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Abstract. The study of network structure is pervasive in sociology, biology, computer science,
and many other disciplines. One of the most important areas of network science is the algorith-
mic detection of cohesive groups of nodes called “communities.” One popular approach to finding
communities is to maximize a quality function known as modularity to achieve some sort of optimal
clustering of nodes. In this paper, we interpret the modularity function from a novel perspective: we
reformulate modularity optimization as a minimization problem of an energy functional that consists
of a total variation term and an �2 balance term. By employing numerical techniques from image
processing and �1 compressive sensing—such as convex splitting and the Merriman–Bence–Osher
(MBO) scheme—we develop a variational algorithm for the minimization problem. We present our
computational results using both synthetic benchmark networks and real data.
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1. Introduction. Networks provide a useful representation for the investigation
of complex systems, and they have accordingly attracted considerable attention in
sociology, biology, computer science, and many other disciplines [51, 52]. Most of
the networks that people study are graphs, which consist of nodes (i.e., vertices) to
represent the elementary units of a system, and edges to represent pairwise connections
or interactions between the nodes.

Using networks makes it possible to examine intermediate-scale structure in com-
plex systems. Most investigations of intermediate-scale structures have focused on
community structure, in which one decomposes a network into (possibly overlapping)
cohesive groups of nodes called communities [54].1 There is a higher density of con-
nections within communities than between them.

In some applications, communities have been related to functional units in net-
works [54]. For example, a community might be closely related to a functional module
in a biological system [39] or a group of friends in a social system [62]. Because com-
munity structure can yield important insights in real networks [22, 25, 52, 54], it is
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useful to study algorithmic methods for detecting communities. Such efforts have
proved fruitful in studies of the social organization in friendship networks [62], legisla-
tion cosponsorships in the United States Congress [64], functional modules in biology
networks [28, 39], and many other situations.

To perform community detection, one needs a quantitative definition of what
constitutes a community, though this depends on the goal and application that one
has in mind. Perhaps the most popular approach is to optimize a quality function
known as modularity [47, 48, 50], and numerous computational heuristics have been
developed for optimizing modularity [22, 54]. The modularity of a network partition
measures the fraction of total edge weight within communities versus what one might
expect if edges were placed randomly according to some null model. We give a precise
definition of modularity in (2.1) in section 2.1. Modularity gives one definition of the
“quality” of a partition, and maximizing modularity is supposed to yield a reasonable
partitioning of a network into disjoint communities.

Community detection is related to graph partitioning, which has been applied to
problems in numerous areas (such as data clustering) [41,53,60]. In graph partitioning,
a network is divided into disjoint sets of nodes. Graph partitioning usually requires
the number of clusters to be specified to avoid trivial solutions, whereas modularity
optimization does not require one to specify the number of clusters [54]. This is a
desirable feature for applications such as social and biological networks.

Because modularity optimization is an NP-hard problem [7], efficient algorithms
are necessary to find good locally optimal network partitions with reasonable com-
putational costs. Numerous methods have been proposed [22, 54]. These include
greedy algorithms [12, 49], extremal optimization [6, 17], simulated annealing [29, 33],
spectral methods (which use eigenvectors of a modularity matrix) [50, 57], and more.
The locally greedy algorithm by Blondel et al. [5] is arguably the most popular com-
putational heuristic; it is a very fast algorithm, and it also yields high modularity
values [22, 37].

In this paper, we interpret modularity optimization (using the Newman–Girvan
null model [48,52]) from a novel perspective. Inspired by the connection between graph
cuts and the total variation (TV) of a graph partition, we reformulate the problem of
modularity optimization as a minimization of an energy functional that consists of a
graph cut (i.e., TV) term and an �2 balance term. By employing numerical techniques
from image processing and �1 compressive sensing—such as convex splitting and the
Merriman–Bence–Osher (MBO) scheme [44]—we propose a variational algorithm to
perform the minimization on the new formula. We apply this method to both syn-
thetic benchmark networks and real data sets, and we achieve performance that is
competitive with the state-of-the-art modularity optimization algorithms.

The rest of this paper is organized as follows. In section 2, we review the definition
of the modularity function, and we then derive an equivalent formula of modularity
optimization as a minimization problem of an energy functional that consists of a TV
term and an �2 balance term. In section 3, we explain the MBO scheme and convex
splitting, which are numerical schemes that we employ to solve the minimization
problem in section 2. In section 4, we test our algorithms on several benchmark and
real-world networks. We then review the similarity measure known as the normalized
mutual information (NMI) and use it to compare network partitions with ground-
truth partitions. We also evaluate the speed of our method, which we compare to
classic spectral clustering [41,60], modularity-based spectral partitioning [50,57], and
the GenLouvain code [32] (which is an implementation of a Louvain-like algorithm [5]).
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In section 5, we summarize and discuss our results.

2. Method. Consider an N -node network, which we can represent as a weighted
graph (G,E) with a node set G = {n1, n2, . . . , nN} and an edge set E = {wij}Ni,j=1.
The quantity wij indicates the closeness (or similarity) of the tie between nodes ni

and nj , and the array of all wij values forms the graph’s adjacency matrix W = [wij ].
In this work, we consider only undirected networks, so wij = wji.

2.1. Review of the modularity function. The modularity of a graph parti-
tion measures the fraction of total edge weight within each community minus the edge
weight that would be expected if edges were placed randomly using some null model
[54]. The most common null model is the Newman–Girvan (NG) model [48], which

assigns the expected edge weight between ni and nj to be
kikj

2m , where ki =
∑N

s=1 wis

is the strength (i.e., weighted degree) of ni and 2m =
∑N

i=1 ki is the total volume (i.e.,
total edge weight) of the graph (G,E). When a network is unweighted, then ki is the
degree of node i. The NG null model preserves the expected strength distribution of
the network.

A partition g = {gi}Ni=1 of the graph (G,E) consists of a set of disjoint subsets
of the node set G whose union is the entire set G. The quantity gi ∈ {1, 2, . . . , n̂}
is the community assignment of ni, where there are n̂ communities (n̂ ≤ N). The
modularity of the partition g is defined as

(2.1) Q(g) =
1

2m

N∑
i,j=1

(
wij − γ

kikj
2m

)
δ(gi, gj) ,

where γ is a resolution parameter [56]. The term δ(gi, gj) = 1 if gi = gj , and δ(gi, gj) =
0 otherwise. The resolution parameter can change the scale at which a network is
clustered [22, 54]. A network breaks into more communities as one increases γ.

By maximizing modularity, one expects to obtain a reasonable partition of a
network. However, this maximization problem is NP-hard [7], so considerable effort
has been put into the development of computational heuristics for obtaining network
partitions with high values of Q.

2.2. Reformulation of modularity optimization. In this subsection, we re-
formulate the problem of modularity optimization by deriving a new expression for
Q that bridges the network-science and compressive-sensing communities. This for-
mula makes it possible to use techniques from the latter to tackle the modularity-
optimization problem with low computational cost.

We start by defining the total variation (TV), weighted �2-norm, and weighted
mean of a function f : G→ R:

|f |TV :=
1

2

N∑
i,j=1

wij |fi − fj | ,

‖f‖2�2 :=

N∑
i=1

ki |fi|2 ,

mean(f) :=
1

2m

N∑
i=1

kifi ,(2.2)

where fi = f(ni). The quantity 1
2

∑N
i,j=1 wij |fi − fj | is called the TV because it

enjoys many properties of the classical TV
∫ |∇f | of a function f : Rn → R [11]. For
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a vector-valued function f = (f (1), . . . , f (n̂)): G→ R
n̂, we define

|f |TV :=
n̂∑

l=1

|f (l)|TV ,

‖f‖2�2 :=

n̂∑
l=1

‖f (l)‖2�2 ,(2.3)

and mean(f) :=
(
mean(f (1)), . . . ,mean(f (n̂))

)
.

Given the partition g = {gi}Ni=1 defined in section 2.1, let Al = {ni ∈ G, gi = l},
where l ∈ {1, 2, . . . , n̂} (n̂ ≤ N). Thus, G = ∪n̂l=1Al is a partition of the network
(G,E) into disjoint communities. Note that Al is allowed to be empty, so g is a
partition into at most n̂ communities. Let f (l) : G→ {0, 1} be the indicator function

of community l; in other words, f
(l)
i equals 1 if gi = l, and it equals 0 otherwise. The

function f = (f (1), . . . , f (n̂)) is then called the partition function (associated with g).
Because each set Al is disjoint from all of the others, it is guaranteed that only a
single entry of fi equals 1 for any node i. Therefore, f : G→ V n̂ ⊂ R

n̂, where

V n̂ := {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} = {�el}n̂l=1

is the standard basis of Rn̂.
The key observation that bridges the network-science and compressive-sensing

communities is the following.
Theorem 2.1. Maximizing the modularity functional Q over all partitions that

have at most n̂ communities is equivalent to minimizing

|f |TV − γ‖f −mean(f)‖2�2(2.4)

over all functions f : G→ V n̂.
Proof. In the language of graph partitioning, vol(Al) :=

∑
ni∈Al

ki denotes the
volume of the set Al, and Cut(Al, A

c
l ) :=

∑
ni∈Al,nj∈Ac

l
wij is the graph cut of Al and

Ac
l . Therefore,

Q(g) =
1

2m

⎡
⎣
⎛
⎝2m−

∑
gi �=gj

wij

⎞
⎠− γ

2m

n̂∑
l=1

⎛
⎝ ∑

ni∈Al,nj∈Al

kikj

⎞
⎠
⎤
⎦

= 1− 1

2m

(
n̂∑

l=1

Cut(Al, A
c
l ) +

γ

2m

n̂∑
l=1

vol(Al)
2

)

= 1− γ − 1

2m

(
n̂∑

l=1

Cut(Al, A
c
l )−

γ

2m

(
n̂∑

l=1

vol(Al) · vol(Ac
l )

))
,(2.5)

where the sum
∑

gi �=gj
wij includes both wij and wji. Note that if χA : G→ {0, 1} is

the indicator function of a subset A ⊂ G, then |χA|TV = Cut (A,Ac) and

‖χA −mean(χA)‖2�2 =

N∑
i=1

ki

∣∣∣∣χA(ni)− vol(A)

2m

∣∣∣∣
2

= vol(A)

(
1− vol(A)

2m

)2

+ vol (Ac)

(
vol (A)

2m

)2

=
vol(A) · vol (Ac)

2m
.
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Because f (l) = χAl
is the indicator function of Al, it follows that

|f |TV − γ‖f −mean(f)‖2�2 =

n̂∑
l=1

{
|f (l)|TV − γ‖f (l) −mean(f (l))‖2�2

}

=

n̂∑
l=1

{
Cut(Al, A

c
l )− γ

vol(Al) · vol(Ac
l )

2m

}
.(2.6)

Combining (2.5) and (2.6), we conclude that maximizing Q is equivalent to min-
imizing (2.4).

With the above argument, we have reformulated the problem of modularity maxi-
mization as the minimization problem (2.4), which corresponds to minimizing the TV
of the function f along with a balance term. This yields a novel view of modularity op-
timization that uses the perspective of compressive sensing (see the references in [40]).
In the context of compressive sensing, one seeks a function f that is compressible un-
der the transform of a linear operator Φ. That is, we want Φf to be well approximated
by sparse functions. (A function is considered to be “sparse” when it is equal to or
approximately equal to zero on a “large” portion of the whole domain.) Minimizing
‖Φf‖�1 promotes sparsity in Φf . When Φ is the gradient operator (on a continuous
domain) or the finite-differencing operator (on a discrete domain) ∇, then the object
‖Φf‖�1 = ‖∇f‖�1 becomes the total variation |f |TV [40,46]. The minimization of TV
is also common in image processing and computer vision [10, 40, 46, 59].

The expression in (2.5) is interesting because its geometric interpretation of modu-
larity optimization contrasts with existing interpretations (e.g., probabilistic ones [35]
or in terms of the Potts model from statistical physics [56]). For example, we see from
(2.5) that finding the bipartition of the graph G = A ∪ Ac with maximal modularity
is equivalent to minimizing

Cut(A,Ac)− γ

2m
vol(A) · vol (Ac) .

Note that the term vol(A) · vol (Ac) is maximal when vol(A) = vol (Ac) = m. There-
fore, the second term is a balance term that favors a partition of the graph into two
sets of roughly equal size. In contrast, the first term favors a partition of the graph
in which few edges are severed. This is reminiscent of the Balance Cut problem, in
which the objective is to minimize the ratio

(2.7)
Cut (A,Ac)

vol(A) · vol (Ac)
.

In recent papers [8, 9, 30, 31, 55, 61], various TV-based algorithms were proposed to
minimize ratios similar to (2.7).

3. Algorithm. Directly optimizing (2.4) over all partition functions f : G→ V n̂

is difficult due to the discrete solution space. A continuous relaxation is thus needed
to simplify the optimization problem.

3.1. Ginzburg–Landau relaxation of the discrete problem. Let

Xp = {f | f : G→ V n̂}
denote the space of partition functions. Minimizing (2.4) over Xp is equivalent to
minimizing

(3.1) H(f) =

{
|f |TV − γ‖f −mean(f)‖2�2 if f ∈ Xp,

+∞ otherwise
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over all f : G→ R
n̂.

The Ginzburg–Landau (GL) functional has been used as an alternative for the
TV term in image processing (see the references in [4]) due to its Γ-convergence to the
TV of the characteristic functions in Euclidean space [34]. Reference [4] developed a
graph version of the GL functional and used it for graph-based high-dimensional data
segmentation problems. The authors of [23] generalized the two-phase graphical GL
functional to a multiphase one.

For a graph (G,E), the (combinatorial) graph Laplacian [11] is defined as

(3.2) L = D−W,

where D is a diagonal matrix with node strengths {ki}Ni=1 on the diagonal and W
is the weighted adjacency matrix. The operator L is linear on {z|z : G → R} and
satisfies

〈z,Lz〉 = 1

2

∑
i,j

wij(zi − zj)
2 ,

where zi = z(ni) and i ∈ {1, 2, . . . , N}.
Following the idea in [4, 23], we define the GL relaxation of H as follows:

Hε(f) =
1

2

n̂∑
l=1

〈f (l),Lf (l)〉+ 1

ε2

N∑
i=1

Wmulti(fi)− γ‖f −mean(f)‖2�2 ,(3.3)

where ε > 0. In (3.3), Wmulti : R
n̂ → R is a multiwell potential (see [23]) with equal-

depth wells. The minima of Wmulti are spaced equidistantly, take the value 0, and
correspond to the points of V n̂. The specific formula for Wmulti does not matter for
the present paper, because we will discard it when we implement the MBO scheme.
Note that the purpose of this multiwell term is to force fi to go to one of the minima,
so that one obtains an approximate phase separation.

Our next theorem states that modularity optimization with an upper bound on
the number of communities is well approximated (in terms of Γ-convergence) by min-
imizing Hε over all f : G → R

n̂. Therefore, the discrete modularity optimization
problem (2.4) can be approximated by a continuous optimization problem. We give
the mathematical definition and relevant proofs of Γ-convergence in the appendix.

Theorem 3.1 (Γ-convergence of Hε towards H). The functional Hε Γ-converges
to H on the space X = {f | f : G→ R

n̂}.
Proof. As shown in Theorem A.2 (in the appendix), Hε + γ‖f −mean(f)‖2�2 Γ-

converges to H + γ‖f −mean(f)‖2�2 on X . Because γ‖f −mean(f)‖2�2 is continuous
on the metric space X , it is straightforward to check that Hε also Γ-converges to H
according to the definition of Γ-convergence.

By definition of Γ-convergence, Theorem 3.1 directly implies the following.
Corollary 3.2. Let f ε be the global minimizer of Hε. Any convergent subse-

quence of f ε then converges to a global maximizer of the modularity Q with at most
n̂ communities.

3.2. MBO scheme, convex splitting, and spectral approximation. In
this subsection, we use techniques from the compressive-sensing and image-processing
literatures to develop an efficient algorithm that (approximately) optimizes Hε.

In [44], an efficient algorithm (which is now called theMBO scheme) was proposed
to approximate the gradient descent of the GL functional using threshold dynamics.
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See [2, 18, 20] for discussions of the convergence of the MBO scheme. Inspired by
the MBO scheme, the authors of [19] developed a method using a PDE framework
to minimize the piecewise-constant Mumford–Shah functional (introduced in [45])
for image segmentation. Their algorithm was motivated by the Chan–Vese level-set
method [10] for minimizing certain variants of the Mumford–Shah functional. Note
that the Chan–Vese method is related to our reformulation of modularity, because it
uses the TV as a regularizer along with �2-based fitting terms. The authors of [23,43]
applied the MBO scheme to graph-based problems.

The gradient-descent equation of (3.3) is

∂f

∂t
= −(Lf (1), . . . ,Lf (n̂))− 1

ε2
∇Wmulti(f) +

δ

δf

(
γ‖f −mean(f)‖2�2

)
,(3.4)

where ∇Wmulti(f) : G → R
n̂ is the composition of the functions ∇Wmulti and f .

Thus, one can follow the idea of the original MBO scheme to split (3.4) into two parts
and replace the forcing part ∂f

∂t = − 1
ε2∇Wmulti(f) by an associated thresholding.

We propose a modularity MBO scheme that alternates between the following two
primary steps to obtain an approximate solution fn : G→ V n̂:
Step 1.

A gradient-descent process of temporal evolution consists of a diffusion term
and an additional balance term:

∂f

∂t
= −(Lf (1), . . . ,Lf (n̂)) +

δ

δf

(
γ‖f −mean(f)‖2�2

)
.(3.5)

We apply this process to fn with time τn, and we repeat it for η time steps
to obtain f̂ .

Step 2.
We threshold f̂ from Rn̂ into V n̂:

fn+1
i = �egi ∈ V n̂ , where gi = argmax{1≤l≤n̂}{f̂ (l)

i } .

This step assigns to fn+1
i the node in V n̂ that is closest to f̂i.

To solve (3.5), we implement a convex-splitting scheme [21,63]. Equation (3.5) is

the gradient flow of the energy H1+H2, where H1(f) :=
1
2

∑n̂
l=1〈f (l),Lf (l)〉 is convex

and H2(f) := −γ‖f − mean(f)‖2�2 is concave. In a discrete time-stepping scheme,
the convex part is treated implicitly in the numerical scheme, whereas the concave
part is treated explicitly. Note that the convex-splitting scheme for gradient-descent
equations is an unconditionally stable time-stepping scheme.

The discretized time-stepping formula is

f̂ − fn

τn
= −δH1

δf
(f̂)− δH2

δf
(fn)

= −(Lf̂ (1), . . . ,Lf̂ (n̂)) + 2γ�k � (fn −mean(fn)) ,(3.6)

where (�k � f)(ni) := kifi, the map f̂ : G → R
n̂, the quantity ki is the strength of

node ni, and fn : G→ V n̂. At each step, we thus need to solve(
(1 + τnL)f̂

(1), . . . , (1 + τnL)f̂
(n̂)
)
= fn + 2γτn�k � (fn −mean(fn)) .(3.7)

For the purpose of computational efficiency, we utilize the low-order (leading)
eigenvectors (associated with the smallest eigenvalues) of the graph Laplacian L to
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approximate the operator L. The eigenvectors with higher order are more oscillatory
and resolve finer-scale features. Leading eigenvectors provide a basis set to approxi-
mately represent graph functions. We can resolve progressively finer scales by using
more leading eigenvectors. In the graph-clustering literature, scholars usually use a
small fraction of the leading eigenvectors of L to find useful structural information
in a graph [3, 11, 13, 50, 60]. (Note, however, that some recent work has explored
the use of other eigenvectors [14].) In contrast, one typically uses many more modes
when solving partial differential equations numerically (e.g., consider a pseudospectral
scheme), because one needs to resolve the solution at much finer scales.

Motivated by the known utility and many successes of using leading eigenvectors
(and discarding higher-order eigenvectors) in studying graph structure, we project f
onto the space of the Neig leading eigenvectors to approximately solve (3.7). Assume

that fn =
∑

s φsa
n
s , f̂ =

∑
s φsâs, and 2γτn�k � (fn −mean(fn)) =

∑
s φsb

n
s , where

{λs} are the Neig smallest eigenvalues of the graph Laplacian L. We denote the
corresponding eigenvectors (eigenfunctions) by {φs}. Note that ans , âs, and bn

s all
belong to R

n̂. With this representation, we obtain

âs =
ans + bn

s

1 + τnλs
, s ∈ {1, 2, . . . , Neig}(3.8)

from (3.7). We are thereby able to solve (3.7) very efficiently.
We summarize our modularity MBO scheme in Algorithm 1. Note that the time

complexity of each MBO iteration step is O(N). Unless specified otherwise, the

Algorithm 1. The modularity MBO scheme.

Set values for γ, n̂, η, and τn = dt.
Input ← an initial function f0 : G → V n̂ and the eigenvalue-eigenvector pairs
{(λs, φs)} of the graph Laplacian L corresponding to the Neig smallest eigenvalues.
Initialize:
a0s = 〈f0, φs〉;
b0
s = 〈2γdt�k � (f0 −mean(f0)), φs〉.

while fn �= fn−1 and n ≤ 500: do
Diffusion:
for i = 1→ η do

ans ← an
s+bn

s

1+dtλs
for s ∈ {1, 2, . . . , Neig};

fn ←∑s φsa
n
s ;

bn
s = 〈2γdt�k. ∗ (fn −mean(fn)), φs〉;

i = i+ 1;
end for
Thresholding:

fn+1
i = �egi ∈ V n̂, where gi = argmax{1≤l≤n̂}{f̂ (l)

i }.

n = n+ 1;
end while
Output ← the partition function fn.

numerical experiments in this paper use a random initial function f0. (It takes its
value in V n̂ with uniform probability by using the command rand in Matlab.)

3.3. Two implementations of the modularity MBO scheme. Given an
input value of the parameter n̂, the modularity MBO scheme partitions a graph into
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at most n̂ communities. In many applications, however, the number of communities
is usually not known in advance [22, 54], so it can be difficult to decide what values
of n̂ to use. Accordingly, we propose two implementations of the modularity MBO
scheme. The recursive modularity MBO (RMM) scheme is particularly suitable for
networks in which one expects a large number of communities, whereas the multiple
input-n̂ modularity MBO (multi-n̂ MM) scheme is particularly suitable for networks
in which one expects a small number of communities.

Implementation 1. The RMM scheme performs the modularity MBO scheme
recursively, which is particularly suitable for networks that one expects to have a
large number of communities. In practice, we set the value of n̂ to be large in the first
round of applying the scheme, and we then let it be small for the rest of the recursion
steps. In the experiments that we report in the present paper, we use n̂ = 50 for the
first round and n̂ = min(10, |S|) thereafter, where |S| is the size of the subnetwork
that one is partitioning in a given step. (We also tried n̂ = 10, 20, and 30 for the first
round and n̂ = min(10, |S|) thereafter. The results are similar.)

Importantly, the minimization problem (2.4) needs a slight adjustment for the
recursion steps. Assume for a particular recursion step that we perform the modularity
MBO partitioning with parameter n̂ on a network S ⊂ G containing a subset of the
nodes of the original graph. Our goal is to increase the modularity for the global
network instead of the subnetwork S. Hence, the target energy to minimize is

H(S)(f) := |f |(S)
TV − γ

m(S)

m

∥∥∥f −mean(S)(f)
∥∥∥2
�2

,

where f : S → V n̂ ⊂ R
n̂, the TV norm is |f |(S)

TV = 1
2

∑
i,j∈S wij |fi − fj |�1 , the total

edge weight of S is 2m(S) =
∑

i∈S ki, and mean(S)(f) = 1
2m(S)

∑
i∈S kifi. The rest of

the minimization procedures are the same as described previously.
Note that the eigenvectors of the Laplacian of the successive subnetworks need to

be recalculated for each recursive step. However, because the scales that get resolved
become finer as the recursion progresses, the number of eigenvectors Neig that are
calculated for each subnetwork need not be very large.

Implementation 2. For the multi-n̂ MM scheme, one sets a search range T for n̂,
runs the modularity MBO scheme for each n̂ ∈ T , and then chooses the resulting par-
tition with the highest modularity score. It works well if one knows the approximate
maximum number of communities and if that number is reasonably small. One can
then set the search range T to be all integers between 2 and the maximum number.
Even though the multi-n̂ MM scheme allows partitions with fewer than n̂ clusters, it
is still necessary to include small values of n̂ in the search range to better avoid local
minima. (See the discussion of the MNIST “4-9” digits network in section 4.2.1.) For
different values of n̂, one can reuse the previously computed eigenvectors because n̂
does not affect the graph Laplacian. Inputting multiple choices for the random initial
function f0 (as described at the end of section 3) also helps to reduce the chance
of getting stuck in a minimum and thereby helps to achieve a good optimal solu-
tion for the modularity MBO scheme. Because this initial function is used after the
computation of eigenvectors, it takes only a small amount of time to rerun the MBO
steps.

In section 4, we test these two schemes on several real and synthetic networks.

4. Numerical results. In this section, we present the numerical results of ex-
periments that we conducted using both synthetic and real network data sets. Unless
otherwise specified, our modularity MBO schemes are all implemented in Matlab.
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(Our Matlab code is not optimized for speed.) In the following tests, we set the
parameters of the modularity MBO scheme to be η = 5 and τn = 1.

4.1. LFR benchmark. In [36], Lancichinetti, Fortunato, and Radicchi (LFR)
introduced an eponymous class of synthetic benchmark graphs to provide tougher
tests of community-detection algorithms than previous synthetic benchmarks. Many
real networks have heterogeneous distributions of node degree and community size,
so the LFR benchmark graphs incorporate such heterogeneity. They consist of un-
weighted networks with a predefined set of nonoverlapping communities. As described
in [36], each node is assigned a degree from a power-law distribution with power ξ;
additionally, the maximum degree is given by kmax, and the mean degree is 〈k〉. Com-
munity sizes in LFR graphs follow a power-law distribution with power β, subject to
the constraint that the sum of the community sizes must equal the number of nodes
N in the network. Each node shares a fraction 1 − μ of its edges with nodes in its
own community and a fraction μ of its edges with nodes in other communities. (The
quantity μ is called the mixing parameter.) The minimum and maximum community
sizes, qmin and qmax, are also specified. We label the LFR benchmark data sets by
(N, 〈k〉, kmax, ξ, β, μ, qmin, qmax). The code used to generate the LFR data is publicly
available, provided by the authors in [36].

The LFR benchmark graphs have become a popular choice for testing community-
detection algorithms, and [37] used them to test the performance of several community-
detection algorithms. The authors concluded, for example, that the locally greedy
Louvain algorithm [5] is one of the best heuristics for maximizing modularity. They
based their conclusion on the evaluation of the normalized mutual information (NMI)
(discussed later in this section). Note that the time complexity of this Louvain algo-
rithm is O(M) [22], where M is the number of nonzero edges in the network. In our
tests, we use the GenLouvain code (in Matlab) from [32]; this is an implementation
of a Louvain-like algorithm. The GenLouvain code is a modification of the Louvain
locally greedy algorithm [5], but it was not designed to be optimal for speed. We
implement our RMM scheme on the LFR benchmark, and we compare our results
with those from running the GenLouvain code. We use the recursive version of the
modularity MBO scheme because the LFR networks that we use contain about 0.04N
communities.

We implement the modularity-optimization algorithms on several sets of LFR
benchmark data. We then compare the resulting partitions with the known commu-
nity assignments of the benchmarks (i.e., the ground truth) by computing NMI [15].

NMI is a similarity measure for comparing two partitions based on information
entropy, and it is often used for testing community-detection algorithms [36,37]. The
NMI equals 1 when two partitions are identical, and it has an expected value of
0 when they are independent. For an N -node network with two partitions, C =
{C1, C2, . . . , CK} and Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂}, that consist of nonoverlapping commu-
nities, the NMI is

(4.1) NMI(C, Ĉ) =
2
∑K

k=1

∑K̂
k̂=1 P (k, k̂)log

[
P (k,k̂)

P (k)P (k̂)

]
−∑K

k=1 P (k)log [P (k)]−∑K̂
k̂=1 P (k̂)log

[
P (k̂)

] ,

where P (k, k̂) =
|Ck∩Ĉk̂|

N , P (k) = |Ck|
N , and P (k̂) =

|Ĉk̂|
N .

We examine two types of LFR networks. One is the 1000-node ensembles used
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Fig. 4.1. Tests on LFR1k networks with RMM and GenLouvain. The ground-truth communities
are denoted by GT.

in [37]:

LFR1k : (1000, 20, 50, 2, 1, μ, 10, 50),

where μ ∈ {0.1, 0.15, . . . , 0.8}. The other is a 50,000-node network, which we call
“LFR50k” and construct as a composition of 50 LFR1k networks. (See the detailed
description below.)

4.1.1. LFR1k networks. We use the RMM scheme (with Neig = 80) and the
GenLouvain code on ensembles of LFR1k(1000, 20, 50, 2, 1, μ, 10, 50) graphs with mix-
ing parameters μ ∈ {0.1, 0.15, . . . , 0.8}. We consider 100 LFR1k networks for each
value of μ, and we use a resolution parameter of γ = 1.

In Figure 4.1, we plot the mean maximized modularity score (Q), the number of
communities (Nc), and the NMI of the partitions compared with the ground truth
(GT) communities as a function of the mixing parameter μ. As one can see from
panel (a), the RMM scheme performs very well for μ < 0.5. Both its NMI score
and modularity score are competitive with the results of GenLouvain. However, for
μ ≥ 0.5, its performance drops with respect to both NMI and the modularity scores
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of its network partitions. From panel (b), we see that RMM tends to give partitions
with more communities than GenLouvain, and this provides a better match to the
ground truth. However, it is only trustworthy for μ < 0.5, when its NMI score is very
close to 1.

The mean computational time for one ensemble of LFR1k, which includes 15
networks corresponding to 15 values of μ, is 22.7 seconds for the GenLouvain code
and 17.9 seconds for the RMM scheme. As we will see later when we consider large
networks, the modularity MBO scheme scales very well in terms of its computational
time.

4.1.2. LFR50k networks. To examine the performance of our scheme on larger
networks, we construct synthetic networks (LFR50k) with 50,000 nodes. To construct
an LFR50k network, we start with 50 different LFR1k networks N1, N2, . . . , N50 with
mixing parameter μ, and we connect each node in Ns (s ∈ {1, 2, . . . , 50}) to 20μ nodes
in Ns+1 uniformly at random (where we note that N51 = N1). We thereby obtain
an LFR50k network of size 50, 000. Each LFR1k network Ns has about 40 planted
communities, and each of these communities is a planted community in the LFR50k
network (which thus has about 2,000 planted communities in total). We build four
such LFR50k networks for each value of μ = 0.1, 0.15, . . . , 0.8. The mixing parameter
of the LFR50k network constructed from LFR1k(μ) is approximately 2μ

1+μ .
By construction, the LFR50k network has a similar structure to an LFR1k net-

work. Importantly, simply increasing N in LFR(N, 〈k〉, kmax, ξ, β, μ, qmin, qmax) to
50,000 is insufficient to preserve similarity of the network structure. A large N results
in more communities, so if the mixing parameter μ is held constant, then the edges
of each node that terminate at nodes outside of its community are dispersed among
a larger number of communities (and the intercommunity edges are thus distributed
more sparsely among the communities). In other words, the mixing parameter does
not entirely reflect the balance between a node’s connections within its own commu-
nity and its connections to other communities, as there is also a dependence on the
total number of communities.

Because of the additional edges in our construction, the strength of each node in
an LFR50k network is scaled approximately by a factor of (1 + 2μ) compared to an
LFR1k network, and the total number of edges in LFR50k is scaled approximately by
a factor of 50(1 + 2μ). Therefore, the probability null model term

kikj

2m in modularity

(2.1) is also scaled by a factor of (1+2μ)
50 . Hence, in order to probe LFR50k with

a resolution scale similar to that in LFR1k, we use the resolution γ = 50 to try to
minimize issues with modularity’s resolution limit [56]. We then implement the RMM
scheme (Neig = 100) and the GenLouvain code. Note that we also implemented the
RMM scheme with Neig = 500, but there is no obvious improvement in the result
even though there are about 2000 communities. This is because the eigenvectors of
the graph Laplacian of the subnetworks are recalculated at each recursive step, so we
can resolve progressively finer-scale structures as the recursion step proceeds.

We average the network diagnostics over the four LFR50k networks for each
value of the mixing parameter. In Figure 4.2, we plot the network diagnostics versus
the mixing parameter 2μ

1+μ for μ ∈ {0.1, 0.15, . . . , 0.8}. In panel (a), we see that the
performance of RMM is good only when the mixing parameter is less than 0.5, though
it is not as good as that of GenLouvain. It seems that the recursive modularity MBO
scheme has some difficulties in dealing with networks with a very large number of
clusters.

However, the computational time of RMM is lower than that of the GenLouvain
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Fig. 4.2. Tests on LFR50k data with RMM and GenLouvain.

code [32] (though we note that it is an implementation that was not optimized for
speed). The mean computational time for an ensemble of LFR50k networks, which
includes 15 networks corresponding to 15 values of μ, is 690 seconds for GenLou-
vain and 220 seconds for the RMM scheme. In Table 4.1, we summarize the mean
computational time (in seconds) for each ensemble of LFR data.

Table 4.1

Computation times for the LFR1k and LFR50k networks.

LFR1k LFR50k
GenLouvain 22.7 s 690 s

RMM 17.9 s 220 s

4.2. MNIST handwritten digit images. The MNIST database consists of
70,000 images of size 28 × 28 pixels containing the handwritten digits “0” through
“9” [38]. The digits in the images have been normalized with respect to size and
centered in a fixed-size grey image. In this section, we use two networks from this
database. We construct one network using all samples of the digits “4” and “9,” which
are difficult to distinguish from each other and which constitute 13,782 images of the
70,000. We construct the second network using all images. In each case, our goal is
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to separate the distinct digits into distinct communities.
We construct the adjacency matrices (and hence the graphs) W for these two

data sets as follows. First, we project each image (a 282-dimensional datum) onto 50
principal components. For each pair of nodes ni and nj in the 50-dimensional space,

we then let wij = exp(− d2
ij

3σ2
i
) if nj is among the 10 nearest neighbors of ni; otherwise,

we let wij = 0. To construct a symmetric matrix, we take W̃ = W+W′
2 , where the ′

symbol represents matrix transposition. We now drop the tilde symbol and henceforth
write W̃ as W. The quantity dij is the �2 distance between ni and nj ; the parameter
σi is the mean of the distances between ni and its 10 nearest neighbors.

In this data set, the maximum number of communities is 2 when considering only
the digits 4 and 9, and it is 10 when considering all digits. We can thus choose a small
search range for n̂ and use the multi-n̂ modularity MBO scheme.

4.2.1. MNIST “4-9” digits network. This weighted network has 13,782 nodes
and 194,816 weighted edges. We use the labeling of each digit image as the ground
truth. There are two groups of nodes: ones containing the digit 4 and ones containing
the digit 9. We use these two digits because they tend to look very similar when
they are written by hand. In Figure 4.3(a), we show a visualization of this network,
where we have depicted the data projected onto the second and third leading eigen-
vectors of the graph Laplacian L. The difficulty of separating the 4 and 9 digits has
been noted in the graph-partitioning literature (see, e.g., [31]). For example, there is
a near-optimal partition of this network using traditional spectral clustering [41, 60]
(see below) that splits both the 4-group and the 9-group roughly in half.

The modularity-optimization algorithms that we discuss for the 4-9 network use
γ = 0.1. We choose this resolution-parameter value so that the network is partitioned
into two groups by the GenLouvain code. The question about what value of γ to
choose is beyond the scope of this paper, but it has been discussed at some length in
the literature on modularity optimization [22]. Instead, we focus on evaluating the
performance of our algorithm with the given value of the resolution parameter. We
implement the modularity MBO scheme with n̂ = 2 and the multi-n̂ MM scheme, and
we compare our results with those of the GenLouvain code as well as a traditional
spectral-clustering method [41, 60].

Traditional spectral clustering is an efficient clustering method that has been
used widely in computer science and applied mathematics because of its simplicity.
One calculates the first k nontrivial eigenvectors φ1, φ2, . . . , φk (corresponding to the
smallest eigenvalues) of the graph Laplacian L. Let U ∈ R

N×k be the matrix con-
taining the vectors φ1, φ2, . . . , φk as columns. For i ∈ {1, 2, . . . , N}, let yi ∈ R

k be
the ith row vector of U . Spectral clustering then applies the k-means algorithm to
the points (yi){i=1,...,N} and partitions them into k groups, where k is the number of
clusters that was specified beforehand.

On this MNIST 4-9 digits network, we specify k = 2 and implement spectral
clustering to obtain a partition into two communities. As we show in Figure 4.3(b),
we obtain a near-optimal solution that splits both the 4-group and the 9-group roughly
in half. This differs markedly from the ground-truth partition in panel (a).

For the multi-n̂ MM scheme, we use Neig = 80 and the search range n̂ ∈
{2, 3, . . . , 10}. We show visualizations of the partition for n̂ = 2 and n̂ = 8 in Figures
4.3(c,d). For this method, computing the spectrum of the graph Laplacian takes a
significant portion of the run time (9 seconds for this data set). Importantly, however,
this information can be reused for multiple n̂, which saves time. In Figure 4.3(e), we



2238 H. HU, T. LAURENT, M. A. PORTER, AND A. L. BERTOZZI

(a) Ground truth. (b) Spectral clustering with k-means.

(c) Modularity MBO scheme with n̂ = 2. (d) Modularity MBO scheme with n̂ = 8.
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Fig. 4.3. (a)–(d) Visualization of partitions on the MNIST 4-9 digit image network by projecting
it onto the second and third leading eigenvectors of the graph Laplacian. Shading indicates the
community assignment. (e)–(f) Implementation results of the multi-n̂ modularity MBO scheme on
the MNIST 4-9 digit images. In panel (e), we plot the optimized modularity score as a function
of the input n̂. In panel (f), shading indicates the community assignment. The horizontal axis
represents the input n̂ (i.e., the maximum number of communities), and the vertical axis gives the
(sorted) index of nodes.

show a plot of this method’s optimized modularity scores versus n̂. Observe that
the optimized modularity score achieves its maximum when we choose n̂ = 2, which
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yields the best partition that we obtain using this method. In Figure 4.3(f), we show
how the partition evolves as we increase the input n̂ from 2 to 10. When n̂ = 2, the
network is partitioned into two groups (which agrees very well with the ground truth).
For n̂ > 2, however, the algorithm starts to select worse local optima, and either the
4-group or the 9-group gets split roughly in half. Starting from n̂ = 7, the number
of communities stabilizes at about 4 instead of increasing with n̂. This indicates that
the modularity MBO scheme allows one to obtain partitions with Nc < n̂ (in addition
to ones with Nc = n̂, of course).

In Table 4.2, we show computational time and some network diagnostics for all
of the resulting partitions. The (unoptimized) modularity of the ground-truth par-
tition is QGT ≈ 0.9277. Our schemes yield partitions with high modularity values
and NMI scores that are comparable to those obtained using the GenLouvain code
(which was not intended by its authors to be optimized for speed). The number of
iterations for the modularity MBO scheme ranges approximately from 15 to 35 for
n̂ ∈ {2, 3, . . . , 10}.

Table 4.2

Computation times and network diagnostics for partitions of the 4-9 MNIST data set. (The
quantity Q denotes the value of optimized modularity, so there is no such value for spectral cluster-
ing.)

Nc Q NMI Purity Time (s)
GenLouvain 2 0.9305 0.85 0.975 110

Modularity MBO (n̂ = 2) 2 0.9316 0.85 0.977 11
Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 10}) 2 0.9316 0.85 0.977 25
Spectral clustering (k-means) 2 NA 0.003 0.534 1.5

The purity score, which we also report in Table 4.2, measures the extent to which
a network partition matches ground truth. Suppose that an N -node network has
a partition C = {C1, C2, . . . , CK} into nonoverlapping communities and that the
ground-truth partition is Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂}. The purity of the partition C is
then defined as

(4.2) Prt(C, Ĉ) =
1

N

K∑
k=1

max
l∈{1,...,K̂}

|Ck ∩ Ĉl| ∈ [0, 1] .

Intuitively, purity can by viewed as the fraction of nodes that have been assigned
to the correct community. However, the purity score is not robust in estimating the
quality of a partition. When the partition C breaks the network into communities that
consist of single nodes, then the purity score achieves a value of 1. Hence, one needs
to consider other diagnostics when interpreting the purity score. In this particular
data set, a high purity score does indicate good performance because the ground truth
and the partitions each consist of two communities.

Observe in Table 4.2 that all modularity-based algorithms identified the correct
community assignments for more than 97% of the nodes, whereas standard spectral
clustering was correct for just over half of the nodes. The multi-n̂ MM scheme takes
only 25 seconds. If one specifies n̂ = 2, then the modularity MBO scheme takes only
11 seconds.

4.2.2. MNIST 70k network. We test our new schemes further by consider the
entire MNIST network of 70,000 samples containing digits from 0 to 9. This network
contains about five times as many nodes as the MNIST 4-9 network. However, the
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node strengths in the two networks are very similar because of how we construct
the weighted adjacency matrix. We thus choose γ = 0.5 so that the modularity
optimization is performed at a similar resolution scale in both networks. There are
1,001,664 weighted edges in this network.

We implement the multi-n̂ MM scheme with Neig = 100 and the search range
n̂ ∈ {2, 3, . . . , 20}. Even if Nc is the number of communities in the true optimal so-
lution, the input n̂ = Nc might not give a partition with Nc groups. The modularity
landscape in real networks is notorious for containing a huge number of nearly degen-
erate local optima (especially for values of modularity Q near the globally optimum
value) [26], so we expect the algorithm to yield a local minimum rather than a global
minimum. Consequently, it is preferable to extend the search range to n̂ > Nc, so
that the larger n̂ gives more flexibility to the algorithm in trying to find the partition
that optimizes modularity.

The best partition that we obtain using the search range n̂ ∈ {2, 3, . . . , 20} con-
tains 11 communities. All of the digit groups in the ground truth except for the
1-group are correctly matched to those communities. In the partition, the 1-group
splits into two parts, which is not surprising given the structure of the data. In par-
ticular, the samples of the digit 1 include numerous examples that are written like a
7. These samples are thus easily disconnected from the rest of the 1-group. If one
considers these two parts as one community associated with the 1-group, then the
partition achieves a 96% correctness in its classification of the digits.

As we illustrate in Table 4.3, the GenLouvain code yields partitions comparably
successful to those that we obtained using the multi-n̂ MM scheme. By comparing the
running time of the multi-n̂ MM scheme on both MNIST networks, one can see that
our algorithm scales well in terms of speed when the network size increases. While
the network size increases by a factor of five (5×) and the search range gets doubled
(2×), the computational time increases only by a factor of 11.6 ≈ 5× 2.

Table 4.3

Computation times and network diagnostics for partitions of the MNIST 70k data set.

Nc Q NMI Purity Time (s)
GenLouvain 11 0.93 0.92 0.97 10900

Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 20}) 11 0.93 0.89 0.96 290 / 212 *
Modularity MBO 3% GT (n̂ = 10) 10 0.92 0.95 0.96 94.5 / 16.5 *

∗Calculated with the RC procedure.

The number of iterations for the modularity MBO scheme ranges approximately
from 35 to 100 for n̂ ∈ {2, 3, . . . , 20}. Empirically, even though the total number of
iterations can be as large as over a hundred, the modularity score quickly gets very
close to its final value within the first 20 iterations.

The computational cost of the multi-n̂ MM scheme consists of two parts: the
calculation of the eigenvectors and the MBO iteration steps. Because of the size of
the MNIST 70k network, the first part costs about 90 seconds in Matlab. However,
one can incorporate a faster eigenvector solver, such as the Rayleigh–Chebyshev (RC)
procedure of [1], to improve the computation speed of an eigendecomposition. This
solver is especially fast for producing a small portion (in this case, 1/700) of the leading
eigenvectors for a sparse symmetric matrix. Upon implementing the RC procedure in
C++ code, it takes only 12 seconds to compute the 100 leading eigenvector-eigenvalue
pairs. Once the eigenvectors are calculated, they can be reused in the MBO steps for
multiple values of n̂ and different initial functions f0. This allows good scalability,
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which is a particularly nice feature of using this MBO scheme.
Another benefit of the modularity MBO scheme is that it allows the possibility

of incorporating a small portion of the ground truth into the modularity optimization
process. In the present paper, we implement the modularity MBO using 3% of the
ground truth by specifying the true community assignments of 2100 nodes in the initial
function f0; we chose the nodes uniformly at random. We also let n̂ = 10. With
the eigenvectors already computed (which took 12 seconds using the RC process),
the MBO steps take a subsequent 4.5 seconds to yield a partition with exactly 10
communities and 96.4% of the nodes classified into the correct groups. The authors
of [23] also implemented a segmentation algorithm on this MNIST 70k data with 3%
of the ground truth, and they obtained a partition with a correctness of 96.9% in 15.4
seconds. In their algorithm, the ground truth was enforced by adding a quadratic
fidelity term to the energy functional (i.e., it is semisupervised). The fidelity term is
the �2 distance between the unknown function f and the given ground truth. In our
scheme, however, we use the ground truth only in the initial function f0. Nevertheless,
it is also possible to add a fidelity term to the modularity MBO scheme and thereby
perform semisupervised clustering.

4.3. Network-science coauthorships. Another well-known graph type in the
community-detection literature is the network of coauthorships of network scientists.
This benchmark was compiled by Newman and was first used in [50].

In the present paper, we use the graph’s largest connected component, which
consists of 379 nodes representing authors and 914 weighted edges that indicate coau-
thored papers. We do not have any so-called ground truth for this network, but it
is useful to compare partitions obtained from our algorithm with those obtained us-
ing more established algorithms. In this section, we use GenLouvain’s result as this
pseudo ground truth. In addition to modularity-MBO, RMM, and GenLouvain, we
also consider the results of modularity-based spectral partitioning methods that allow
the option of either bipartitioning or tripartitioning at each recursive stage [50, 57].

In [50], Newman proposed a spectral partitioning scheme for modularity opti-
mization by using the leading eigenvectors (associated with the largest eigenvalues)
of a so-called modularity matrix B = W−P to approximate the modularity function
Q. In the modularity matrix, P is the probability null model and Pij =

kikj

2m is the
NG null model with γ = 1. Assume that one uses the first p leading eigenvectors
{u1,u2, . . . ,up}, and let βj denote the eigenvalue of uj . Let U = (u1|u2| . . . |up). We
then define N node vectors ri ∈ R

p whose jth component is

(ri)j =
√
βj − αUij ,

where α ≤ βp and j ∈ {1, 2, . . . , p}. The modularity Q is therefore approximated as

Q � Q̂ = Nα+

n̂∑
l=1

‖Rl‖2�2 ,(4.3)

where Rl =
∑

gi=l ri is sum of all node vectors in the lth community (where l ∈
{1, 2, . . . , n̂}).

A partition that maximizes (4.3) in a given step must satisfy the geometric con-
straints Rl · ri > 0, gi = l, and Rl · Rh < 0 for all l, h ∈ {1, 2, . . . , n̂}. Hence, if
one constructs an approximation Q̂ using p eigenvectors, a network component can
be split into at most p+ 1 groups in a given recursive step. The choice p = 2 allows
either bipartitioning or tripartitioning in each recursive step. Reference [50] discussed
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the case of general p but reported results for recursive bipartitioning with p = 1. Ref-
erence [57] implemented this spectral method with p = 2 and a choice of bipartitioning
or tripartitioning at each recursive step.

In Table 4.4, we report diagnostics for partitions obtained by several algorithms
(for γ = 1). For the recursive spectral bipartitioning and tripartitioning, we use
Matlab code that has been provided by the authors of [57]. They informed us that
this particular implementation was not optimized for speed, so we expect it to be slow;
one can create much faster implementations of the same spectral method. The utility
of this method for the present comparison is that [57] includes a detailed discussion
of its application to the network of network scientists. Each partitioning step in this
spectral scheme either bipartitions or tripartitions a group of nodes. Moreover, as
discussed in [57], a single step of the spectral tripartitioning is by itself interesting.
Hence, we specify n̂ = 3 for the modularity MBO scheme as a comparison.

Table 4.4

Computation times and network diagnostics for partitions of the network of network scientists.

Nc Q NMI Purity Time (s)
GenLouvain 19 0.8500 1 1 0.5

Spectral recursion 39 0.8032 0.8935 0.9525 60
RMM 23 0.8344 0.9169 0.9367 0.8

Tripartition 3 0.5928 0.3993 0.8470 50
Modularity MBO 3 0.6165 0.5430 0.9974 0.4

From Table 4.4, we see that the modularity MBO scheme with n̂ = 3 gives
a higher modularity than a single tripartition from the algorithm in [57], and the
former’s NMI and purity are both significantly higher. When we do not specify
the number of clusters, the RMM scheme achieves a higher modularity score and
NMI than recursive bipartitioning/tripartitioning, though the former’s purity is lower
(which is not surprising due to its larger Nc). The RMM scheme and GenLouvain
have similar run times. For any of these methods, one can of course use subsequent
postprocessing, such as Kernighan–Lin node-swapping steps [50,54,57], to find higher-
modularity partitions.

4.4. A note on computational heuristics and time complexity. Numerous
computational heuristics have been employed to optimize network modularity [22,54].
We have compared our results with implementations of a small number of popular
methods that others have made available. We report computation times in our discus-
sions, but we note that these available implementations (e.g., the GenLouvain code
from [32]) were not optimized for speed. Our results above demonstrate the good
speed of our method, but we have not, for example, included a comparison of its
speed with the C++ implementations of Blondel et al. [27] of the Louvain method [5].
Importantly, the low computational cost of our method is a direct result of its firm the-
oretical grounding, and our reformulation of the problem of modularity optimization
offers hope for the development of even faster methods in the future. We performed
all calculations in this paper using Matlab R2011b on a MacBook Air with a 1.7
GHz processor (Intel Core i5).

5. Conclusion and discussion. In summary, we have presented a novel per-
spective on the problem of modularity optimization by reformulating it as a minimiza-
tion of an energy functional involving the total variation on a graph. This provides an
interesting bridge between the network-science and compressive-sensing communities,
and it allows the use of techniques from compressive sensing and image processing
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to tackle modularity optimization. In this paper, we have proposed MBO schemes
that can handle large data at very low computational cost. Our algorithms produce
results competitive with existing methods, and they scale well in terms of speed for
certain networks (such as the MNIST data). In our algorithms, after computing the
eigenvectors of the graph Laplacian, the time complexity of each MBO iteration step
is O(N).

One major part of our schemes is to calculate the leading eigenvector-eigenvalue
pairs, so one can benefit from the fast numerical Rayleigh–Chebyshev procedure in [1]
when dealing with large, sparse networks. Furthermore, for a given network (which
is represented by a weighted adjacency matrix), one can reuse previously computed
eigendecompositions for different choices of initial functions, different values of n̂,
and different values of the resolution parameter γ. This provides welcome flexibility,
and it can be used to significantly reduce computation time because the MBO step
is extremely fast, as each step is O(N) and the number of iterations is empirically
small.

Importantly, our reformulation of modularity also provides the possibility of in-
corporating partial ground truth. This can be accomplished either by feeding the
information into the initial function or by adding a fidelity term into the functional.
(We have pursued only the former approach in this paper.) It is not obvious how to
incorporate partial ground truth using previous optimization methods. This ability to
use our method either for unsupervised or for semisupervised clustering is a significant
boon.

Appendix A. The notion of Γ-convergence of functionals is now commonly used
for minimization problems; see [42] for a detailed introduction. In this appendix,
we briefly review the definition of Γ-convergence and then prove the claim that the
graphical multiphase Ginzburg–Landau functional Γ-converges to the graph TV. This
proof is a straightforward extension of the work in [24] for the two-phase graph GL
functional.

Definition A.1. Let X be a metric space and let {Fn : X → R ∪ {±∞}}∞n=1 be
a sequence of functionals. The sequence Fn Γ-converges to the functional F : X →
R ∪ {±∞} if, for all f ∈ X, the following lower and upper bound conditions hold:
(lower bound condition) for every sequence {fn}∞n=1 such that fn → f , we have

F (f) ≤ lim inf
n→∞ Fn(fn) ;

(upper bound condition) there exists a sequence {fn}∞n=1 such that

F (f) ≥ lim sup
n→∞

Fn(fn) .

Reference [23] proposed the following multiphase graph GL functional:

GLmulti
ε (f̂) =

1

2

n̂∑
l=1

〈f̂ (l),Lf̂ (l)〉+ 1

ε2

N∑
i=1

Wmulti(f̂(ni)),

where f̂ : G → R
n̂ and Wmulti(f̂(ni)) =

∏n̂
l=1 ‖f̂(ni) − �el‖2�1 . See sections 2 and 3

for the definitions of all of the relevant graph notation. Let X = {f̂ | f̂ : G → R
n̂},

Xp = {f | f : G → V n̂} ⊂ X , and Fε = GLmulti
ε for all ε > 0. Because f̂ can be

viewed as a matrix in R
N×n̂, the metric for the space X can be defined naturally

using the �2-norm.
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Theorem A.2 (Γ-convergence). The sequence Fε Γ-converges to F0 as ε→ 0+,
where

F0(f̂) :=

{
|f̂ |TV = 1

2

∑N
i,j=1 wij‖f̂(ni)− f̂(nj)‖�1 if f̂ ∈ Xp,

+∞ otherwise .

Proof. Consider the functional Wε(f) =
1
ε2

∑N
i=1 Wmulti(f(ni)) and

W0(f) :=

{
0 if f ∈ Xp,

+∞ otherwise.

First, we show that Wε Γ-converges to W0 as ε → 0+. Let {εn}∞n=1 ⊂ (0,∞)
be a sequence such that εn → 0 as n → ∞. For the lower bound condition, sup-
pose that a sequence {fn}∞n=1 satisfies fn → f as n → ∞. If f ∈ Xp, then
it follows that W0(f) = 0 ≤ lim infn→∞ Wεn(fn) because Wε ≥ 0. If f does
not belong to Xp, then there exists i ∈ {1, 2, . . . , N} such that f(ni) �∈ V n̂ and
fn(ni) → f(ni). Therefore, lim infn→∞ Wεn(fn) = +∞ ≥ W0(f) = +∞. For the
upper bound condition, assume that f ∈ Xp and fn = f for all n. It then follows
that W0(f) = 0 ≥ lim supn→∞ Wεn(fn) = 0. Thus, Wε Γ-converges to W0.

Because Z(f) := 1
2

∑n̂
l=1〈f (l),Lf (l)〉 is continuous on the metric space X , it is

straightforward to check that the functional Fεn = Z + Wεn satisfies the lower and
upper bound conditions and therefore Γ-converges to Z +W0.

Finally, note that Z(f) = |f |TV for all f ∈ Xp. Therefore, Z+W0 = F0, and one
can conclude that Fεn Γ-converges to F0 for any sequence εn → 0+.
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[29] R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, Modularity from fluctuations in random
graphs and complex networks, Phys. Rev. E, 70 (2004), 025101.

[30] M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with ap-
plications in 1-spectral clustering and sparse PCA, in Advances in Neural Information
Processing Systems (NIPS) 23, 2010, pp. 847–855.

[31] M. Hein and S. Setzer, Beyond spectral clustering—Tight relaxations of balanced graph cuts,
Adv. Neural Inform. Process. Syst., 24 (2011), pp. 2366–2374.

[32] I. S. Jutla, L. G. S. Jeub, and P. J. Mucha, A Generalized Louvain Method for Community
Detection Implemented in MATLAB, available online at http://netwiki.amath.unc.edu/
GenLouvain (2011–2012), version 1.2.

[33] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing,
Science, 220 (1983), pp. 671–680.

[34] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc.
Edinburgh Sec. A Math., 111 (1989), pp. 69–84.

[35] R. Lambiotte, J.-C. Delvenne, and M. Barahona, Laplacian dynamics and multiscale mod-
ular structure in networks, arXiv:0812.1770 (2009).

[36] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community
detection algorithms, Phys. Rev. E, 78 (2008), 046110.

[37] A. Lancichinetti and S. Fortunato, Community detection algorithms: A comparative anal-
ysis, Phys. Rev. E, 80 (2009), 056117.

[38] Y. LeCun, C. Cortes, and C. J. C. Burges, MNIST Database, online at http://yann.lecun.
com/exdb/mnist/.



2246 H. HU, T. LAURENT, M. A. PORTER, AND A. L. BERTOZZI

[39] A. C. F. Lewis, N. S. Jones, M. A. Porter, and C. M. Deane, The function of communities
in protein interaction networks at multiple scales, BMC Syst. Biol., 4 (2010), 100.

[40] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing MRI, IEEE
Signal Process. Mag., 25 (2008), pp. 72–82.

[41] U. von Luxburg, A tutorial on spectral clustering, Statist. Comput., 17 (2007), pp. 395–416.
[42] G. D. Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl.

8, Springer, New York, 1993.
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