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Abstract. In this paper we derive evolution equations for the 2D active scalar problem when
the solution is supported on 1D curve(s). These equations are a generalization of the Birkhoff-Rott
equation when vorticity is the active scalar. The formulation is Lagrangian and they are valid for
nonlocal kernels K that may include both a gradient and an incompressible term. We develop a
numerical method for implementing the model which achieves second order convergence in space
and fourth order in time. We verify the model by simulating classic active scalar problems such
as the vortex sheet problem (in the case of inviscid, incompressible flow) and the collapse of delta
ring solutions (in the case of pure aggregation), finding excellent agreement. We then study two
examples with kernels of mixed type - i.e., kernels that contain both incompressible and gradient
flows. The first example is a vortex density model which arises in superfluids. We analyze the effect
of the added gradient component on the Kelvin-Helmholtz instability. In the second example, we
examine a nonlocal biological swarming model and study the dynamics of density rings which exhibit
complicated milling behavior.
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1. Introduction. The 2D active scalar problems we study in this paper take
the form

ρt +∇ · (ρv) = 0, ρ(x, 0) = ρ0(x), (1.1)

v = K ∗ ρ = ∇⊥N ∗ ρ+∇G ∗ ρ (1.2)

where ∗ denotes convolution, (a, b)⊥ = (−b, a) , and x ∈ R2. Equations (1.1) - (1.2)
represent a large class of problems which include fluids [23, 29, 11], chemotaxis [6],
aggregation [4, 3, 17], biological swarming [31], and many others. Our work is focused
on two facets of the 2D active scalar problem: First, we consider solutions supported
on 1D curve(s); second, we look at the case when the velocity field contains both an in-
compressible and a gradient component. To better characterize the second motivation
we assume sufficient smoothness and decay on K and apply the Hodge decomposi-
tion theorem [23] to the velocity field equation as expressed on the right hand side of
equation (1.2). As such, the ∇⊥N ∗ ρ term represents the divergence-free or incom-
pressible component of the velocity field and the ∇G ∗ ρ is the gradient contribution
to the velocity field. We refer to kernels K that contain both a divergence-free and a
gradient part as kernels of mixed type.

Examples of mixed type kernels have been found in vortex models for superfluids,
such as superconductors, where the active scalar is a “vortex density” function [7, 12,
22]. Classical 2D compressible fluids is another example in which K will have both an
incompressible Newtonian potential and a compressible contribution (the dilatation)
[13]. Mixed type kernels also arise in the work of Topaz and Bertozzi [31] in the
context of kinematic social interaction models. They considered collective swarming
motion kernels that contain both gradient and incompressible terms to better capture
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biological phenomena such as mill vortices and other rotating structures found in
nature [16, 28, 26, 25].

There are many important examples when the kernel K creates a purely incom-
pressible velocity field, i.e., G = 0. Such examples include quasi-geostrophic models
[9, 10, 8] for which N = (−∆)−α and, perhaps more famously, the vorticity formu-
lation of the classical 2D Euler equations for which N = 1

2π log |r| is the Biot-Savart
kernel. Vorticity (the curl of the velocity field) is the active scalar in this second ex-
ample and the well-studied problem known as the vortex sheet problem [14, 15, 21, 27]
is the particular case when vorticity aggregates onto a 1D curve. It was first shown
in [5] that the vortex sheet evolves according to the Birkhoff-Rott equation

∂tz(Γ, t) =
1

2π

∫
S

(z(Γ, t)− z(Γ′, t))⊥dΓ′

|z(Γ, t)− z(Γ′, t)|2 , (1.3)

where Γ is the local Lagrangian parameterization of the sheet S, and z is the position
of the points on the sheet. The first goal of this paper is to derive an analogous
equation to (1.3) for equations (1.1) - (1.2) where the kernel is general.

Examples of singular “sheet-like” solutions that occur for purely gradient kernels,
i.e., N = 0, have been observed in chemotaxis models [16, 32] and purely aggregation
kernels of the form ∇G(r) = ∇|r|α. Specifically, the analysis and dynamics of delta
ring solutions has been studied in the works of Huang, Bertozzi, Laurent and others
[17, 3, 4]. It has been shown that for α > 2 smooth initial density may collapse to
delta ring solutions in infinite time. For dimension two, finite time blow up “ring
solutions” occur if 1 < α < 2. In this regime concentric density rings formally solve
equations (1.1) - (1.2) and differential equations governing the radius of the rings can
be computed; see [3]. Moreover if α > 2 Huang et al. [18] have shown numerically that
collapsing rings are attractors of radially symmetric solutions to equations (1.1)-(1.2).

Ring and curve solutions have also been discovered in biologically relevant attrac-
tion repulsion kernels such as G(r) = tanh((1 − r)a) + b) and G(r) = rp − rq; see
[19]. There, it was shown that certain parameter regimes for the above kernel have
yielded linearly stable rings. In addition, low mode instabilities may develop - de-
pending on parameters - where small perturbations of rings cause the ring to deform
into a triangular-like closed curve. In addition, necessary and sufficient conditions
were computed when a 1D curve is linearly well-posed.

In section 2 we derive a Lagrangian model using conservation of mass which is a
generalization of the Birkhoff-Rott equation for vortex sheets and fully incorporates
both incompressible and gradient velocity fields. In section 3 we define a numerical
scheme for implementation and numerically show that it is second order accurate in
space and fourth order accurate in time. In this section we also verify our model
by simulating two well-studied problems: classic vortex sheet solutions and a purely
aggregation model. In both the vortex sheet examples and the evolution of delta
rings (in the case of the aggregation model) we obtain excellent agreement using our
new model. In section 4 we first study a superfluids example which contains a kernel
of mixed type. We observe that, by varying the weight of the incompressible versus
gradient contribution to K, the maximal amount of vortex wind-up occurs when both
pieces of the kernel are present (as opposed to just incompressible contributions). We
explore this phenomenon by linearizing our solution and observe the effect the gradient
term has on the associated Kelvin-Helmholtz instability. In our second example in
section 4, we consider a swarming model and observe that (depending on parameters)
the rotational contribution (N) to the kernel does not affect the contraction rate of
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the curve but - somewhat surprisingly - the attractive, gradient contribution (G) to
the kernel can have a very significant effect on the rotation dynamics of the curve. We
conclude in section 5 with a discussion of directions and applications of this model to
future research.

ρ ~v

~n

Fig. 2.1. Schematic diagram of a box
(2) in a vector field.
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Fig. 2.2. The evolution of the sheet from
time n∆t to (n+ 1)∆t.

2. Derivation of density sheet equations. In this section we derive our model
for the general active scalar problem for the case when all the mass concentrates on
a 1D curve. We start our derivation by recalling that equation (1.1) is equivalent to
conservation of mass. To see this, consider a small box 2 in the spatial domain as
shown in Figure 2.1. Between time t and t + ∆t, the amount of mass that flows out
through the boundary of the box is approximately

∫
∂2
ρvnds∆t, while the increase of

the mass in the box is
∫
2
ρdx(t+ ∆t)−

∫
2
ρdx(t). By conservation of mass, we arrive

at the following equality:∫
2

ρdx(t+ ∆t)−
∫
2

ρdx(t) =

∫
∂2

ρvnds∆t. (2.1)

Dividing both sides by ∆t and applying the divergence theorem, we get
∫
2
ρtdx =∫

2
∇ · (ρv)dx, and equation (1.1) follows.

For the case when all of the active scalar lies on a 1D curve - hereafter referred
to as “the density sheet problem” - conservation of mass will be used to derive the
equation of motion for the density sheet. To begin, let Γn be the sheet at time n∆t,
and Γn+1 be the sheet at time (n + 1)∆t. We now parameterize our sheet, Γ, using
an arbitrary Lagrangian parameter α; thus, we may write the position of the sheet as
z(α) = (x(α), y(α)) ∈ R2. Now choose αi−1, αi, and αi+1 to be three reference points
on the density sheet, see 2.2.

The mass between αi−1 and αi+1 at time n∆t is exactly
∫ αi+1

αi−1
ρ|zα|(n∆t)dα,

while the mass between αi−1 and αi+1 at time (n+ 1)∆t is
∫ αi+1

αi−1
ρ|zα|((n+ 1)∆t)dα.

Since the reference points also move with the velocity field v, i.e.,

∂z

∂t
= K ∗ ρ, (2.2)

the mass is conserved along trajectories for all time. This implies that∫ αi+1

αi−1

ρ|zα|(n∆t)dα−
∫ αi+1

αi−1

ρ|zα|((n+ 1)∆t)dα = 0 (2.3)

where zα denotes the derivative of z with respect to α. Dividing equation (2.3) by
∆t, and letting ∆t → 0, we arrive at the following equation for the evolution of the
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density ρ,

(ρ|zα|)t = 0 (2.4)

which may be written out as

ρt + ρ
〈zα, vα〉
〈zα, zα〉

= 0, (2.5)

where 〈·, ·〉 represent the usual inner product. Equations (2.5) and (2.2), or equiva-
lently equations (2.4) and (2.2), yield a closed system of equations for the motion of
the density sheet problem.

Remark 2.1. We note here that equations (2.4) and (2.2) represent a general-
ization of the Birkhoff-Rott equation (1.3). In particular if one chooses N to be the
Newtonian potential and G = 0, equation (2.4) represents a parameterization with
respect to circulation and thus (2.2) identically reduces to (1.3). Of course equations
(2.4) and (2.2) represent a generalization of the Birkhoff-Rott equation because the
combined kernel K can take a more general form. With a generic choice of K, (2.4)
no longer can be interpreted as a parameterization with respect to circulation and ei-
ther (2.4) or (2.5) may be used. In Section 3.2.1, we verify our model by simulating
several classical vortex sheet examples. To distinguish our simulations from the direct
use of the Birkhoff-Rott equation we use the formulation (2.5) and (2.2) which yields
excellent agreement with (1.3) but, in general, either sets of equations can be used.

3. Numerical method. We implement equations (2.5) and (2.2) using a fourth
order Runge Kutta method in time and centered difference discretization for space.
In addition, we apply an adaptive mesh method using cubic interpolation for several
of the more complicated examples in sections 3.2.1 where more resolution is required.
We briefly present this algorithm below.

Let z = (x, y) be the position of the sheet, v = (u,w) be the associated velocity
field, and ρ be the density. We denote the associated discretized vectors zi = (xi, yi),
vi = (ui, wi) and ρi indexed by i. We then have the following discretized equations
for (2.2) and (2.5):

vj =
∂zj
∂t

=
∑
i

K(zj − zi) · ρ(zi)|∆zi| (3.1)

∂ρj
∂t

= −ρj
(xj+1 − xj−1)(uj+1 − uj−1) + (yj+1 − yj−1)(wj+1 − wj−1)

(xj+1 − xj−1)2 + (yj+1 − yj−1)2
(3.2)

where

|∆zj | =
√

(xj+1 − xj)2 + (yj+1 − yj)2 +
√

(xj − xj−1)2 + (yj − yj−1)2

2
. (3.3)

Furthermore, let F1, F2 be vectors defined with the following elements:

F1,j(ρ, z, v) =
dzj
dt

=
∑
i

K(zj − zi) · ρ(zi)|∆zi| (3.4)

F2,j(ρ, z) = −ρj
(xj+1 − xj−1)(uj+1 − uj−1)) + (yj+1 − yj−1)(wj+1 − wj−1)

(xj+1 − xj−1)2 + (yj+1 − yj−1)2
.(3.5)

Then our Runge Kutta algorithm for one time step is described below.
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(a) V n
1 = F1(ρn, zn), Pn
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1 )
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2 /2), Pn
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n
3 )

(d) V n
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3 , z
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3 ), Pn
4 = F2(ρn + ∆tPn

3 , z
n + ∆tV n

3 , V
n
4 )
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4 )/6

After each Runge Kutta step, we update the tolerance in our adaptive mesh
by first setting ε = min(total length of curve/N, ε). We then consider the distance
between consecutive points and if the distance between them is greater than ε we
add one point between them using cubic interpolation. In the classical vortex sheet
examples (Section 3.2.1) and superfluid calculations (Section 4.1), the kernel K is
singular, hence we use Krasny’s desingularization technique described in more detail
in Section 3.2.1.

3.1. Convergence study. To verify the convergence of our method, we use the
periodic perturbation example in section 3.2.1 below. Since the exact solution to
this example is unknown, we derive the order of convergence by computing successive
differences between numerical solutions. We then double the number of points (in time
or in space respectively) and then apply equation (3.6) to estimate the convergence
rate.

For the convergence in time, let (z1, ρ1), (z2, ρ2), (z3, ρ3) and (z4, ρ4) be used to
denote the numerical solution for time discretization M = 10, 20, 40, 80 respectively,
at T = 0.1, with N = 100. Then the approximate convergence rate can be calculated
as follows

Conv. rate ≈ log(||ei||2/||ei+1||2)/ log 2, (3.6)

where ei can be taken as vectors zi − zi+1 or ρi − ρi+1.
For the convergence in space, we use the same notations with capital letters

(Z1, P1), (Z2, P2), (Z3, P3) and (Z4, P4) to denote the solution for space discretization
N = 100, 200, 400, 800 respectively, at time T = 0.1, with M = 10. We use formula
(3.6) to compute the approximate convergence rate as before, except that ei is taken
to be vectors Zi−Zi+1 or Pi−Pi+1. We also compute the convergence in space with
the effect of cubic interpolation by starting with the same parameter setting, and
successively halving the adaptive tolerance ε. We obtain solutions (Z1, P1), (Z2, P2),
(Z3, P3) and (Z4, P4), and then use formula (3.6) to compute the approximate con-
vergence rate. Our results are summarized in table 3.1.

3.2. Verification of method. Here we test the new algorithm on known exact
solutions. First, in section 3.2.1 we recompute some examples of vortex sheets in
the literature using the new code and show that the resulting solution is identical
to previously published results. Second, in section 3.2.2 we compute some collapsing
ring examples in the purely aggregating case and compare the results to ODE theory
for these special solutions.

3.2.1. Case 1: incompressible vortex sheet examples. In this section we
will verify our model by implementing our method to simulate three vortex sheet
problems for the 2D Euler equations. This corresponds to setting N = 1

2π log |r| and
G = 0 in equations (1.1) - (1.2). As mentioned previously, the motion of the vortex
sheet is governed by the Birkhoff-Rott equation (1.3) and it is well known that (1.3)
is ill-posed due to the Kelvin-Helmholtz instability, see [23, 30]. Thus, in order to
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Table 3.1
convergence rate in time and space.

Convergence in time
M ||zi − zi+1||2 conv. rate ||ρi − ρi+1||2 conv. rate
10
20 6.1748e-07 7.7979e-06
40 4.6074e-08 3.7444 5.7844e-07 3.7528
80 3.1409e-09 3.8747 3.9661e-08 3.8664

Convergence in space
N ||zi − zi+1||2 conv. rate ||ρi − ρi+1||2 conv. rate

100
200 1.2027e-04 7.2394e-03
400 2.1006e-05 2.5174 2.0805e-03 1.7989
800 4.3183e-06 2.2823 5.5382e-04 1.9094

Convergence rate for cubic interpolation
ε ||zi − zi+1||2 conv. rate ||ρi − ρi+1||2 conv. rate

0.06
0.03 5.9712e-05 1.3776e-03
0.015 7.3969e-06 3.0130 3.3832e-04 2.0258
0.0075 1.9556e-06 1.9193 7.5105e-05 2.1714

implement our model to simulate equations (1.1) - (1.2) we must desingularize the
kernel. Several approaches have been developed to compute the evolution of vortex
sheets [1] which address the Kelvin-Helmholtz instability. For our method we use
Krasny’s [20] direct desingularization of the kernel N ,

∇⊥Nδ =
(z(Γ, t)− z(Γ′, t))⊥
|z(Γ, t)− z(Γ′, t)|2 + δ2

, (3.7)

where δ is a regularization parameter, to compute the examples in this section.
Our first verification simulates the classical elliptically loaded wing example, [21].

The initial Lagrangian parameterization for the elliptically loaded wing is (x, y) =
(2α−1, 0), where α ∈ [0, 1]. The initial distribution of vorticity ρ is set by ρ = −dΓ/dx,
where Γ =

√
1− x2 is the circulation of the vortex sheet, as depicted in Figure 3.1.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

−1 −0.5 0 0.5 1
−10

−5

0

5

10
(a) (b)

Fig. 3.1. The initial condition for the elliptically loaded example ( dashed line) and the simu-
lated fuselage flap configuration example (solid line). Figure (a) is a plot of the initial circulation
against α, and Figure (b) is a plot of the initial density ρ against α.

Using our adaptive point method with error tolerance ε = 0.075, the sheet was
initialized using 401 points and at T = 4 the number of points grew to 3171. The
results are plotted in Figure 3.2 and the observed roll-up is in excellent agreement
with Figure 2 in [21].
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Fig. 3.2. The numerical solution at t = 0, 1, 2, 4 for the elliptically loaded wing example using
equations (1.2) and (2.5). We take δ = 0.05, ∆t=0.01, and we use adaptive mesh refinement.

For our second example we apply our model to simulate the more complicated
fuselage flap configuration which was first considered in [21]. The initial conditions
are chosen to simulate the vorticity generated from a fuselage flap and thus our initial
ρ is chosen to be:

ρ(α, 0) =



x/(1− x2), x ∈ [−1,−0.7] ∪ [0.7, 1],

−3a3x
2 − 2a2x− a1, x ∈ [−0.7,−0.3],

−3b3x
2 − 2b2x− b1, x ∈ [−0.3, 0],

3b3x
2 − 2b2x+ b1, x ∈ [0,−0.3],

3a3x
2 − 2a2x+ a1, x ∈ [0.3, 0.7],

(3.8)

where ai and bi are chosen to ensure continuity.

The initial distribution of both ρ and Γ are plotted in Figure 3.1. We once again
initialized our sheet using 401 points and at T = 4 the number of nodes grew to the
much higher 10151 due to the increased stretching and roll-up as compared to the
elliptically loaded wing example. The results are plotted in Figure 3.3 and we once
again get excellent agreement with Figure 19 in [23].

In our last example we consider periodic perturbations to a uniformly distributed
vortex ring with ρ = 1. This example will play an important role in our later studies
of both the superfluids and biological examples found in the mixed kernels section
(Section 4) so we first present simulations in the purely incompressible case. We fo-
cus our attention on perturbations of radially symmetric ring distributions in general
because they seem to naturally arise as important solutions in several different con-
texts, [19, 3]. The spatially periodic perturbation is chosen to be cosine in the normal
direction with 10 periods and the magnitude being 1% of the radius. In this example
we set the radius to 1 and thus our initial conditions are:
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Fig. 3.3. The numerical solution for the simulated fuselage flap configuration example using
equations (1.2) and (2.5). We take δ = 0.1, ∆t=0.01, and we use adaptive mesh refinement.

r(α) = 1 + 0.01 cos(20πα), ρ(α) = 1 (3.9)

(x(α), y(α)) = (r(α) cos(2πα), r(α) sin(2πα)). (3.10)

We initialize with 400 points and at T = 4 the number of nodes has grown to 9670.
Figure 3.4 demonstrates several stages of periodic roll-up of the vortex ring.

3.2.2. Case 2: Pure Aggregation. We now turn our attention to a verification
of our model when the flow is governed by gradient dynamics, i.e., N = 0. For this
example we focus on a model exhibiting only aggregation, specifically taking the kernel
K = ∇G where

∇G = ∇
√
x2 + y2. (3.11)

The active scalar equations with this kernel are well studied, [2, 3, 17, 18]. It was
shown in [3] that because the kernel (3.11) does not satisfy the Osgood condition,
finite time blow up of radially symmetric solutions occur. In particular, we consider
the family of exact solutions of concentric delta rings studied in [3].

To begin, we consider concentric circles (about the origin), with radius r1, r2, . . . ,
rn, and positive initial densities ρ1, ρ2,. . . , ρn uniformly distributed over each circle.
Because kernel (3.11) is purely attractive and the density is all positive, the predicted
behavior is that the rings will contract to the origin under the flow of (1.1) - (1.2).
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Fig. 3.4. The numerical solution for the periodic perturbed ring example using equations (1.2)
and (2.5). We take δ = 0.05, ∆t=0.01, and we use adaptive mesh refinement.

Table 3.2
ring collapsing time prediction

initial radius ring clapsing time.
One ring case Two rings case Three rings case

method ODE Ours ODE Ours ODE Ours
0.5 0.143 0.144 0.100 0.101
1 0.251 0.251 0.145 0.145 0.101 0.101

1.5 0.103 0.103

In fact, it was shown in [3] that the radius satisfies the following simple ODEs:

dri
dt

= −
n∑
j=0

2πrjρjψ(ri, rj), (3.12)

where

ψ(r, τ) =
1

π

∫ π

0

r − τ cos θ√
r2 + τ2 − 2rτ cos θ

dθ. (3.13)

Thus, to test our method in purely gradient dynamics, we separately simulate
our model (2.4) and (2.2) using the kernel (3.11), and then directly solve equations
(3.12) - (3.13). We plot the results in Figure 3.5. Figures 3.5a, 3.5c, and 3.5e are the
plot of the radius by directly solving (3.12) and (3.13); Figures 3.5b, 3.5d, and 3.5f
are the plot of the radius computed using equations (1.2) and (2.5). In each example,
all rings have initial density ρ = 1. Table 3.2 shows the blow up times for each case
and the agreement between our method and the solutions to the ODEs is excellent.
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Fig. 3.5. The comparison of the numerical solution of the radius of rings. In the above 6
pictures, a, c and e are the plot of the radius using equations (3.12) and (3.13); b, d and f are the
plot of the radius computed using equations (1.2) and (2.5). a and b are the solutions for the one
ring case; c and d are the solutions for the two rings case; e and f are the solutions for the three
rings case.

4. Kernels of mixed type.

4.1. Example 1: Superfluids. We now turn our attention to examples where
the kernels are of mixed type. In this section, we consider a family of equations
parameterized by θ that arises in the modeling of vortex dynamics for superfluids
described in [11]. This family of equations takes the following form:

∂tρ+∇ · (uρ) = 0, (t, x) ∈ (0,∞)× R2 (4.1)

u = M∇4−1ρ, ρ|t=0 = ρ0 (4.2)

where ρ is known as a vortex density function of the superfluid and M(θ) is a constant
orthogonal matrix of the form:

M(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

This model is derived from the hydrodynamic equations for Ginzburg-Landau
vortices [12]. In [11, 24] the authors found that when cos θ = 0, smooth solutions to
(4.1) and (4.2) may blow up in finite time. In addition if ρ0 changes sign, it was shown
that concentration phenomena exist in the approximate solutions sequence of (4.1)
and (4.2) regardless of the initial data’s degree of regularity. Thus it is interesting to
study the vortex sheet problem for (4.1) and (4.2) which is simply a generalization of
the classic vortex sheet problem studied in Section 3.2.1.

To match our notation, we may write 4−1ρ = G ∗ ρ, where G(r) = − 1
2π ln r is

the fundamental solution of Laplace’s equation in R2. Notice that the parameter θ
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controls the contribution to the kernel given by both the incompressible and gradient
parts which can be explicitly written out as

K(x, y) = K1(x, y) cos(θ)−K2(x, y) sin(θ), (4.3)

where M(θ)∇4−1ρ = K ∗ρ and K1, and K2 are defined as K1(x, y) = −(x, y)/(2πr2)
and K2(x, y) = (−y, x)/(2πr2). Thus if we take θ = 0, M(θ)∇4−1ρ = K1 ∗ ρ is
purely a gradient flow of the Newtonian potential. However, if we take θ = −π/2,
M(θ)∇4−1ρ = K2(x, y) = (−y, x)/(2πr2), we recover the Biot-Savart kernel exactly.
For the purpose of our study we will consider values of 0 ≤ θ ≤ −π/2 which yield
kernels of mixed type (except, of course, the end points). This regime of parameter
values ensures the correct sign of the gradient part of the kernel K1(x, y) is attractive.

We are specifically interested in using our model to better understand the dy-
namics of vortex density sheets as we vary the parameter θ. From our discussion
above it is clear that as θ increases from θ = −π/2 to θ = 0 the amount of con-
tribution to our kernel K from the gradient component (attraction) increases while
simultaneously the amount of incompressible component (rotation) decreases. What
is surprising, though, is that linearly increasing θ has several nonlinear effects on the
curve dynamics.

To begin, we use our model to solve for the curve solutions by simply replacing
equation (4.1) with (2.5). Since K1 and K2 are singular, we use Krasny’s desingular-
ization method for both kernelsK1ε = −(x, y)/(2π(r2+ε2)) andK2ε = (−y, x)/(2π(r2+
ε2)) with ε = 0.1. We take perturbations of a vortex ring as our first example with
the following initial conditions:

(x(α), y(α)) = (r(α) cos(2πα), r(α) sin(2πα)), ρ(α) = 1, (4.4)

where r(α) = (1 + 0.01 cos(20πα)). We solve equations (2.5) and (4.2) with initial
conditions (4.4) for θ = −π/2, −5π/12, −π/3, −π/4,−π/6, −π/12, and 0, plotting in
Figure 4.1 the position of the sheet at T = 1.
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−0.6

−0.4
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0.8

1

Fig. 4.1. Plot of the vortex density sheet for several values of θ with initial conditions at
T=1. From outside to inside θ = −π/2, −5π/12, −π/3, −π/4,−π/6, −π/12, and 0. The asterisks
represent the point that was initially positioned at (1, 0).
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Fig. 4.2. Plot of the rotation angles at t = 1 with respect to parameter θ. The solid curve
corresponds to the initial condition of a perturbed ring. The dashed curve corresponds to an initial
condition of an unperturbed ring.

If we record the angle of the asterisks in Figure 4.1 to the horizontal axis we can
use this to measure the amount of angular rotation of the ring. The innermost curve
corresponds to θ = 0, which is the pure gradient case for the kernel, and the curve
clearly exhibits no rotation. The outermost curve corresponds to θ = −π/2, which
is the purely incompressible case for the kernel; we measure the rotation angle to be
approximately 0.187π. One may expect that as we move from the outermost to the
innermost curve (increasing θ by π/12 between any of the two consecutive curves) we
should observe a monotonic decrease in rotation angle. Instead, Figure 4.1 shows that
the amount of rotation actually increases initially (and peaks near θ = −π/3), before
eventually decreasing to zero.

We separately plot this rotation angle at T = 1 as a function of θ for both the
perturbed ring (4.4), and an unperturbed ring in Figure 4.2, seeing that in both cases
a maxima occurs on the interior of this range of θ. The maximum angle for the
perturbed case is 0.7123, attained at θ ≈ −14/36π; while the maximum angle for
the unperturbed case is 0.5835, attained at θ ≈ −11/36π. In general, the value of
θ for which the maximum angle of rotation occurs is time-dependent but for t � 0
we observe that a maximum is always found in the interior of (−π/2, 0). For t suffi-
ciently small, the maximum angle occurs at the parameter θ = −π/2, corresponding
to a purely incompressible kernel. Hence, the incompressible kernel dominates the
initial rotation dynamics but for slightly longer times the aggregation term plays an
important role.

The second aspect of the curve dynamics we would like to study as we vary θ is
the amount of roll-up that occurs as a result of the perturbation to the ring. We are
also interested in the amplification in time of the perturbation as measured from the
unperturbed ring as we vary θ. To study these aspects we selected θ = −π/2, −5π/12,
−π/3 and −π/4, and plotted the position of the curve at the later time t = 1.5 in
Figure 4.3. Noting the initial position (marked by an asterisk), it becomes clear that
the solutions with θ = −π/3 and −π/4 rotate more than θ = −π/2. In addition,
we can see in Figure 4.3 that the amplitude of the perturbation also decreases as θ
decreases from θ = −π/2 to θ = −π/4. The amount of roll-up appears to decrease,
but unfortunately it is difficult to see in Figure 4.3 due to the smaller amplitude. To
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Fig. 4.3. The solution at time t=1.5 for four different values of θ. The asterisk indicates the
position of the point initialized at (1, 0).

better investigate this phenomenon we focus on one of the roll-ups shown in Figure
4.4 (d). In fact, there are many roll-ups seen by zooming in and careful numerical

Fig. 4.4. Subsequent enlargements of a particular roll-up in picture (d) from Figure 4.3. We
use 12530 grid points, but the roll-ups structure does not change when we halve the error tolerance,
resulting in 25060 points.
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Table 4.1
table of wind up numbers

parameter θ −π/2 −5π/12 −π/3 −π/4
wind up number 1.5 2.45 2.92 2.47

refinement of the calculation. In order to calculate the wind up numbers precisely, we
calculate the tangential angle φ at each point numerically using the following formula:

φi = arctan (
yi+1 − yi−1
xi+1 − xi−1

). (4.5)

Based on this, we calculate the absolute value of the increase of φ by

dφi = |φi+1 − φi|. (4.6)

In one period, the roll-up rotates first counterclockwise and then clockwise an identical
amount. Thus, since the perturbation has ten periods, we define the wind up number
as
∑
i dφi/20. As seen in Table 4.1, the amount of roll-up actually increases with θ,

eventually peaking at around θ = −π/3 where there are approximately 2.92 rounds
of roll-up. The amount of roll-up then begins to decrease. At θ = −π/4, which
represents an equal amount of incompressible part and gradient part for the kernel,
there are only 2.47 rounds of roll-up in the picture.

Thus, we find that both the maximum amount of rotation of the vortex density
ring and the amount of roll-up is not a monotone function of θ. For a fixed time t > 0
these maxima occur when there is a fully-mixed kernel; i.e., a contribution from both
the gradient part and the incompressible part.The amplitude of the perturbation
monotonically decreases as θ increases from θ = −π/2 to θ = 0. Ultimately, as θ
increases and the gradient flow (the attraction) becomes the dominant contributor to
the velocity field, both the roll-up and the rotation are damped out.

To explain this behavior physically and mathematically, we consider the linear
stability analysis associated with the Kelvin-Helmholtz instability for this more gen-
eral problem of a fully-mixed kernel. Specifically, we study the linear stability theory
of perturbations of a flat constant solution on a periodic domain. Recall that the
linear stability analysis of the classic vortex sheet problem [23] demonstrates that the
kth Fourier mode grows like e|k|t/2 which implies that the linear evolution problem
is linearly ill-posed. This ill-posedness explains the rapid development of the compli-
cated roll-up behavior seen in section 3.2.1, classically known as the Kelvin-Helmholtz
instability. Following the calculations in [23] we choose the flat vortex density solution
to perform this calculation.

Our initial conditions for the flat density sheet problem can be expressed as
z(α, 0) = α + η(α, 0) with α ∈ [−∞,∞], where η = η2 + η1i is a small perturbation
to the position of the sheet. By choosing ρ|zα| = 1 over a fixed period, it is clear
that η also represents a perturbation of the density which takes the form ρ = 1 −
η′2 +O(η′21 ) +O(η′22 ). η1 represents a perturbation which is perpendicular to the flat
sheet. η2 is a parallel perturbation and is the leading order contribution to the density
perturbation. Figure 4.5 shows the evolution of the curve at t = 1 for several different
values of θ where η1 is a small Fourier mode 1 perturbation and η2 = 0.

We observe all the same phenomena that we saw in the ring perturbation calcu-
lation: As θ increases from −π/2 to −π/4, the number of roll-ups first increase and
then decrease. Second, the roll-ups become smaller and smaller in structure as the



Generalized Birkhoff-Rott Equation 15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.1

0

0.1

 

 

(d)

(b)

(c)

(a)

Fig. 4.5. The solution to the periodic line problem at time t = 1, with initial condition
ε sin(2πα). (a). θ = −π/2, wind up number= 2.64; (b). θ = −5π/12, wind up number= 5.04;
(c). θ = −π/3, wind up number= 4.12; (d). θ = −π/4, wind up number= 1.60.

amplitude of the perturbation (measured from the flat line) lowers as θ increases.

For our stability calculation we use the K(x, y) = λ1K1(x, y) +λ2K2(x, y), where
λ1 = cos(θ) and λ2 = − sin(θ). By equation (2.5) it is sufficient to understand the
linearized evolution equation for z(α, t) which has the form

∂tz̄(α, t) =
λ2 − λ1i

2πi
PV

∫
dα′

z(α, t)− z(α′, t) . (4.7)

By linearizing around our flat sheet z(α, t) = α+η(α, t), we get the following equation

∂η̄

∂t
=
λ2 − λ1i

2
Hη′ (4.8)

where Hη′ is the Hilbert transform of η′, where η′ is the derivative of η with respect
to the parameterization and η̄ is the complex conjugate of η.

Remark 4.1. Note that if λ1 = 0 and λ2 = 1 then equation (4.8) recovers the
classical Kelvin-Helmholtz instability calculation. Thus, the inclusion of a gradient
term can be seen directly in the −λ1i term in (4.8).

Letting η(α, t) = Ak(t)ei2πkα +Bk(t)e−i2πkα, we get the following relations

A′k = (λ1 − λ2i)πkB̄k, B′k = (λ1 − λ2i)πkĀk, (4.9)

which yield solutions of the form:

Ak(t) = A+
k e

πkt +A−k e
−πkt, Bk(t) = B+

k e
πkt +B−k e

−πkt. (4.10)

We now select an initial condition for our perturbation that contains both a spatial
perturbation to the curve (perpendicular to the flat sheet) and density perturbations
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(parallel to the flat sheet in the x direction). If we choose η(α, 0) = ε1i sin 2πm1α +
ε2 sin 2πm2α then for k 6= m1 or m2 we get Ak(t) = Bk(t) = 0. Otherwise,

A+
m1

=
ε1
4

(1− λ1 + λ2i), A−m1
=
ε1
4

(1 + λ1 − λ2i), (4.11)

B+
m1

=
ε1
4

(−1 + λ1 − λ2i), B−m1
=
ε1
4

(−1− λ1 + λ2i), (4.12)

A+
m2

= − iε2
4

(1− λ1 + λ2i), A−m2
= − iε2

4
(1 + λ1 − λ2i), (4.13)

B+
m2

= − iε2
4

(−1 + λ1 − λ2i), B−m2
= − iε2

4
(−1− λ1 + λ2i). (4.14)

The solution to the linearized problem is then: η(α, t) =

i[ε1(sin 2πm1α cosh(πm1t)− λ1 sin 2πm1α sinh(πm1t)) + ε2λ2 sin 2πm2α sinh(πm2t)]

+ε2(sin 2πm2α cosh(πm2t)− λ1 sin 2πm2α sinh(πm2t))− ε1λ2 sin 2πm1α sinh(πm1t).
(4.15)

From equation (4.15), we can now explain the effect of including a gradient term
on the dynamics of the flat vortex density sheet and the Kelvin-Helmholtz instability.
If we first consider purely perpendicular perturbations to the vortex density sheet (cor-
responding to ε2 = 0), our calculation above yields that the kth Fourier mode grows
like e|k|t/2. This implies that the linear evolution problem is still linearly ill-posed in
the fully-mixed case. Hence, just as in the classical Kelvin-Helmholtz instability, we
expect a singularity in the curvature of our solution in finite time. The linearization
calculation provides the mechanism for the dampened amplitude that we see in the
nonlinear calculations in Figure 4.5.

When θ is a bit greater than −π/2, λ1 is a small positive number. We can see from
equation (4.15) that this is the direct cause of the dampening out of the growth in the
y direction. This is observed in Figure 4.5 and is explicitly exhibited in the linearized
solutions plot in Figure 4.6 for various θ values. We can now also argue why we observe
more roll-up in fully-mixed kernels as opposed to just incompressible motion. At the
point of a roll-up, the dampened amplitude along with the added attractive behavior
of the gradient kernel forces the vorticity to remain closer together and aggregate at
the roll-up point. Thus, by having more “mass” in a closer proximity, the rotational
rate of r−1 causes this aggregated mass to rotate quicker than if no gradient dynamics
were included.

We can also understand from equation (4.15) the linearized dynamics of a pure
density perturbation to the curve which corresponds to ε1 = 0. The linearized solution
also predicts that the kth Fourier mode in the density grows like e|k|t/2, implying that
the linear evolution problem is also linearly ill-posed. Another effect of including a
gradient term is thus the growth of singularities in the density in addition to the
singularities in the curvature. In general, an arbitrary small perturbation to the
vortex density sheet will generate singularities in both the curvature and the density;
an example of this phenomenon is plotted in Figure 4.7. In this example, it appears
that the curvature and density singularities occur at the same spatial point. Whether
curvature singularities and density singularities must occur at the same place and
time is unknown and is an interesting open question.

4.1.1. Biological swarming. We conclude this section by turning our atten-
tion from vortex density sheets to a biological model for swarming. In [31], Topaz
and Bertozzi study the continuum model (1.1) and (1.2), with the Gaussian kernel
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Fig. 4.6. The solution to the linearized problem at time t = 1.3 with initial condition
ε1 sin(2πα). The solid curve is for θ = −π/2; the dashed curve is for θ = −5π/12; the dotted-
dashed curve is for θ = −π/3.
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Fig. 4.7. Time evolution of both the curve and density with η(α, 0) = 0.01 sin(2πα) with
θ = −5π/12. This pure density perturbation leads to both a curvature and density singularity
formation.

Gd(x, y) = 1
d2 e
−(x2+y2)/d2 . The parameter d is the relevant length scale and Gd is

used as a biological kernel to model swarming and milling behavior for both incom-
pressible motion N and gradient motion G. They considered localized continuous
distributions of the density but ultimately study the dynamics of the incompressible
motion and the gradient motion separately. Using our model, we study the dynamics
of curve solutions with a fully-mixed kernel of the form K = λ1∇Gd + λ⊥2 ∇Gd where
λ1 is a weight for the gradient contribution to the kernel and λ2 is a weight for the
incompressible contribution to the kernel. Using the same approach as the superflu-
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ids example, we would like to understand how incompressible motion and gradient
motion affect each other by controlling the weights λ1 and λ2 for each.

We study the initial value problem (1.1) and (1.2) using a perturbed density ring
with initial conditions of the form (4.4), where

r(α) = r̄ + r̃ cos 12πα with α ∈ [0, 1]. (4.16)

For our first two experiments we take d = 3 for both Gd in the kernel, and choose
r̄ = 1, with the very large perturbation of r̃ = 0.2. We fix the weight of the gradient
part in our first simulation to be λ1 = 1, and vary the amount of the incompressible
part from λ2 = 0 to λ2 = 9, plotting the solution curves at t = 50 in Figure 4.8. By
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Fig. 4.8. The solution at time t=50 for λ1 = 1 and varying values of λ2.

keeping λ1 = 1 fixed we can observe how changing the value of λ2 (the incompressible
motion) affects the dynamics with a fixed rate of contraction. From Figure 4.8 it is
clear that the amount of rotational shear that occurs on the “spiral arms” increases
as λ2 increases, as one would expect. It is also easy to see that the rate of contraction
(using the magnitude of the scale of the curves 5 × 10−5) is identical regardless of
how much incompressible part is added to the kernel. This is also consistent with the
superfluids example.

Next, we fix the incompressibility coefficient λ2 = 1 and vary the gradient co-
efficient λ1 to see how the increase of the gradient affects the rotation and shear of
the curve solutions. Figure 4.9 gives the solutions for different λ1’s at time t = 25.
There are several important features to observe in Figure 4.9. First, it is clear from
the axis that as λ1 increases the rate of contraction increases as expected. Second,
we note that the rotational shear of the arms decreases and the amount of rotation of
the shape increases as λ1 increases. We calculate the degree of rotation by measuring
the angle from the asterisks to the point (1, 0); the values are recorded in Table 4.2.
One noticeable change in the angle occurs between λ1 = 0.1 to λ1 = 0.5, where the
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Fig. 4.9. The solution at time t=25 for λ2 = 1 and varying values of λ1.

angle of rotation changes from 1.23π to 1.47π. Increasing values of λ1 beyond λ1 > 1
yields only small increases in the angle of rotation. Thus, even with a much smoother
Gaussian kernel the same theme from the the superfluids example persists: the gradi-
ent contribution can have a strong effect on the rotational dynamics but the reverse
does not occur.

Table 4.2
Table of wind up numbers

Parameter λ1 0 0.1 0.5 1 2 5
Rotation angle 1.0976 1.2276 1.4700 1.5358 1.5693 1.5894

Perhaps the most interesting behavior we observe in this example is that different
spin directions of the perturbation arms occur depending on the relationship between
the size of the ring r and the length scale of the kernel d. In our examples ρ > 0
the curve thus rotates counterclockwise by the right hand rule. In Figure 4.10(a),
which corresponds to d = 3 and r = 1, the outer arms spin slower in the clockwise
direction relative to the curve’s speed of rotation, hence the arms appear to be “falling
behind.” In contrast, Figure 4.10(b) uses the parameters d = 1 and r = 1, producing
a counterclockwise spin of the arms which is faster than the curve’s speed of rotation.
This forces the arms to “get ahead” of the curve. We can suppose, then, that there
must be a critical ratio γ0 = d/r in the behavior of the spiral arms as we increase the
parameter d from 1 to 3 where the speeds match.

To estimate γ0 we first consider the simpler problem of an an unperturbed ring
and the velocity ε away from the ring depicted in Figure 4.11. Let us assume our
initial condition is a circle with radius r and density normalized to ρ = 1. For this
estimate we will also set λ1 = 0 and λ2 = 1 in our model to isolate the effect of the
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Fig. 4.10. By choosing parameters d and r, the spin direction of the outer arms are different.
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Fig. 4.11. The initial condition as a cir-
cle, with the angular velocity it generates to
a point with distance ε on the right of the
circle.
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Fig. 4.12. Integral I as a function of γ.
I(0.879)=0.000171 and I(0.878)=-0.003721,
indicating that the zero lies between 0.878
and 0.879.

incompressible velocity field (which is the cause of the rotation rates). This will result
in a constant radius r (as opposed to a contracting one), allowing us to pinpoint γ0
more precisely. We have seen that the amount of gradient in the kernel has an effect
on the rotational shearing but we will observe below that the predicted γ0 seems to
be independent of λ2.

To find the value of γ0 we need to compute the angular velocity ωp of a point
p = (1 + ε, 0) just outside the ring, i.e., where ε � 1; see Figure 4.11. This point
represents a small radial perturbation of the circle. If this point is moving faster than
on the ring then perturbations of the ring will result in spiral arms that shear in the
counterclockwise direction relative to the ring, as in example 4.10(b). If the point is
moving slower than on the ring the spiral arms will fall behind the ring, as in example
4.10(a). To calculate the angular velocity ωp of the point p which is a distance ε from
the circle we compute the integral

ωp =
1

r + ε

∫ 2π

0

∇⊥Gd(r + ε− r cos θ,−r sin θ)rdθ. (4.17)
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We then differentiate (4.17) with respect to ε and we get to leading order

dωp
dε

=
2

d5
· I, where I =

∫ 2π

0

[− r
d

2(1− sin θ)2 +
d

r
sin θ]e−2(1−sin θ)

r2

d2 dθ. (4.18)

We see that the sign of dω
dε depends solely on γ = r/d. When I < 0, i.e., dω

dε < 0,
the points on the arm which are closer to the circle have a faster angular velocity.
Then the arms appear to wind up in the opposite direction of the spin. When I > 0,
i.e., dω

dε > 0, the points on the arm which are outside the circle have a faster angular
velocity, which makes the arms appear to wind up in the same direction as the spin.
Thus, our critical value γ0 is precisely when I(γ0) = 0, which is the critical ratio of
radius to kernel length scale. Figure 4.12 is a numerical calculation of I as a function
of γ. From this we see that γ0 ≈ 0.88 for our example.

The existence of a critical γ0 provides the explanation of why we see qualitatively
different dynamics in the spiral arms between Figure 4.10(a) and 4.10(b). Since the
ratio r/d is what determines the shearing behavior in our simpler problem, we can
measure the accuracy of γ0 = 0.88 once we include both a nonzero λ1 and λ2 in
our fully nonlinear perturbation problem. By including a positive value for λ1 the
curve solution will attract toward the origin. Thus, if we start with a ring whose
large perturbations initially start outside of the critical radius, we should initially
see the arms shear faster than the ring. This faster rotation will cause the arms to
move ahead of the ring. However, as the entire curve shrinks and crosses our critical
estimate of γ0 = 0.88, we would expect the spiral arms to reverse directions. The
initial conditions we use for this experiment are described in (4.4) and (4.16), with
d = 1, r̄ = 1, and r̃ = 0.2. In addition, we take λ1 = 0.01 and λ2 = 0.5. The plot of
the initial condition in Figure 4.13 shows that the large perturbations do in fact lie
outside of the critical radius.

As predicted from our calculation, the t = 3 plot shows the arms located outside
the critical radius moving faster in the counterclockwise direction. However, by t = 11
most of the spiral arm has contracted inside the critical radius and begins to reverse
course. By t = 15 the entire curve and spiral arms are inside the critical radius and
the rotational shear becomes pronounced in the reverse direction - shown in Figure
4.13. Thus, our idealized calculation for the critical radius based on the assumption
of an unperturbed ring approximates the reversal quite well, though it appears that
the reversing of the spiral arm direction in the t = 11 picture of Figure 4.13 does
occur just outside of the ring.

5. Discussion. In this paper we have derived the evolution equations for the
solutions to the general 2D active scalar problem in the case when the active scalar
lies on 1D curves. We implement an adaptive Lagrangian scheme which is 2nd order
in space and 4th order in time. The model is then shown to reproduce classical vortex
sheet dynamics as compared to the desingularized Birkhoff-Rott equation. When the
velocity is purely a gradient the model accurately predicts the finite time collapse of
power law aggregation equations. When the velocity field contains both an incom-
pressible and gradient component our model exhibits new dynamics which include an
increased roll-up associated with the Kelvin-Helmholtz instability for vortex density
functions of superfluids. In the second example of mixed type velocity fields we con-
sider a model for biological swarming and aggregation and show that length scale of
the kernel plays an important role in the milling and rotational shear behavior of the
active scalar curve.
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Fig. 4.13. The solution at time t = 0, 3, 11, 15, with initial conditions (4.4) and (4.16) with
d = 1, r̄ = 1, r̃ = 0.2, λ1 = 0.01, and λ2 = 0.5

With this new equation there are many future directions of research. As we
have seen in these examples, the interaction between gradient and incompressible
components provides very rich and nonlinear dynamics. In the superfluids example it
would be an interesting physical and mathematical question to better understand the
different types of singularity formation (curvature vs. density) and their relation. A
second direction of future research is in the area of stability of solutions. Equations
(2.5) and (2.2) have already been used to consider both stability of ring solutions and
linear well-posedness for attraction-repulsion kernels that are purely a gradient, see
[19], and one could extend the analysis to fully-mixed kernels.
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