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Abstract. We study the shock dynamics for a recently proposed system of conservation laws
(Murisic et. al [J. Fluid Mech. 2013]) describing gravity-driven thin film flow of a suspension of
negatively buoyant particles down an incline. When the particle concentration is above a critical
value, singular shock solutions can occur. We analyze the Hugoniot topology associated with the
Riemann problem for this system, describing in detail how the transition from a double shock to a
singular shock happens. We also derive the singular shock speed based on a key observation that the
particles pile up at the maximum packing fraction near the contact line.
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1. Introduction. The flow of thin viscous suspension with particles has impor-
tant application in science and industry, such as the Bostwick consistometer in the
food industry [21] and spiral separator in the mining industry [18]. However, a contin-
uum description is complicated by the interplay of different physical effects including
the increase of viscosity in the presence of particles [32, 4], the settling of heavy par-
ticles due to gravity [12], and particle resuspension induced by shear [19, 1]. Only
recent studies have centered on particle-laden thin films down an incline with a free
surface and moving contact lines.

Zhou et al. [34] first derived a theory for shock dynamics by considering a gravity-
driven film of a dense suspension of glass beads in oil with conserved volume. Three
different regimes were observed depending on the inclination angle and initial particle
concentration. At low inclination angles and concentrations, particles settle out of
the flow leading to the stratification of the suspension with a clear fluid moving ahead
of the particles; at intermediate angles and concentrations, the suspension stays well-
mixed; and at high concentrations and inclination angles the particles concentrate at
the contact line to form a particle-rich ridge. To model the problem, they treat the
mixture as a Newtonian flow locally, and describe the two-phase flow by a depth-
average velocity depending on the effective viscosity of the suspension together with
a relative velocity coming from the hindered settling. Shock solutions are obtained,
however, the classical solution might cease to exist if the precursor thickness is smaller
than a critical value. Cook et al. [8] revisited this model with a more complete
explanation and more thorough characterization of the shock solutions. A singular
shock is expected without further analysis, and they observe that for this singular
shock, the particle concentration exceeds the limit of the close packing, making the
model invalid in high concentrations. Cook [7] later developed a model to identify a
balance between hindered settling and shear-induced migration as the leading order
physics for particle-liquid separation.

Intensive experiments were carried out in [31] and [22]. In [31], Ward et. al
stressed the gravitation effects in the flow with conserved volume. The average front
position is found to obey the power law predicted for a clear fluid by Huppert [13] at
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moderate concentrations and deviation is observed when the concentration nears the
maximum packing fraction. Murisic et al. [22] carried out experiments at different
inclination angles and particle sizes showing that the equilibrium model in [7] explains
the different settling regimes.

The work of Murisic et.al. [23] systematically derives a dynamic lubrication model
for the flow building on the equilibrium theory [7, 22], and they also provide a careful
quantitative comparison between the lubrication model and experiments in the set-
tled regime. More details about shock structure in this regime are given in [20]. To
date, the model has not been compared with experiments in the particle-rich ridge
regime and this is in-part due to the more complicated dynamics of the model in-
volving singular shocks. Our goal is to provide a detailed mathematical foundation
for the model – focusing on this regime in which higher particle concentrations oc-
cur. The equilibrium model for particle settling has an unstable critical value for the
concentration and we consider the case when the concentration is above this value so
as to fall into the ridged regime. In this regime, three kinds of shocks form depend-
ing on the thickness and concentration of the precursor, two of which corresponds to
the particle-rich ridge observed in the experiment, one is a singular shock and the
other is double shock with intermediate height greater than the left and right heights.
The thickness and concentration of the precursor play a major role in determining
which solution is applicable. When the precursor is thinner than a threshold, only
the singular shock exists; on the other hand a double shock solution exits for a thicker
precursor. A third kind of shock solution is also relevant, it consists of a double shock
with the intermediate state having almost zero concentration, more like the clear fluid
observed in the settled regime.

Singular shocks were first studied by Keyfitz and Kranzer on a 2× 2 strictly hy-
perbolic and genuinely nonlinear system [14, 16]. Based on a Dafermos regularization
[9, 10], they derived a generalized Rankine-Hugoniot condition showing that mass
concentration occurs in one variable only, providing a way to predict the shock speed.
A rigorous derivation is given in [15] by constructing three sequences of approximating
solutions and showing that they converge in the space of measures to a limit involving
Dirac-like masses superimposed on a classical shock. Some numerics are carried out
later to further understand the local structure of the singular shocks for this system
[25]. Another famous system is the pressureless gas equations describing sticky parti-
cles, which admits delta shocks. There is a rich literature on the existence and local
structure of these solutions [3, 5, 6, 30]. Some theoretical work exists on more general
systems with restrictions [29, 28, 11, 24, 33, 26].

Our system, however, does not fall into any categories studied above. And the
absence of the closed form for the flux functions further complicates the analysis.
Rather, the flux functions are determined from the solutions of an ODE system. The
formation of the singular shock in our case is very different from the Keyfitz-Kranzer
system or the one in [8] which models the same phenomenon. Here the Hugoniot loci
could extend to infinity but still fail to produce a physical intersection because the
loci are asymptotically parallel in the far field. This also explains a special transition
from a double shock to a singular shock, namely, the two speeds for the double shock
become closer, while the intermediate state approaches infinity, until they coincide at
a transition to the singular shock.

The rest of the paper is organized as follows. In the next section, we briefly
review the model and prove rigorously some basic properties that have been observed
experimentally and numerically in the prior papers. Then we focus on the case when
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the particle concentration for the precursor is the same as bulk flow, with the results
gathered in Section 3 and 4. Section 3 analyzes the classical single and double shock
solution. Section 4 studies the origin and local structure of the singular shock, as
well as its transition from the double shock. The results are extended in Section 5 to
a more general case when the precursor has a different concentration from the bulk
flow. At last, some concluding remarks are given in Section 6.

2. The Model. We first summarize the model in [23] for a thin-film flow of
a well-mixed mixture of particles and liquid down an incline. The particles are
assumed to be spherical monodisperse, non-colloidal, negatively buoyant and rigid
while the liquid is incompressible. We assume the flow is transverse (y-direction)
symmetric, so only the direction x along the substrate and normal direction z will
be considered (see figure 2.1). The substrate is tilted an angle α to the horizon-
tal. The particle volume fraction 0 ≤ φ(t, x, z) < 1 and volume-averaged velocity
u(t, x, z) = (u(t, x, z), w(t, x, z)) are defined at every point (x, z) and time t. The
mass density of particles and liquid satisfy ρp > ρl, where the subscript p and l rep-
resent particle and liquid from now on. The volume fraction φ does not exceed the
maximum packing fraction φmax. This was empirically measured to be φmax = 0.61
in the experiments in [23].

Fig. 2.1. Sketches of the setup.

Let h(t, x) be the free surface, then 0 < z < h(t, x) and the governing equations
are the Stokes’ equations for the incompressible suspension and a conservation law
for the particle volume: 

−∇ ·Π = (ρpφ+ (1− φ)ρl) g, (2.1a)

∂tφ+ u · ∇φ+∇ · J = 0, (2.1b)

∇ · u = 0, (2.1c)

where Π = −pI+µ(φ)
(
∇u +∇uT

)
is the stress tensor, µ(φ) is the effective suspension

viscosity satisfying the Krieger-Dougherty relation [32, 4]:

µ(φ) = µl(1− φ/φmax)−2. (2.2)

The particle flux J takes the form

J =
d2φ(ρp − ρl)

18µl
fs(φ)g − d2Kcφ

4
∇ (γ̇φ)− d2Kvφ

2γ̇

4µ(φ)

dµ(φ)

dφ
∇φ,

where d is the particle diameter, and γ̇ ≈ ∂u
∂z is the shear rate. The first term

describes the hindered settling of particles due to gravity with hindrance function
fs(φ) = (1 − φ)/µ(φ), the second and the third terms refer to the shear-induced
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migration as a result of particle collision and viscosity gradient respectively. Here
Kc = 0.41 and Kv = 0.62 are empirical constants. The boundary conditions are:
no-slip condition at the solid substrate u

∣∣
z=0

= 0, zero-stress condition at free surface

t ·Π · n
∣∣
z=h

= 0, zero-flux condition at both interfaces J · n
∣∣
z=0

= J · n
∣∣
z=h

= 0, and

kinematic boundary condition at the free surface ∂th = w − u∂xh
∣∣
z=h

. Here n is the
outward normal unit vector.

We rescale system (2.1) in the same spirit as in the lubrication theory with two

parameters ε = [z]
[x] and η = d

[z] . Under the continuum assumption and the assumption

that the particle flux in z-direction is in equilibrium, we require ε� η2 � 1. Then a
formal asymptotic expansion leads to the evolution equations for h and φ [23]. The
leading order equations of (2.1b) and (2.1a) give rise to the following equilibrium
model for particle settling:

(
1 + C1

φ̃

φmax − φ̃

)
σ̃φ̃′ + C2 − (C2 + 1)φ̃− ρsφ̃2 = 0, 0 < φ̃ < φmax,(2.3a)

σ̃′ = −(1 + ρsφ̃), (2.3b)

σ̃(1) = 0, (2.3c)

σ̃(0) = 1 + ρsφ0(t, x), (2.3d)

where the stress σ̃ is defined as σ̃ = µ(φ̃)ũ′. Since the equilibrium equations are
independent of the axial flow and time, we introduce a new variable s = z

h(t,x) with

0 ≤ s ≤ 1 so as to get rid of the implicit dependence on h(t, x). The tilde here
indicates the quantities using the s scaling, and all primes in (2.3) are derivatives in
s. Whenever φ̃(t, x; s) = 0 or φ̃(t, x; s) = φmax, (2.3a) is replaced by φ̃′ = 0 so as to

describe the clear fluid or packed particles. C1 = 2(Kv−Kc)
Kc

, C2 = 2ρs cotα
9Kc

, ρs =
ρp−ρl
ρl

are three constants. φ0 is the z-averaged particle volume fraction

φ0(t, x) =

∫ 1

0

φ̃(t, x; s)ds ∈ [0, φmax], (2.4)

and the solution of the ODE system (2.3) has φ0 as a parameter. The velocity ũ(t, x; s)
solves the equation

ũ′(t, x; s) =
σ̃(t, x; s)

µ(φ̃(t, x; s))
, ũ(t, x; 0) = 0. (2.5)

The next order terms lead to the evolution equations for h(t, x) and n(t, x) ≡ φ0(t, x)h(t, x):


∂th+ ∂x

(
h3
∫ 1

0

ũ(t, x; s)ds

)
= 0, (2.6a)

∂tn+ ∂x

(
h3
∫ 1

0

φ̃(t, x; s)ũ(t, x; s)ds

)
= 0, (2.6b)

satisfying the conservation of particle volume and total volume of the suspension
respectively. Written in a more compact form, let

f(φ0) =

∫ 1

0

ũ(t, x; s)ds, g(φ0) =

∫ 1

0

φ̃(t, x; s)ũ(t, x; s)ds, (2.7)
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then we have

ht +
(
h3f

(n
h

))
x

= 0, nt +
(
h3g

(n
h

))
x

= 0, (2.8)

and the Jacobian matrix of this system is

J=h2
(

3f − φ0f ′ f ′

3g − φ0g′ g′

)
, (2.9)

where the derivatives of f and g are with respect to φ0. This system is strictly
hyperbolic as explained in [23]. Here we plot the discriminant of the Jacobian matrix
in (2.9)

D = (3f − φ0f ′ + g′)2 − 12(fg′ − f ′g) (2.10)

versus φ0 for different angles in Figure 2.2, where D > 0 guarantees the hyperbolicity
of the system.
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Fig. 2.2. The discriminant D of (2.10) versus φ0 for different angles, shown in the legend.

2.1. The equilibrium model for particle settling. In this section, we explore
some properties of the solutions to (2.3). The first result is as follows, which was
observed numerically in [22] and experimentally in [31], and here we present a rigorous
proof.

Theorem 2.1. Consider a solution φ̃(t, x; s) of equations (2.3) with 0 ≤ s < 1.
Let φcrit ∈ [0, φmax] be the critical point that solves ρsφ̃

2 + (C2 + 1)φ̃− C2 = 0.
If φmax > φ̃(t, x; 0) > φcrit, then φ̃(t, x; s) is monotonically non-decreasing w.r.t.

s and φ0 > φcrit;
If 0 < φ̃(t, x; 0) < φcrit, then φ̃(t, x; s) is monotonically non-increasing w.r.t. s

and φ0 < φcrit . Therefore, φcrit is unstable.
Proof. In this proof, we omit the dependence on (t, x) without ambiguity. For

the system (2.3), first notice that the solution φ̃(s) to (2.3a) is in (0, φmax), so σ̃(s) is
monotone decreasing according to (2.3b). And since σ̃(1) = 0, we have σ̃(s) > 0 for

0 ≤ s < 1. Let A(φ̃) = 1 +C1
φ̃

φmax−φ̃
and B(φ̃) = (C2 + 1)φ̃+ ρsφ̃

2−C2, write (2.3a)

as σ̃A(φ̃)φ̃′(s) = B(φ̃), then one has σ̃A(φ̃)
(
φ̃− φcrit

)′
(s) = B(φ̃) − B(φcrit) =

B′(ξ(φ̃))
(
φ̃− φcrit

)
(s), where ξ(φ̃) is between φcrit and φ̃(s). Written in a more
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explicit form yields φ̃(s)−φcrit =
(
φ̃− φcrit

)
(0) exp

{∫ s
0

B′
(
ξ
(
φ̃(τ)
))

A(φ̃(s))σ̃(τ)
dτ

}
. Therefore,

if φ̃(0) > φcrit, φ̃(s) > φcrit for all 0 < s < 1 and thus φ0 > φcrit. Since B(φ̃(s)) > 0
for φ̃(s) > φcrit, φ̃

′(s) ≥ 0 in this case. The other case when φ̃(0) < φcrit can be
carried out in the same manner.

The theorem implies that the well-mixed state where φ0 ≡ φcrit is unstable and
will bifurcate into either ridged case or settled case. Figure 2.3 displays the profiles
of φ̃, ũ and σ̃ when the inclination angle is 30◦.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

φ

s
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

σ

s
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

u

s

Fig. 2.3. Plots of the solutions to (2.3) for angle = 30◦. The x-axis is s. Different curves refer
to different initial data φ0 with solid line representing φ0 < φcrit and dashed line φ0 > φcrit. Left:
particle volume fraction φ̃, Middle: shear stress σ̃, Right: suspension velocity ũ.

Theorem 2.2. The fluxes f(φ0) and g(φ0) defined in (2.7) satisfy: if φ0 > φcrit,
then g(φ0) ≥ f(φ0)φ0; if φ0 < φcrit, then g(φ0) ≤ f(φ0)φ0.

This theorem says that when φ0 > φcrit, the average particle velocity exceeds
the average suspension velocity, corresponding to the ridged regime. And the case
φ0 < φcrit corresponds to the settled regime since the average particle velocity is less
than the suspension velocity.

Proof. First notice that ũ(s) is a monotone increasing function in s because of
(2.5). Then

g(φ0)− φ0f(φ0) =

∫ 1

0

φ̃(s)ũ(s)ds− φ0
∫ 1

0

ũ(s)ds =

∫ 1

0

(
φ̃(s)− φ0

)
ũ(s)ds.

From Theorem 2.1, one sees that when φ0 > φcrit, φ̃(s) is monotone non-decreasing,
thus ∃ a ∈ (0, 1) such that φ̃(s) ≤ φ0 when s ≤ a and φ̃(s) ≥ φ0 when s ≥ a. Therefore∫ 1

0

(
φ̃(s)− φ0

)
ũ(s)ds =

∫ a

0

(
φ̃(s)− φ0

)
ũ(s)ds+

∫ 1

a

(
φ̃(s)− φ0

)
ũ(s)ds

=

[∫ a

0

(
φ̃(s)− φ0

) ũ(s)

ũ(a)
ds+

∫ 1

a

(
φ̃(s)− φ0

) ũ(s)

ũ(a)
ds

]
ũ(a)

≥
[∫ a

0

(
φ̃(s)− φ0

)
ds+

∫ 1

a

(
φ̃(s)− φ0

)
ds

]
ũ(a) = 0,

where we use the fact that ũ(s)
ũ(a) ≤ 1 for 0 ≤ s ≤ a and ũ(s)

ũ(a) ≥ 1 for 1 ≥ s ≥ a. When

φ0 < φcrit, the result can be derived mutatis mutandis.
Remark 2.3. From the previous two theorems, we note that g(φcrit) = φcritf(φcrit),

which can be further observed in Figure 2.4.

3. Classical shock solutions for φR = φL. In this and the following sections,
we concentrate on the hyperbolic system (2.8) with Riemann initial data

h(0, x) =

{
hL x < 0
hR x > 0

, φ0(0, x) =

{
φL x < 0
φR x > 0

, n(0, x) = h(0, x)φ0(0, x),(3.1)
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Fig. 2.4. Plot of f(φ0)φ0 − g(φ0) versus φ0 for the angle =30◦.

where hL and φL denote the height of the mixture and particle concentration for the
reservoir, while hR and φR refer to the precursor correspondingly. For now we focus
on the case φR = φL as in [8] corresponding to the same particle concentration in the
reservoir being used to prewet the substrate. Later we consider the role of a variable
φR.

3.1. Single shock solution. Here we summarize the result for the critical case
φL = φR = φcrit, where a classical single shock solution is obtained. This corresponds
to the well-mixed regime where the particles and liquid flow along the substrate at
the same speed.

Proposition 3.1. The solution to the Riemann problem (2.3) (2.8) (3.1) with
φ0(0, x) = φL = φR = φcrit is

h(t, x) =

{
hL x < st
hR x > st

, n(t, x) = h(t, x)φcrit, (3.2)

where s = f(φcrit)
h3
R−h

3
L

hR−hL
, and satisfies the entropy condition λ

(2)
L > s > λ

(2)
R . Here

λ
(2)
L/R are the 2-characteristic speeds for the left and right states respectively.

For a general 2 × 2 system, a classical solution of the Riemann problem has the
form of a double wave structure [17]. However, for this special choice of left and right
states, there is a single 2-shock.

Proof. Notice g(φcrit) = φcritf(φcrit), so the left and right states satisfy the
Rankine-Hugoniot jump conditions

s =
h3R − h3L
hR − hL

f(φcrit) =
h3R − h3L

(hR − hL)φcrit
g(φcrit). (3.3)

Since φ̃(s;φcrit) = φcrit by (2.3a), we have σ̃(s;φcrit) = (1 − s)(1 + ρsφcrit), which
leads to

ũ(s;φcrit) =

(
s− 1

2
s2
)

1 + ρsφcrit
µl

(
1− φcrit

φmax

)2

= A

(
s− 1

2
s2
)
.
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Then from (2.7), one sees that

g′(φcrit)− f ′(φcrit)φcrit =

∫ 1

0

[
ũφ0(s;φcrit)φ̃(s;φcrit) + ũ(s;φcrit)φ̃φ0(s;φcrit)

−φcritũφ0
(s;φcrit)] ds

=

∫ 1

0

ũ(s;φcrit)φ̃φ0
(s;φcrit)ds =

∫ 1

0

A

(
s− 1

2
s2
)
φ̃φ0

(s;φcrit)ds.

Notice
∫ 1

0
φ̃(s;φ0)ds = φ0, ∀φ0 ∈ [0, φmax], one has

∫ 1

0
φ̃φ0

(s;φcrit)ds = 1. From

(2.3a), it is not hard to see that φ̃φ0
(s;φcrit) ≥ 0 for all s ∈ [0, 1]. Thus we have,

g′(φcrit)− f ′(φcrit)φcrit≤ A max
s∈[0,1]

(s− s2)

∫ 1

0

φ̃φ0(s;φcrit)ds =
A

2

< 3

∫ 1

0

ũ(s;φcrit)ds = 3f(φcrit).

Therefore, the two eigenvalues of the flux matrix (2.9) when φ0 = φcrit are

λ
(1)
L/R = h2L/R (g′(φcrit)− φcritf ′(φcrit)) , λ(2)L/R = 3h2L/Rf(φcrit).

And the entropy condition λ
(2)
L > s =

(
h2L + hLhR + h2R

)
f(φcrit) > λ

(2)
R immediately

follows.

3.2. Double shock solution. Throughout this section, we assume φL > φcrit,
and fix hL = 1 for all the numerical experiments from now on without loss of gen-
erality. When φR = φL, and the precursor hR � 0, we find a double shock solution
with intermediate state hM higher than hL and hR. The other case when φR � φL
induces another kind of double shock with φM much smaller than φL(φR), which is
more like a clear fluid that appears in the settled case, and we will discuss it in more
detail in Section 5.

Given a left state (hL, φL), we can draw a curve which contains all the states
(h, φ0) that connect to it by a discontinuity satisfying the jump condition:

h3f(φ0)− h3Lf(φL)

h− hL
=
h3g(φ0)− h3Lg(φL)

hφ0 − hLφL
. (3.4)

The set of all points on this curve is called the Hugoniot locus for (hL, φL). However,
not all points are physically admissible as they do not satisfy the entropy condition.
We plot the admissible part of the Hugoniot locus for (hL, φL) in figure 3.1 on the
left using black and grey dots. Here the black dots represent the states that connect
to the left state through a 1-shock satisfying:

λ(1)(hL, φL) > s1 > λ(1)(h, φ0), s1 < λ(2)(h, φ0); (3.5)

and the grey dots refer to the states that connect to the left state through a 2-shock
satisfying:

λ(2)(hL, φL) > s2 > λ(2)(h, φ0), s2 > λ(1)(hL, φL), (3.6)

where s1 and s2 are shock speeds calculated by the jump condition, λ(i), i = 1, 2
are the eigenvalues of (2.8). The admissible part of the Hugoniot locus for a given
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right state (hR, φR) is also drawn in figure 3.1 with pluses. Here the black pluses
correspond to the states that connect to the right state through 1-shock satisfying

λ(1)(h, φ0) > s1 > λ(1)(hR, φR), s1 < λ(2)(hR, φR); (3.7)

and the grey pluses represent the states that connect to the right states through
2-shock satisfying

λ(2)(h, φ0) > s2 > λ(2)(hR, φR), s2 > λ(1)(h, φ0). (3.8)

Therefore, the intersection of the locus of black dots and the locus of grey pluses is
the admissible intermediate state that connect the left state through a 1-shock and
right state through a 2-shock.

Figure 3.1 on the right presents the Riemann solution obtained by numerically
solving (2.8), where the double shock is observed, although the 1-shock is not sharp
due to numerical diffusion. The intermediate state is found to be (hM , nM ) =
(1.3137, 0.6978), which matches the intersection point for the Hugoniot loci on the
left.
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Fig. 3.1. Left: the Hugoniot loci for the left state (hL, φL) = (1, 0.5) and the right state
(hR, φR) = (0.2, 0.5). The ‘dot’ represents the admissible shocks connecting to the left state while
‘plus’ represents the ones connecting to the right state. Black refers to the 1-shock and grey refers
to the 2-shock. Right: the Riemann solution for (2.8) with above initial condition.

The time evolution of double-shock is fairly interesting. As displayed in figure
3.2, this happens for any intermediate state that is higher than the left and right
states, but after a while this state stops growing higher but begins to expand to form
a double shock.
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Fig. 3.2. The profiles of h, n, and φ0 for different times with initial data (hL, φL) = (1, 0.5)
and (hR, φR) = (0.2, 0.5) for angle = 30◦.
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4. Singular shock solution for φR = φL. When the precursor hR is small, a
singular shock forms: the intermediate height in the shock layer grows without bound
while the value of φ approaches φmax. This singularity is not directly observed in the
experiment because surface tension and the normal component of gravity will smooth
this effect. But experimental observations show that the particles in the front pile up
with a high concentration that may be well described by a singular shock, to leading
order. This is one of the few examples of singular shocks that one might observe in a
physical experiment. Future experiments might compare the speed of the front with
the speed predicted by the singular theory.

4.1. Formation of the singular shock. For the Keyfitz-Kranzer system, which
is strictly hyperbolic and genuinely nonlinear, the Hugoniot locus is a closed figure-
eight shaped curve, and thus fails to produce a classical shock if two initial states are
not close [14, 15, 16]. In Cook et al.’s model [8], a similar topology of the Hugoniot
locus again leads to the singular shock. However, in this new model (2.3)–(2.6), the
mechanism for the generation of singular shock is quite different.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

angle = 30

h
L
 = 1

h
R

 = 0.02

h

φ
0

.+

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

1/h

φ
m

a
x
 −

 φ
0

angle = 30

+

.

Fig. 4.1. Left: the admissible shocks connecting the left state (hL, φL) = (1, 0.5) (dots) and
right state (hR, φR) = (0.02, 0.5) (pluses). Right: the re-plot of the two Hugoniot loci on the left
with y-axis representing φmax − φ0 and x-axis representing 1

h
. The dashed lines are the leading

order asymptotics calculated using formulas (4.4) and (4.5).

We start with figure 4.1. On the left we have the Hugoniot loci connecting to left
state (hL, φL) = (1, 0.5) and right state (hR, φR) = (0.02, 0.5). Similar to figure 3.1,
the dots represent the admissible shocks connecting to the left states while the pluses
represent the ones connecting to the right states. Black refers to the 1-shock and grey
refers to the 2-shock. So we look for an intersection of the black dots and the grey
pluses. First the lower intersection in figure 4.1 is discarded because the shock speed
for the 1-wave is faster than the 2-wave. We then turn our attention to the region
φ0 > φcrit. Here both the black dots and grey plus are increasing and approaching
φ = φmax. In order to see whether they will intersect at large values of h, figure 4.1
on the right gives a plot of φmax − φ0 versus 1

h , where the slope of the grey curve
near zero is smaller than black one, which means the grey one will stay above black
one when h→∞, and thus produces no intersection. To further check it analytically,
we take a closer look at the asymptotic behavior of both curves when h is large. The
following result emphasizes one of the main themes of this paper.

Theorem 4.1. Assume φL = φR and we use φL and φR interchangeable in
this section. Let (h, φ0 = ΦR(h, φR, hR)) denote the admissible 2-shock connecting
to the right state (hR, φR) (i.e. the grey pluses in figure 4.1) with h > hR, and
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(h, φ0 = ΦL(h, φL, hL)) denote the admissible 1-shock connecting to the left state
(hL, φL) (i.e. the black dots in figure 4.1) with h > hL, then we have

lim
h→∞

ΦR(h, φR, hR) = lim
h→∞

ΦL(h, φL, hL) = φmax. (4.1)

Moreover, when h is large, one has

φmax − ΦL(h, φL, hL) ∼ CL(φL)
hL
h

+ o

(
1

h

)
, (4.2)

φmax − ΦR(h, φR, hR) ∼ CR(φL)
hR
h

+ o

(
1

h

)
, (4.3)

where

CL(φL) = (φmax − φL)
1 +B

B

(
1− cos

θ

3
+
√

3 sin
θ

3

)
, (4.4)

CR(φL) = (φmax − φL)
1 +B

B

(
1 + 2 cos

θ

3

)
, (4.5)

and

B =
ρsφ

2
max + (C2 + 1)φmax − C2

C1φmax(1 + ρsφmax)
, (4.6)

θ = arccos

(
1 +

3B2(2B + 3)φ2maxµl
2(φmax − φL)3(1 + ρsφmax)(1 +B)4

(g(φL)− φmaxf(φL))

)
.(4.7)

As an immediate consequence of the above theorem and figure 4.1, we have the
threshold value h∗R defined as

h∗R = hL
CL(φL)

CR(φL)
= hL

1− cos θ3 +
√

3 sin θ
3

1 + 2 cos θ3
, (4.8)

where θ is defined in (4.7). Then if hR > h∗R, the Hugoniot loci will intersect at
(hM , φM ) with hM > max(hL, hR), leading to a double shock. If hR = h∗R, the
Hugoniot loci are tangent at 1

h = 0, and if hR < h∗R they will not intersect, both cases
lead to a singular shock.

Next, we present the following two lemmas required for the proof of Theorem 4.1.
Lemma 4.2.

φ̃φ0
(s;φ0)

∣∣∣
φ0=φmax

= (1 +B)(1− s)B , (4.9)

where B is defined in (4.6).
Proof. Recall the equation (2.3a) for φ̃, one has

φ̃′φ0
(s;φ0) =

ρsφ̃2 + (C2 + 1)φ̃− C2(
φmax − φ̃+ C1φ̃

)
σ̃


φ0

(
φmax − φ̃

)
− ρsφ̃

2 + (C2 + 1)φ̃− C2(
φmax − φ̃+ C1φ̃

)
σ̃
φ̃φ0

,

therefore

φ̃′φ0
(s;φmax) = −ρsφ

2
max + (C2 + 1)φmax − C2

C1φmax(1 + ρsφmax)(1− s)
φ̃φ0

= − B

1− s
φ̃φ0

(s;φmax), (4.10)
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where we use the fact that σ̃(s;φmax) = (1− s)(1 + ρsφmax) and φ̃(s;φmax) ≡ φmax.

Moreover, since
∫ 1

0
φ̃(s;φ0)ds = φ0, ∀φ0 ∈ [0, φmax] one sees∫ 1

0

φ̃φ0
(s;φmax)ds = 1. (4.11)

Then (4.10) together with (4.11) as an ODE for φ̃φ0(s;φmax) readily implies (4.9).
Lemma 4.3. The flux functions f(φ0) and g(φ0) at φ0 = φmax satisfy

f(φmax) = g(φmax) = 0, (4.12)

φmaxf
′(φmax) = g′(φmax) = 0, (4.13)

φmaxf
′′(φmax) = g′′(φmax) 6= 0. (4.14)

Proof. First µ(φ) = µl(1 − φ/φmax)−2 together with (2.5) implies ũ(s;φmax) ≡
0, and thus indicatesf(φmax) = g(φmax) = 0. For the first derivative, recall the
definition of f(φ0) and g(φ0) in (2.7), one has

f ′(φ0)=

∫ 1

0

ũφ0
(s;φ0)ds, g′(φ0)=

∫ 1

0

ũφ0
(s;φ0)φ̃(s;φ0)ds+

∫ 1

0

ũ(s;φ0)φ̃φ0
(s;φ0)ds.

Again φ̃(s;φmax) = φmax and ũ(s;φmax) = 0 lead to φmaxf
′(φmax) = g′(φmax). In

fact, from (2.5), one sees that

ũ(s;φ0) =

∫ s

0

σ̃(τ ;φ0)

µl

(
1− φ̃(τ ;φ0)

φmax

)2

dτ, (4.15)

then

ũφ0
(s;φmax) =

1

µl

∫ s

0

σ̃φ0

(
1− φ̃

φmax

)2

− 2σ̃

φmax

(
1− φ̃

φmax

)
φ̃φ0

 dτ

∣∣∣∣∣
φ0=φmax

= 0,

which implies f ′(φmax) = g′(φmax) = 0. The second derivative takes the form

ũφ0φ0(s;φmax) =
1

µl

∫ s

0

2

φ2max
σ̃(τ ;φ0)

(
φ̃φ0

)2
dτ
∣∣∣
φ0=φmax

6= 0, (4.16)

where we have already discard the zero value terms when evaluated at φ0 = φmax and
the last inequality is obtained by Lemma 4.2. As a result, the second derivatives of
the flux satisfy

f ′′(φmax) =

∫ 1

0

ũφ0φ0(s;φ0)ds
∣∣∣
φ0=φmax

6= 0,

g′′(φmax) =

∫ 1

0

ũφ0φ0
φ̃ds+ 2

∫ 1

0

ũφ0
φ̃φ0

ds+

∫ 1

0

ũφ̃φ0φ0
ds

∣∣∣∣
φ0=φmax

= φmax

∫ 1

0

ũφ0φ0(s;φ0)ds
∣∣∣
φ0=φmax

= φmaxf
′′(φmax).
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Proof. [Proof of Theorem 4.1.] The curve φ0 = ΦL(h, φL, hL) solves (3.4), which
reformulates to

F(h, φ0) =
[
φ0f(φ0)− g(φ0)

]
+
hL
h

[
g(φ0)− f(φ0)φL

]
+
h3L
h3
[
g(φL)− f(φL)φ0

]
+
h4L
h4
[
f(φL)φL − g(φL)

]
= 0. (4.17)

Passing to the limit h → ∞ yields φ0f(φ0) − g(φ0) = 0, thus by Theorem 2.2 and
(4.12), one has φ0 = φmax in this limit. Denote φ1 = φ0 − φmax, inserting φ0 =
φmax + φ1 into (4.17), expanding f(φ0) and g(φ0) by Taylor series and collecting the
terms according to the orders of φ1 lead to

φ1

[
φmaxf

′(φmax)− g′(φmax)
]

+ φ21

[1

2
φmaxf

′′(φmax) + f ′(φmax)− 1

2
g′′(φmax)

]
+

1

6
φ31

[
f ′′′(φmax)φmax+ 3f ′′(φmax)− g′′′(φmax)

]
+

1

24
φ41

[
f (4)(φmax)φmax + 4f ′′′(φmax)− g(4)(φmax)

]
+ · · ·

+
hL
h

[
g′(φmax)− φLf ′(φmax)

]
φ1 +

1

2

hL
h

[
g′′(φmax)− φLf ′′(φmax)

]
φ21 +

+
1

6

hL
h

[
g′′′(φmax)− φLf ′′′(φmax)

]
φ31 + · · ·

+
h3L
h3

[
g(φL)− f(φL)φmax

]
− h3L
h3
f(φL)φ1 +

h4L
h4

[
f(φL)φL − g(φL)

]
= 0. (4.18)

Then by Lemma 4.3, the first few terms vanish, and the terms at order O(φ31), O
(
φ2
1

h

)
and O

(
1
h3

)
solve

aφ31 + bφ21 + d = 0, (4.19)

where

a =
1

6
[f ′′′(φmax)φmax + 3f ′′(φmax)− g′′′(φmax)] ,

b =
1

2

hL
h

[g′′(φmax)− φLf ′′(φmax)] ,

d =
h3L
h3

[g(φL)− f(φL)φmax] .

The remaining terms are higher order. Notice that

f ′′′(φmax) =

∫ 1

0

ũφ0φ0φ0
(s;φ0)ds

∣∣∣
φ0=φmax

,

g′′′(φmax) =

∫ 1

0

ũφ0φ0φ0
(s;φ0)φ̃(s;φ0)ds+ 3

∫ 1

0

ũφ0φ0
(s;φ0)φ̃φ0

(s;φ0)ds
∣∣∣
φ0=φmax

= φmaxf
′′′(φmax) + 3

∫ 1

0

ũφ0φ0
(s;φ0)φ̃φ0

(s;φ0)ds
∣∣∣
φ0=φmax

,

where we again discard the terms that are zero when φ0 = φmax, and also from (4.16)
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and Lemma 4.2, one has

ũφ0φ0
(s;φmax) =

2

µlφ2max

∫ s

0

σ̃(τ ;φmax)φ̃φ0
(τ ;φmax)2dτ

=
(1 + ρsφmax)(1 +B)

µlφ2max

[
1− (1− s)2B+2

]
. (4.20)

Then

a =
1

2

∫ 1

0

ũφ0φ0

(
1− φ̃φ0

)
ds
∣∣∣
φ0=φmax

=
(1 + ρsφmax)B(1 +B)

3µlφ2max(2B + 3)
,

b =
1

2

hL
h

(φmax − φL) f ′′(φmax) =
hL
h

(φmax − φL)
(1 + ρsφmax)(1 +B)2

µlφ2max (2B + 3)
.

The formula for the roots of the cubic equation (4.19) gives rise to

φ
(1)
1 = − b

3a

(
1 + 2 cos

θ

3

)
, φ

(2)
1 = − b

3a

(
1− cos

θ

3
+
√

3 sin
θ

3

)
,

where

θ = arccos

(
2b3 + 27a2d

2b3

)
.

Here we discard the third root as it is positive. Then the specific root chosen for
CL in (4.4) guarantees the entropy conditions (3.5). The expression (4.5) for CR is
carried out in exactly the same manner except that special care is needed in choosing
the root to satisfy (3.8).

On the right of figure 4.1, the slope of dashed lines are calculated using (4.4) and
(4.5) for the left and right states respectively, where we can see excellent agreement
with the Hogoniot locus when 1

h approaches 0.
Figure 4.2 illustrates equation (4.8) and the explanations that follow. The left

state is fixed to be (hL, φL) = (1, 0.5), φR = φL, and we consider five different values
of hR : 0.2, 0.15, 0.11, h∗R = 0.09366, 0.05. The Hugoniot loci are plotted in the h− φ0
plane on the upper left of figure 4.2 with emphasis on the region φ0 > φL. The next
four figures in figure 4.2 are again plotted in 1

h , where one could easily see that when
hR > h∗R, there is always an intersection near 1

h = 0. This intersection approaches
the origin as hR approaches h∗R until when hR = h∗R, the two curves are tangent at
1
h = 0. And when hR < h∗R, there is no intersection other than the origin. The last
figure displays the next order in the asymptotic expression of the Hugoniot loci when

hR = h∗R, i.e., φmax − φ0 −
CL/RhL/R

h versus 1
h2 , where one could see that the locus

connecting for the left state stays above zero, meaning that the curve φmax − φ0 is
concave up with respect to 1

h ; while the locus connecting to the right state is concave
down with respect to 1

h . Therefore, they are only tangent at 1
h = 0. This confirms

the absence of a double shock solution for this value of hR.

4.2. Local structure of the singular shock. In this section, we explore the
local structure and properties of the singular shock. First we recall a theorem regard-
ing the growth rate of the singular mass and rewrite it in the notation specific to our
system.

Theorem 4.4. For any δ > 0, define the singular mass

Mh(t) =

∫
|x−st|<δ

h(t, x)dx, Mn(t) =

∫
|x−st|<δ

n(t, x)dx, (4.21)
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Fig. 4.2. The Hugoniot loci for left state (hL, φL) = (1, 0.5) and right state with φR = φL but
different hR = 0.2, 0.15, 0.11, h∗R(0.09366), 0.05. Upper left: regular plot in the h − φ0 plane. The

next four figures from left to right and top to bottom: plot of φmax−φ0 versus 1
h

. Lower right: plot

of φmax − φ0 −
CL/RhL/R

h
versus 1

h2 when hR = h∗R. Here angle = 30◦.

with s denoting the shock speed. Then the growth rate satisfies

dMh

dt
= s[h]−

[
h3f

(n
h

)]
,
dMn

dt
= s[n]−

[
h3g

(n
h

)]
. (4.22)

where [?] = ?R − ?L. This theorem has been proved in different frameworks with
various regularizations [29]. In fact, this can be formally understood in a very simple
way [25]. Choose a parallelogram Ω along x = st as depicted in figure 4.3, then
conservation of the total mass in Ω gives rise to

0 =

∫
(h, h3f) · n̂1dΓ1 +

∫
(h, h3f) · n̂2dΓ2 +

∫
(h, h3f) · n̂3dΓ3 +

∫
(h, h3f) · n̂4dΓ4

= −
∫
|x−st1|<δ

hdx + δ1
[
−shR +

(
h3f

)
R

]
+

∫
|x−st2|<δ

hdx − δ1
[
−shL +

(
h3f

)
L

]
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which is equivalent to Mh(t1 + δ1) −Mh(t1) = δ1
(
s[h]−

[
h3f

])
. Similarly, one has

Mn(t1 +δ1)−Mn(t1) = δ1
(
s[n]−

[
h3g
])

by mass conservation of the particles. Send-
ing δ1 to zero immediately implies (4.22), which is usually referred to as a generalized
Rankine-Hugoniot condition. However, this relation is not enough to give the full
description of the singular shock as it is not closed. For the Keyfitz-Kranzer sys-
tem, they close this relation by noting that the singular mass for the first component
vanishes. However, this in general is not true and obviously not applicable to our
system. Inspired by the trends in figure 4.2, we notice that φ0 reaches φmax at the
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Γ
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Γ
3

Γ
4

t
1

t
2

Fig. 4.3. A parallelogram parallel to x = st with width 2δ and height δ1.

place where the singularity occurs. Then from the definitions (4.21), we have the
constitutive relation

Mn(t) = φmaxMh(t), (4.23)

which gives us a closed relation for the singularity. This constitutive relation makes
sense physically as experimental observations show that the particles concentrate
tightly at the ridge. However, a rigorous derivation is still lacking and we believe
it is relevant to study the vanishing viscosity limit with surface tension and the nor-
mal component of gravity. As a result, we have the following formula regarding the
singular shock speed when φR = φL > φcrit:

s =

(
h2L + h2R + hLhR

)
(φmaxf(φL)− g(φL))

φmax − φL
. (4.24)

To illustrate this, let

h(0, x) =

{
1 x < 0
10−10 x > 0

, φ0(0, x) = 0.5, n(0, x) = φ0(0, x)h(0, x). (4.25)

Figure 4.4 gives the profile of h and n at time t = 600 as well as the growth of
the singular mass Mh and Mn with time. Here we use a moving mesh with speed
s = 0.0222 obtained from (4.24), where one sees that the profile remains stationary
in this frame. And (4.22) indicates dMh

dt = 1.008e− 3 and dMn

dt = 6.1579e− 4, which
matches the the slope of Mh and Mn perfectly.

Moreover, the singular shock speed is checked to satisfy the over-compressive
condition [27]:

λ
(2)
L > λ

(1)
L > s > λ

(2)
R > λ

(1)
R , (4.26)

where λ
(1/2)
L/R are the eigenvalues of (2.9).
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Fig. 4.4. Simulation of (2.8) using upwind scheme with initial data (4.25) using a moving
mesh y = x− st with s = 0.0222 calculated from (4.24). Left: the profiles of h and n at time t = 600
(corresponding to 0.2 min). Right: the plots of singular mass versus time. The dots are numerical
results and the solid line ares calculated by (4.22). Here ∆y = 1e − 3, ∆t is chosen adaptively to
satisfy the CFL condition.

4.3. Transition from double shock to singular shock. As already men-
tioned in the last section, the transition from double shock to singular shock happens
at the threshold value h∗R, and moreover, we have

lim
hR→h∗R

hM =∞, (4.27)

which can be seen from the trend in figure 4.2. In fact, we can expand the Hugoniot
locus to the next order to see its convexity near 1

h = 0 so as to confirm that the
Hugoniot loci will intersect for h > h∗R and when h = h∗R, they are only tangent
at h = ∞. For example, for the Hugoniot locus connecting to the left state, write
φ2 = φ1 + CL

hL

h . Then plug φ1 = φ2 − CL hL

h into equation (4.18) and collect the
terms of O

(
1
h4

)
to get the following expression for φ2

φ2 =
1
24C

4
L

(
φmaxf

(4)+ 4f ′′−g(4)
)
− 1

6C
3
L (g′′′−φLf ′′′)+ CLfL+ fLφL−gL

CL (g′′ − φLf ′′)− 1
2 (f ′′′+ 3f ′′ − g′′′)

(
hL
h

)2

= KL

(
hL
h

)2

, (4.28)

where all the derivatives of f and g are evaluated at φmax. We note that −KLh
2
L

matches the slope in the last picture of figure 4.2 for φL = 0.5 and remains positive
for all φL > φcrit. The corresponding ones for the right states remain negative, thus
having opposite convexity from the left ones. As a consequence, we have the following
proposition about the transition of the shock speed.

Proposition 4.5. Given a left and right state (hL, φL) and (hR, φR) with φL =
φR > φcrit and hR < hL. Denote by s1(hL, hR, φL) and s2(hL, hR, φL) the 1- and 2-
shock speed for the double shock solutions, then

lim
hR→h∗R

s1 = lim
hR→h∗R

s2, (4.29)

where h∗R is the critical value obtained from (4.8).
Proof. Denote (hM , φM ) the intermediate state, then from the Rankine-Hugoniot

condition, one has

s1 =
h3Mf(φM )− h3Lf(φL)

hM − hL
. (4.30)
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Then in the limit of hR → h∗R, hM approaches ∞, and thus

lim
hR→h∗R

s1 = lim
hR→h∗R

h2Mf(φM )= lim
hM→∞

h2Mf

(
φmax−

hL
hM

CL(φL)

)
=

1

2
f ′′(φmax)h2LC

2
L,(4.31)

where the last equality is obtained using Lemma 4.3. Similarly, we have

lim
hR→h∗R

s2 =
1

2
f ′′(φmax)h∗R

2CR(φL)2, (4.32)

and since CR(φL)h∗R = CL(φL)hL from (4.8), the conclusion immediately follows.
Next, we show that when the double shock speeds coincide, they equal the singular

shock speed in figure 4.5. That is, s1(h∗R) = s2(h∗R) = s(h∗R) with s(h∗R) calculated
from (4.24). Fix hL = 1, change φL ∈ (φcrit, φmax) but keep φR = φL. We first
calculate the threshold h∗R according to (4.8), and then plot both s1(= s2) and s with
respect to φL, where one sees a perfect match. This, to some extent, indicates the
well-posedness of the hyperbolic system even in the presence of singular shocks.
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Fig. 4.5. Comparison of the double shock speeds with the singular shock speed for the left state
(hL = 1, φL) with φL changing in (φcrit, φmax) and the right state (h∗R, φR = φL). The double
shock speeds s1 (which automatically equals s2) is calculated using (4.31), and the singular shock
speed s is obtained using (4.24).

To better observe the transition for the shock speed and mass accumulation rate,
we present numerical results in figure 4.6. For a fixed left state, we vary the precursor
thickness hR. The upper left figure represents the shock speed, where one can clearly
observe the transition: as hR approaching h∗R, the two speeds s1 and s2 approach
each other until they coincide at the formation of the singular shock. The upper right
figure displays the mass accumulation rate in the particle-rich ridge. For the double
shock solution, this rate is

dMh

dt
= (s2 − s1)hM ,

dMn

dt
= (s2 − s1)nM , (4.33)

and for the singular shock solution, the rate is given in (4.22). Here an interesting
observation is that the mass accumulation rate undergoes a continuous transition.
The lower two figures in figure 4.6 display the trend as h→ h∗R, where hM →∞ and
φM → φmax are observed as expected.
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Fig. 4.6. Upper left: Plots of the shock speeds versus the thickness of the precursor hR. s1
and s2 denote the 1- and 2- shock speeds of the double shock solution calculated by the classical
Rakine-Hugoniot condition. s denotes the singular shock speed using (4.24). Upper right: rate of
change of mass as described in (4.33) for the double shock solution and (4.22) for the singular shock.
Lower left: intermediate hM w.r.t hR. Lower right: intermediate φM w.r.t. hR. Here angle = 30◦,
left state (hL, φL) = (1, 0.5) and φR = φL. x-axis: the precursor thickness hR.

5. Extension to the case φR < φL. When φL > φR > φcrit, the previous
results can be directly extended since the topology of the Hugoniot locus stays the
same when φ0 > φcrit. The other situation when φL > φcrit > φR has different
behavior and we will focus on it in this section. At the beginning, let us point out
that Theorem 4.4 and equation (4.24) can be directly applied to give the following a
priori result as long as the solution is a singular shock.

Theorem 5.1. Given a left state (hL, φL) and a right state (hR, φR) with φL >
φcrit and hR < hL, if the solution is a singular shock, then the shock speed is

s =
[h3g(φ0)]− φmax[h3f(φ0)]

[n]− [h]φmax
, (5.1)

where [?] again denotes [?] = ?R − ?L. The proof is omitted as it directly comes out
of Theorem 4.4 with the constitutive relation (4.23). It is important to mention that
this theorem does not give any information about when there is a singular shock or
not. We again resort to the Hugoniot locus to see the formation of a singular shock.
This time we fix the precursor thickness but change the particle fraction φR. Figure
5.1 displays the Hugoniot loci for the left state (hL, φL) = (1, 0.5) and the right states
with hR = 0.02 and φR = {0.4, 0.262, 0.2, 0.1}. Here black and grey curves represent
admissible 1- and 2- shock for the left state. Dashed dots represent the admissible
2-wave for the right states. Special attention should be paid to the dashed curve
which denotes the over-compressive shock connecting to the left state. That is, the
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states (h, φ0) satisfying

λ(2)(hL, φL) > λ(1)(hL, φL) > s > λ(2)(h, φ0) > λ(1)(h, φ0). (5.2)

Although the Hugoniot locus connecting to any right state intersect the black curve,
not all intersection points give the physical intermediate states. Indeed, when φR >
φ∗R, the intersection point (the open symbols in figure 5.1) yields a 1-shock speed
larger than the 2-shock speed, which violates the physics. When φR < φ∗R, there is an
entropy satisfying double shock solution with intermediate state (hM , φM ) (the solid
dots in figure 5.1) such that hM < min{hL, hR} and φM < min{φL, φR}, as in the
settled case. And φ∗R lies on the over-compressive part of the Hugoniot locus for the
left state! This could be more clearly observed in figure 5.2 on the left, where 1- and 2-
shock speeds are calculated directly from the classical jump condition. One sees that
when φR > φ∗R, we can still satisfy the classical Rankine-Hugoniot jump condition
but with s1 > s2, thus this should be discarded and replaced by the singular shock
with speed calculated by (5.1). Figure 5.2 on the right demonstrates the changing
rate of the mass accumulation, where an important difference from figure 4.6 is that
at the transition point the mass accumulation rate is zero, that is, the left and right
state are directly connected by one over-compressive shock without an intermediate
state. This is like the classical formulation of the singular shock in the Keyfitz-Kranzer
system [16, 15]. Therefore, the observation for φL > φcrit > φR can be summarized
as follows.

In summary, for a given (hL, φL) and (hR, φR) with φL > φcrit, hL > hR, φL > φR, if
(hR, φR) lies on the left of the dashed curve in figure 5.2, there is a singular shock.
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Fig. 5.1. The Hugoniot loci for left state (hL, φL) = (1, 0.5) and right states with hR = 0.02
and φR = {0.4, 0.262, 0.2, 0.1}. The black and grey curves represent admissible 1- and 2- shocks for
the left state, and the dashed curve represents an over-compressive shock connecting to the left state.
Dashed dots denote an admissible 2-shock connecting to the right states. Here the angle α = 30◦.

We close this section by showing the solution of the Riemann problem (2.8) with hL = 1,
φL = 0.5, hR = 0.02 and φR = {0.25, φ∗R = 0.2612, 0.27} in figure 5.3, where one could easily
see the transition from double shock solution to singular shock solution.

6. Conclusion. We study the shock solutions for the Riemann problem of a lubri-
cation model describing the particle-laden thin films down an incline. When the particle
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concentration is above a critical value, the particles will move to the contact line of the
flow and form a particle-rich ridge. This could be explained mathematically by a double
shock or singular shock depending on the concentration and thickness of the precursor. If
the precursor has the same concentration as the bulk flow, the thickness of the precursor
determines whether the solution is a double shock or a singular shock. The formation of
the singular shock is analyzed through a detailed study of the asymptotic behavior of the
Hugoniot locus for large values of h. A threshold for the thickness of the precursor is also
derived as a byproduct, and the transition from a double shock to a singular shock happens
when two shock speeds coincide and the intermediate height approaches infinity. We also
obtain a formula for the singular shock speed by noticing that particles concentrate at the
maximum packing fraction in this case. When the precursor has a different concentration
from the bulk flow, two possible behaviors are observed. In one case when the concentra-
tion in the precursor is still above the critical value, all the previous results can be directly
applied. In the other case when the concentration is below the critical value, we observe a
different transition while the formula for the shock speed is derived in the same argument as
before. This work is the first detailed study of singular shock formation in this model and the
first rigorous study of the system of conservation laws (2.6). The results are a combination
of rigorous, asymptotic, and careful numerical results and also suggest a number of open
problems.
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