even in the case

of a singular shock. In what follows, we will show the reason for it and then explains how it inspires the
discretization (38). First we have the following lemma.

Lemma 1. The flux pairs (f1(φ0), g1(φ0)) and (f(φ0), g(φ0)) are non-negative and satisfy g(φ0) ≤ φmf(φ0).

Proof. Since we always choose the physical solution to the equilibrium system (25)(26) such that 0 ≤ φ ≤ φm,
the averaged value φ0 also falls into the range [0, φm]. Since I(s) in (18) is non-negative, from the definition
of the fluxes in (20) we have

g(φ0) =

∫ 1

0

φ(s)I(s)ds ≤ φm
∫ 1

0

I(s)ds = φmf(φ0).

Similarly, I1(s) in (19) is non-negative and so g1(φ0) ≤ φmf1(φ0).
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To proceed, we consider a special case when β = 0, then px ≡ 0, and the fluxes f(φ0) and g(φ0) reduce
to the original flux in [21] without surface tension, and the system (33)(34) reduces to the conservation laws
where a simple upwind difference scheme suffices to give the correct solution. For such a system, we have
the following property.

Theorem 2. If the time step ∆tk satisfies the CFL condition

∆tk

∆x
≤ min

j

{
1

h2f(φ0)
,

φ0
h2g(φ0)

,
φm − φ0

(φmf(φ0)− g(φ0))h2

}k
j

, (39)

the the solution to the evolution system (37) (38) with px ≡ 0 satisfies 0 ≤ φ0kj =
nk
j

hk
j

≤ φm.

Proof. Rewrite the upwind scheme in (37) and (38) as

nk+1
j = nkj −

∆tk

∆x

[
(h3g)kj − (h3g)kj−1

]
, hk+1

j = fkj −
∆tk

∆x

[
(h3f)kj − (h3f)kj−1

]
.

Then positivity of hk+1
j and nk+1

j is guaranteed if ∆tk satisfies the CFL condition (39), so it is with φ0
k+1
j .

Now let us consider the quantity φmh
k+1
j − nk+1

j . Notice that

(φmh− n)k+1
j = (φmh− n)kj −

∆tk

∆x

[
(h3φmf − h3g)kj − (h3φmf − g)kj−1

]
,

thus it is easy to check that if (φmh− n)kJ = 0 at one position xJ and a specific time tk, (φmh− n)k+1
J = 0

thanks to Lemma 1 and the fact f(φm) = g(φm) = 0. Now it is left to check that if (φmh− n)kJ > 0 for any

xJ and tk, we have (φmh− n)k+1
J ≥ 0. This is readily followed by the third algebraic expression in the CFL

constraint (39).

Remark 3. The first two constraints in the CFL condition (39) are the common conditions to guarantee
the positivity of the upwind solution, whereas the third one is an extra requirement to preserve the upper
bound of φ0. However, this extra requirement is not restrictive at all. Indeed, we can check the ratio

φm − φ0
φmf(φ0)− g(φ0)

/ 1

f(φ0)
=

(φm − φ0)f(φ0)

φmf(φ0)− g(φ0)
, (40)

which is uniformly bounded with an O(1) upper bound (please see the appendix).

Remark 4. Analytically, for the hyperbolic system without surface tension (β = 0 in (33) (34)) if initially
h(x, 0) < φmn(x, 0) and we assume the solution is sufficiently smooth, then φ0(t, x) < φm still holds. This
can be seen following the characteristics of the system

ht + (h3f(φ0))x = 0, ξt + (h3φmf(φ0)− h3g(φ0))x = 0,

where ξ = φmh − n and φ0 is recovered via φ0 = φmh−ξ
h . However, once the shock or rarefaction forms, we

need to resort to the Hugoniot locus or integral curve [17, 27] to study the behavior of the solution. Indeed,
in the interesting case when there is a singular shock, both h and n increase unboundedly at the wave front
of the shock, but φ0 = n

h is always bounded by φm, which is seen from the fact that the Hugoniot locus in
the (h, φ0)−plane always stay below φ0 = φm (see Fig. 4.1 and Theorem 4.1 in [27]). Therefore, in the case
of double/singular shock, the volume concentration φ0(t, x) is still bounded above by φm.

Therefore, in the absence of surface tension, the upper bound of φ0 is preserved both analytically and
numerically. Inspired by the above argument, we notice that, in the presence of surface tension, a good choice
of discretization of the term βh3g1hxxx in (34) is that it is discretized in the same manner as βh3f1hxxx in
(33). However, since the theory of the uniform boundedness in φ0 is still lacking for (34) (33), the rigorous
estimate of numerical solution (37) (38) sharing the same property is beyond the scope of this paper, and
we leave it to future work.
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V. NUMERICAL SIMULATION

In this section, we conduct several numerical simulations to show how the model performs in the presence of
surface tension. We first present the results starting from Riemann initial data representing a ‘constant flux’
setting. Motivated by physical experiments carried out on the experimental set-up housed in the Applied
Mathematics Department at UCLA, we then investigate the numerical solutions for the ‘constant volume’
case and show some experimental results. All the simulations are carried out at angle of 30 degrees.

In this case, we consider the Dirichlet boundary condition h(xL, t) = hL, n(xL, t) = φIhL for the left
boundary and h(xR, t) = hR, n(xL, t) = φIhR for the right boundary.

A. Riemann initial data

Consider Riemann initial data

h(0, x) = hR +
1

2
(hL − hR) (1− tanh(10x)) , (41)

and n(0, x) = φIh(0, x) where φI is the initial concentration, hL and hR are the height in the reservoir
and precursor, respectively. Eq. (41) describes a step-like profile for the interfacial height, consistent with
investigating slow flows down rectangular planes.

Dilute case

We first give one example for the dilute approximation (31) (32) with β = 1, the solution of which is
compared with the one without surface tension, i.e., β = 0. Here since the h evolution is decoupled from n
evolution, we use a semi-implicit scheme (similar to (37)) for (31) and use a local Lax-Friedrichs scheme for
(32). The result is shown in Fig. 7; we observe that the position of the front of the wave is the same in both
models with and without surface tension. In the presence of surface tension, it shows that the flow develops
a capillary ridge in h, representing a travelling-wave solution which moves with a constant velocity. Such a
capillary ridge is subject to spanwise instabilities that give rise to fingering patterns [2, 13, 15], which is an
interesting problem for further study.
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Figure 7: Comparison of the height h and integrated particle density n = hφ0 for the dilute model with and without
surface tension (ST) at time t = 40. In the case with surface tension, β = 1. The rest of the parameters are chosen
as: hL = 1, hR = 0.1 and φI = 0.1.
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Settled case

We now move away from the dilute limit and turn our attention to the full model described by Eqs. (23)
and (24). First, we focus on a case where the concentration is low giving rise to the settled flow pattern,
which corresponds to a double-shock solution when surface tension is neglected. We consider the following
parameters hL = 1, hR = 0.1 and φI = 0.2 in all simulations and investigate the effect of surface tension
by varying the value of the parameter β. We compare the numerical solutions with β = 0, 10−3, 10−2 at
t = 15 in Fig. 8, where stronger surface tension effect results in more pronounced capillary ridge in both
shocks. Here, we choose ∆x = 0.025, ∆t = 0.01. We observe that the previous, hyperbolic model captures
the location of the front of the flow while surface tension leads to the development of two ridges: a trailing
one, representing the particle-concentrated region and a leading ridge, representing the particle-free region.
The leading wave forms at the contact line which we expect to be unstable to fingering. From experimental
observations, the fingering is more visible at the front of the flow while, at the particle-fluid separation, the
fingering appears to be more suppressed.

In Fig. 9, we choose β = 0.1 corresponding to more distinct surface tension effects, and plot the profiles of h
and n at different times, indicating that the solution is composed of two traveling waves. Again, ∆x = 0.025,
∆t = 0.01.
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Figure 8: Computation of the full model given by Eqs. (23) and (24) with surface tension for different β = 0, 1e −
3, 1e− 2 at time t = 15. The left panel shows the film height solution and the right panel shows the solution of the
product of the height and particle volume concentration. Here, hL = 1, hR = 0.1 and φI = 0.2.
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Figure 9: Computation of the full model given by Eqs. (23) and (24) with surface tension for β = 0.1 at different
times. Here hL = 1, hR = 0.1 and φI = 0.2.
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Ridged case

We now explore the double-shock formation in the ridged regime. Consider the initial data (41) but with
hL = 1 and hR = 0.2. φI = 0.5. As shown in [27], this initial data will produce a double shock with
intermediate height and concentration larger than the left and right states. Here we compare our results
with β = 0.1 and without surface tension, i.e., β = 0. Here, we choose ∆x = 0.05, ∆t = 0.01. The results
are gathered in Fig. 10 where the capillary ridge emerges in the second shock near the moving contact line
in the presence of surface tension, as one would expect from experimental results.
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Figure 10: Comparsion of β = 0 and β = 0.1 for different times t = 2000, 2500, 3000, 3500, and 4000. Blue dashed
curve: β = 0. Black solid curve: β = 0.1. Here we used a moving mesh with speed s = 0.0275 computed from the
initial data and reform the results according to the distance it should advance at the above times.

Next, we investigate the singular shock. If we choose hL = 1, hR = 0.02 and φI = 0.5, the solution to
the original hyperbolic system is a singular shock. Here we first show a comparison of the solution with and
without surface tension. The results are collected in Fig. 11 where we display the solutions at different times
t = 400, 800, 1200, 1600, and 2000. Here the black solid curve is without surface tension, whose solution in
H produces a singularity, while the blue dashed is for β = 0.05 where the profile in h has been regularized.
To further see this, we compare the maximum height of the fluid (h) for model (23) (24) by decreasing the

0 10 20 30 40 50
0

1

2

3

4

h

x
0 10 20 30 40 50

0.48

0.5

0.52

0.54

0.56

0.58

0.6

φ

x

t=400

t=800
t=1200

t=1600
t=2000

Figure 11: Comparsion of no surface tension (i.e., β = 0, black solid curve) and β = 0.05 (blue dashed curve) for
different times t = 400, 800, 1200, 1600, 2000. ∆x = 0.05, ∆t = 0.0025.

mesh size, with β = 0.1 and β = 0, respectively. It is observed from Fig. 12 that surface tension (β = 0.1)
successfully suppresses the singular shock, resulting in a particle-rich ridge with uniformly bounded height
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for finite time. On the other hand, without surface tension the height does not have a uniform growth when
we refine the mesh, indicating the presence of singularity.
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Figure 12: maxx h(t, x) versus t for different mesh grids for model (23) (24) with initial condition hL = 1, hR = 0.02
and φI = 0.5. Left: β = 0.1, with surface tension. Right: β = 0, without surface tension.

B. Conserved volume initial data

In this section, we further demonstrate that the presence of surface tension will not affect the large-scale
dynamics but only modify the wave front by using the laboratory parameters from recent experiments [5]. In
the experimental data obtained in [5], height profiles for the suspension in the incline problem were obtained
by use of a laser sheet, capturing the evolution of the capillary ridge. The suspension used was a viscous oil
(PDMS with kinematic viscosity ν = 1000 cSt and surface tension γ = 0.02 N/m) with 0.2 mm particles and
densities ρ` = 971 kg/m3 and ρp = 3800 kg/m3, similar to previous experiments [21].

With these parameters, β = ε3

Ca = γH
L3ρlg sinα

= 0.042. Initial data takes the following form:

h(0, x) =


110∗0.75
10∗14 , for − 10 ≤ x ≤ 0

0.02 ∗ 110∗0.75
10∗14 , elsewhere

, φ0(0, x) = φI , n(0, x) = φIh(0, x) , (42)

and boundary data are taken be h(xL, t) = h(xR, t) = 0.02 ∗ 110∗0.75
10∗14 , n(xL, t) = n(xR, t) = φI0.02 ∗ 110∗0.75

10∗14 .
Figure 13 displays the comparison of solutions to model (23)–(24) with (β = 0.042, solid curve) and without
surface tension (β = 0, dashed curve).

In Figure 14, we show two typical examples of measured height profiles. Varying the total volume effectively
changes the left and right states (as in (42)), thereby allowing for the possibility of detecting the transition
between singular and double shocks. In the parameter regime tested, which is restricted by the equilibrium
assumption, only a single, sharp ridge evolves (see Figure 14). The height of the ridge increases with angle;
for moderate angles, the effect of spreading due to the normal component of gravity (neglected in the model
here) is significant (compare the ridges for angles α = 45 deg and α = 55 deg in Figure 14). Even at large
angles, this diffusion dampens the growth of the ridge somewhat but the effect is small for α = 55 deg.
It is difficult to determine whether the observed ridge corresponds to the singular shock solution (as the
model would predict) or a double shock, as the double shock evolves over much longer time period than the
current experiments allow. Further experiments may better illuminate the behavior of the fronts (as singular
shocks or otherwise) and the particle distribution therein. In addition, in the high concentration regime,
non-Newtonian effects (particularly at the front) may be important; this is evident, e.g. as the typical
fingering instability evolves and the high-concentration ’fingers’ will tend to solidify and/or break. The
fingering instability also has an effect on the formation of the ridge, which makes quantitative comparison
to the one-dimensional model of limited use. Fully studying the physical model therefore requires extending
the model to two dimensions, which is beyond the scope of this work.
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Figure 13: Comparsion of no surface tension (i.e., β = 0, dashed curve) and β = 0.042 (solid curve) for models with
initial data (42). Left: settled case with φ0 = 0.2. Right: ridged case with φ0 = 0.5.
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Figure 14: Left/center: An experimental picture and height profile near the front for φ0 = 0.5 and α = 55 deg (the
vertical line in the figure is the laser line from which the height profiles are measured). Right; experimental height
profile for α = 45 deg (right) with an initial volume of 110 ml.

VI. CONCLUDING REMARKS

In this paper, we derive a model for the evolution of a gravity-driven thin film laden with particles in
the presence of surface tension effects. This model takes the form of conservation law with a fourth order
nonlinear diffusion, the latter arises from capillarity due to the addition of surface tension. We propose
a semi-implicit scheme that is able to effectively solve the models without a severe stability constraint.
We carry out numerical simulations with system parameters corresponding to three distinct flow regimes
observed in experiments. We observe that in the settled case where there exists separation between the
particle-rich and particle-free regions the numerical solution is described by two capillary shocks for each
region. In the ridged case where the particles accumulate at the front of the flow, in the absence of surface
tension effects, the solution is described by a singular shock which is physically unrealistic. The addition of
surface tension acts to regularize the thin film height solution thus suppressing the singular shock.

Our study at present of the ridge in the presence of surface tension is primarily numerical; asymptotic
or analytical study of the growth of the ridge and the regularizing effect of surface tension would be an
interesting direction for future work. On the analysis side, it is very interesting to study the well-posedness
of the system (23) (24) (or (35) (36) ), which is of a complicated hyperbolic-parabolic type, especially in
the case of a singular shock. Similar equations have been studied in modeling of surfactant spreading [11].
These equations are also a fourth-order parabolic equation for the film height coupled to a particle transport
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equation which can be solved using semi-implicit methods. Mathematically, the model proposed here have
some key differences which complicate the problem. The conserved form of the system is for the film height
h and integrated concentration hφ, while the fluxes still depend on the concentration φ. As a consequence,
a numerical scheme in conserved form must be discretized carefully to ensure that the approximation for
φ remains appropriately bounded. In addition, the fluxes f, g that drive the bulk fluid motion, which are
first-order in the absence of surface tension, gain a complicated non-linear dependence on hxxx. Progress on
analysis of the equations may also aid in developing numerical schemes with desirable properties, such as
ensuring boundedness of the particle concentration.

This work brings many challenging questions for future study. On the modeling and numerics side,
extending the model to two dimensions is necessary in understanding the fingering instability. The simplest
generalization to two dimensions is to assume the shear-induced migration flux depends only on the total
shear rate γ̇ =

√
|µuz|2 + |µvz|2 where v is the y-velocity (see e.g. [30]). One then obtains a similar

equilibrium ODE and fluxes that now depend on both components of the pressure gradient (∇p = −β∇∆h).
The resulting equation is again similar to the thin film equation in two dimensions. However, the typical
fingering instabilities that arise and dependence on py further exacerbate the numerical difficulties we have
discussed in one dimension. In addition, from a physical perspective, it is not clear that the use of the
total shear rate is a good approximation, as the behavior of shear-induced migration in more complicated
geometries is not as straightforward and may necessitate the use of more complicated models (for example,
taking into account the role of anisotropic normal stresses [18, 24]).
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discussions and Sarah Burnett, Jesse Kreger, Hanna Kristensen, and Andrew Stocker for their experimental
work. This work is funded by NSF grants DMS-1312543 and DMS-10455536.

VII. APPENDIX

A. Experiments to verify constant surface tension

To justify the assumption that surface tension is constant, we carried out a series of experiments to measure
the surface tension of a fixed volume of PDMS with various particle volume concentrations within the range
of 0 < φ < φm, where φm represents the maximum packing fraction. The experimental method used for the
determination of the surface tension of the slurry sample is known as the pendant drop test. A drop of the
slurry sample is suspended by a tube; the resulting shape of the drop is a consequence of increased pressure
produced inside the drop as a result of the interfacial tension [26]. The pressure difference is proportional to
the changing radii in the pendant-shaped drop while the interfacial tension is the constant of proportionality.
We took measurements of surface tension as a function of particle volume concentration and the results are
collected in Fig. 15, which shows that the surface tension was found to be constant at about 20 mN/m, the
same as the surface tension for the silicon oil without particles.

B. Uniform bound for ratio

Here we show the uniform bound of the ratio (40). First notice that when φ0 ≤ φcrit (φcrit is the critical
value that distinguishes the ‘settled’ and ‘ridged’ regime [21]), we have g(φ0) ≤ φ0f(φ0) (Theorem 2.2 in
[27]), so the ratio is bounded by 1. When φ0 > φcrit, we see that the ratio is an increasing function in φ0
(we can check it numerically, please see Fig. 16), thus it suffices to check its bound near φm. Consider the
following Taylor expansion

f(φ0) = f(φm) + f ′(φm)(φ0 − φm) +
1

2
f ′′(φm)(φ0 − φm)2 +

1

3!
f ′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)
,

g(φ0) = g(φm) + g′(φm)(φ0 − φm) +
1

2
g′′(φm)(φ0 − φm)2 +

1

3!
g′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)
.
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Figure 15: Surface tension γ0 measured for silicon oil with different concentrations of glass beads.

Since we have f(φm) = g(φm) = f ′(φm) = g′(φm) = 0 and φmf
′′(φm) = g′′(φm) 6= 0 (see Lemma 4.3 in [27]),

the ratio (40) expands as

(φm − φ0)f(φ0)

φmf(φ0)− g(φ0)
=

(φm − φ0)
[
1
2f
′′(φm)(φ0 − φm)2 + 1

3!f
′′′(φm)(φ0 − φm)3 +O

(
(φm − φ0)4

)]
1
3! [φmf

′′′(φm)− g′′′(φm)](φ0 − φm)3 +O ((φm − φ0)4)
. (43)

Recall again the calculation in [27] that

f ′′(φm) =

∫ 1

0

(1 + ρsφm)(1 +B)

µlφ2m

[
1− (1− s)2B+2

]
ds,

φmf
′′′(φm)− g′′′(φm) = −3

∫ 1

0

(1 + ρsφm)(1 +B)

µlφ2m

[
1− (1− s)2B+2

]
(1 +B)(1− s)Bds,

where B =
ρsφ

2
m+(C2+1)φm−C2

C1φm(1+ρsφm) , then the ratio (43) is estimated, with higher order term neglected, as 3(2B+2)
2(2B+3) .
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Figure 16: The ratio (40) vs φ0. The intersections with the horizontal line are φcrit at different angles.
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