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Abstract. We present a weakly nonlinear analysis of our recently developed model for the
formation of crime patterns. Using a perturbative approach, we find amplitude equations that
govern the development of crime “hotspot” patterns in our system in both the 1D and 2D cases.
In addition to the supercritical spots already shown to exist in our previous work, we prove here
the existence of subcritical hotspots that arise via subcritical pitchfork bifurcations or transcritical
bifurcations, depending on geometry. We present numerical results that both validate our analytical
findings and confirm the existence of these subcritical hotspots as stable states. Finally, we examine
the differences between these two types of hotspots with regard to attempted hotspot suppression,
referencing the varying levels of success such attempts have had in real world scenarios.
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1. Introduction. The study of pattern formation in physical and mathematical
systems has a long and interesting history. This general subject area is also quite
diverse, examining biological (see, as a small sample, [37, 28, 27]), geological ([33, 10,
2]), and even sociological systems ([30, 14]), to name but a few. Though these various
subjects and systems may seem completely unrelated, the mathematics describing
the patterns in each are surprisingly similar. Consequently, a robust, powerful, and
universal set of mathematical tools has been developed to study such systems, and
the employment of these tools can lead to better understanding of pattern forming
systems, regardless of their specific nature.

Recently, we set forth to develop a mathematical model to describe the spatio-
temporal patterns of urban crime [35]. Using well-known criminological ideas regard-
ing the way in which criminal events effect future crime risk in a location, and the
way in which risk can spread from one area to another [18, 19, 20, 1], we constructed
a model consisting of two coupled, nonlinear partial differential equations that may
describe the formation and dynamics of crime “hotspots” - spatio-temporal clusters
of high crime. Using a simple linear stability analysis of our model, we found that
the homogeneous system can be unstable to disturbances of specific wavenumbers un-
der certain parameter regimes, leading to hotspot formation. However, our previous
work stopped there, with no investigation of the possibility of hotspots outside of
this linearly unstable regime. This paper addresses this possibility by performing a
weakly-nonlinear analysis on our system and developing amplitude equations for the
model; this is a detailed follow-up to our paper [34], which presents only a few of the
qualitative results of such an analysis. By investigating the possible bifurcations in the
steady state solutions of our system both analytically and numerically, we indeed find
that stable, “large” amplitude hotspots may exist even in the linearly stable regime.

The fact that these subcritical hotspots exist within our system is especially inter-
esting when attempting to understand the outcome of hotspot suppression, typically
by police executing a strategy known as hotspot policing, which has become dominant
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Fig. 2.1. Example output from the discrete system. These colormaps display high A in red,
A in green, and low A in blue to purple. In (a) is an example of stationary hotspots, where once
hotspots form at a point, they tend to stay there indefinitely; in (b) is an example of transitory
hotspots, where hotspots do not typically last forever, and will move about, deform, or disappear
over time; and in (c) is an example of no hotspots, where no large spots are ever observed.

over the past two decades [6, 4, 5, 41, 40]. Recognizing that crime tends to form dense
clusters in space and time, leaving some areas with little or no crime problem, police
routinely target their limited resources at those locations experiencing high crime.
That hotspot policing would be an improvement over random patrol is uncontrover-
sial; it has been well-known since the 1970s that random patrol has little measurable
effect on crime [23]. However, questions have been raised about whether hotspot
policing leads to lasting hotspot reductions, or simply the displacement of hotspots
from one area to another [29, 3, 7]. The present research provides a formal theoretical
foundation for understanding different potential outcomes from hotspot policing in
relation to the classification of hotspots as either supercritical or subcritical [34].

The remainder of the paper is organized as follows. In Section 2, we give a brief
introduction to our crime model and the major results found in [35]. In Section
3, we perform a weakly nonlinear analysis of our system in both the 1D and 2D
cases, deriving some analytical results for the amplitude equations and bifurcations
governing the hotspots exhibited by the system. In Section 4, we compare these
analytical results to numerical solutions. Finally, in Section 5, we explore the possible
results of hotspot suppression qualitatively and numerically using both the continuum
and discrete models.

2. Background. We begin by reviewing the results of [35]. First, we developed
an agent-based model of criminal activity that aims to reproduce the known phenom-
ena of repeat and near-repeat victimization [18, 19, 20, 1], whereby crime risk becomes
elevated in an area and its surroundings following an initial event there. This model
couples the dynamics of moving, offending criminals on a 2D lattice (with lattice spac-
ing `) with an underlying scalar field A(x, t) that we refer to as the attractiveness.
As the name implies, the attractiveness field is a measure of how desirable any given
location on the lattice x = (i, j) is as a target for criminal activity, with the numerical
value of the field giving the stochastic rate of offending for the n(x, t) criminals at
that location. The model evolves in discrete time, using a timestep δt, and during
each timestep criminals may victimize their current location with probability

pv(x, t) = 1− e−A(x,t)δt . (2.1)
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If the criminal does in fact choose to commit a crime during this timestep, he is
removed from the lattice. If, on the other hand, he does not commit a crime during
this timestep, he will instead move to one of the four lattice points adjacent to his
current location, selecting a particular neighbor x′ with probability

pm(x′, t; x) =
A(x′, t)∑

x′′∼x

A(x′′, t)
, (2.2)

where the notation x′′ ∼ x indicates all of the sites neighboring site x. In this way,
criminals actively seek out areas of high A, where they are more likely to commit
crimes.

The attractiveness field is composed of a static component A0 (referred to as
the “baseline” attractiveness) and a dynamic component B(x, t), such that A(x, t) =
B(x, t)+A0. After all of the criminal activity for the round is completed, the dynamic
component of the attractiveness field is updated through the following mechanisms,
meant to model repeat and near-repeat victimization. First, the dynamic attractive-
ness spreads spatially via a weighted averaging procedure between each site and its
four neighbors. Next, it exhibits an exponential decay with rate ω. Finally, for each
criminal event that occurred at x, the attractiveness is increased there by an amount
θ. So, if the number of events at site x during the current timestep is given by E(x),
then the attractiveness at the beginning of the next timestep will be

A(x, t+ δt) =

[
(1− η)B(x, t) +

η

4

∑
x′∼x

B(x′, t)

]
(1− ωδt) + θE(x) +A0 . (2.3)

Note that, by definition, η ≤ 1. As a final step of the simulation, new criminals are
generated on each point of the lattice at a rate Γ.

The discrete model thus described contains a number of parameters, and depend-
ing upon the choice of these parameters, the system may exhibit three general types
of behavior: stationary (fixed in space) crime hotspots, transitory (moving about in
space or appearing and disappearing in time) hotspots, or no hotspots at all; these
three cases are illustrated in Fig. 2.1.

Second, we derived a continuum limit of the discrete model by converting the
criminals into a number density ρ(x, t), taking expectation values for all probabilistic
events, and letting `, δt→ 0 with the constraint `2/δt = D, a diffusion coefficient ([35]
presents all of the algebraic details). This hydrodynamic limit results in our partial
differential equation (PDE) model, which is the major focus of this paper and can be
written in the dimensionless form

∂A

∂t
= η∇2A−A+A0 + ρA , (2.4)

∂ρ

∂t
= ~∇ ·

[
~∇ρ− 2ρ

A
~∇A
]
− ρA+A−A0 , (2.5)

where η is the same as in the discrete model, and the two remaining parameters A and
A0 can be found from various combinations of the six remaining parameters present
in the discrete model. Inspecting these equations, we see that crimes occur locally
at rate ρA, and each such crime causes A to increase. In addition, A diffuses with
dimensionless diffusion coefficient η (≤ 1), and decays exponentially to the baseline
value A0. Criminals exhibit diffusive motion with an advective bias up gradients of
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lnA. Finally, criminals are subtracted from the system when they commit a crime,
and are added back at a constant rate A − A0.1 These equations exhibit a general
reaction-diffusion form, and are similar to models of other biological systems such as
the Keller-Segel chemotaxis model, which are well studied in the literature (see for
example [22, 16, 39, 9, 13, 24, 36, 15, 8, 31]).

The continuum system described by Eqns. 2.4 and 2.5 may display two of the
three behaviors from the discrete system: stationary hotspots or no hotspots. We
believe that transitory hotspots are not seen in this continuum approximation since
they are the result of statistical noise that is removed by considering only expectation
values in our limit. We showed that the formation of hotspots in this system may
arise as a result of a linear instability of the homogeneous steady state

A(x, t) = A, ρ(x, t) = ρ ≡ 1− A0

A
(2.6)

toward perturbations of certain wavenumbers k, and that the dispersion relation could
be written as

σ(k) = −
[
1 +A− ρ+ |k|2(1 + η)

]
/2+√[

1 +A− ρ+ |k|2(1 + η)
]2
/4−

(
η|k|4 − (3ρ− ηA− 1)|k|2 +A

)
. (2.7)

The instability criterion, therefore, could be written as

A0 < A0
∗ =

2
3
A− 1

3
ηA

2 − 2
3
A

√
ηA . (2.8)

In other words, if the baseline attractiveness is less than some critical value A0
∗, the

homogeneous state will be linearly unstable (exhibit some modes with a positive σ).
Finally, we showed that the maximally unstable mode kmax is given by

|kmax|2 = (1−A)/(1− η)− ρ(5− η)/(1− η)2+√
η(1 + η)2ρ

[(
A(3− η)− 2

)
(1− η) + 2ρ(3− η)

]
/η(1− η)2 . (2.9)

Note for future reference that, when A0 = A0
∗, the maximally growing mode can be

greatly simplified to

|kmax|2 ≡ |k∗|2 =

√
A

η
. (2.10)

3. Weakly nonlinear analysis. Our goal now is to more deeply examine the
continuum system of Eqns. 2.4 and 2.5 and to move beyond the simple linear stability
analysis outlined above, thus providing the technical details of the qualitative results
presented in [34], and for an even wider range of possibilities. We will accomplish this
by means of a weakly nonlinear analysis, using a standard perturbative expansion
approach to derive amplitude equations for our system [12, 38, 17, 25, 11].

We begin by considering a parameter regime such that the homogeneous state is
linearly unstable (or stable). Choosing A0 as our control parameter (as suggested by

1The choice of the notation A here is due to the fact that, at steady state, this quantity is indeed
the spatially averaged value of A(x), regardless of the other parameters or whether hotspots are
displayed or not.
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our form of the stability criterion given in Eq. 2.8), we define a new parameter ε via
the equation

A0 = A0
∗ − εA , (3.1)

such that the homogeneous state will be linearly unstable for positive ε and linearly
stable for negative ε, as indicated by the linear stability criterion in Eq. 2.8 above.
Though for the remainder of our analysis we will assume that ε is small, we note here
that in theory ε can take on any value between some εmin (where A0 = A, the most
it could ever physically be) and εmax (where A0 = 0, the least it could ever physically
be). These two values are given by:

εmin = −1
3
− 1

3
ηA− 2

3

√
ηA , (3.2)

εmax =
2
3
− 1

3
ηA− 2

3

√
ηA , (3.3)

with the difference between these always being 1. We further point out that εmax

becomes negative for any
√
ηA = ηk2

∗ >
√

3 − 1, meaning that above this threshold
the homogeneous state is incapable of being linearly unstable and our analysis is
invalid in this regime.

Returning again to the results of the linear stability analysis, when we substitute
Eq. 3.1 into Eq. 2.7 and expand for small ε, we find that the growth rate for the k∗
mode is given by

σ(k∗) = σ∗ε+O(ε2) , (3.4)

where

σ∗ =
9η|k∗|2

(1 + η|k∗|2) [2η + η|k∗|2(3− η)]
. (3.5)

Using this result, we see that we can define a new, slow time variable T = |ε|t that
describes the dynamics of the system when near the stability transition; this means
that the ∂t in Eqns. 2.4 and 2.5 becomes |ε|∂T . We use |ε| here to make our future
results valid regardless of the sign of ε, though this means that we must rewrite Eq. 3.1
as

A0 = A0
∗ − sign(ε)|ε|A . (3.6)

At this point we define a new spatial variable x̃ ≡ |k∗|x (but continue to refer to x̃ as
x in the future for notational simplicity) and rewrite Eqns. 2.4 and 2.5 as

|ε|∂A
∂T

= η|k∗|2∇2A−A+A0
∗ − sign(ε)η|k∗|4|ε|+ ρA , (3.7)

|ε| ∂ρ
∂T

= |k∗|2~∇ ·
[
~∇ρ− 2ρ

A
~∇A
]
− ρA+ η|k∗|4 −A0

∗ + sign(ε)η|k∗|4|ε| . (3.8)

Next, we express A and ρ as expansions in our small parameter of the form:

A(x, T ) = A+
∞∑
j=1

|ε|αjA(j)(x, T ) , (3.9)
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ρ(x, T ) = 1− A0
∗

A
+
∞∑
j=1

|ε|αjρ(j)(x, T ) , (3.10)

where α is a rational number that will depend upon the specific geometry in which
we are interested; the reasoning behind the choice of α will be presented with each
geometry we consider. We substitute these expansions into our differential equations
and then separate the resulting equations by powers of |ε|. We note that upon doing
this, Eq. 3.7 can be used to simply solve for a given ρ(j)(x, T ) algebraically in terms
of lower order ρ(j′)(x, T ) and A(j′)(x, T ) and their derivatives, and that this result
can then be substituted into Eq. 3.8. This leaves a series of fourth order differential
equations to be solved that involve only the various A(j)(x, T ), each of which is of the
form

(∇2 + 1)2A(j)(x, T ) = fj

[
A(1)(x, T )

]
, (3.11)

where fj is a possibly nonlinear function. Regardless of α, the first of these equations
is always

(∇2 + 1)2A(1)(x, T ) = 0 . (3.12)

3.1. 1D. In this geometry, we restrict our solution to a domain x ∈ [0, L] where
L = 2nπ for some integer n > 0, and impose periodic boundary conditions for both
A(x, T ) and ρ(x, T ). The solution to Eq. 3.12 in this geometry and for these boundary
conditions is

A(1)(x, T ) = P (T )eix + c.c. , (3.13)

where P (T ) is the amplitude, which at this point is simply an integration constant, and
“c.c.” denotes the complex conjugate. Due to the inversion symmetry of this solution
(P → −P is physically the same, just shifted), we expect a pitchfork bifurcation to
occur here; we use α = 1/2 to reflect this. The first interesting equation therefore
occurs at order |ε|:

(
∇2 + 1

)2
A(2)(x, T ) =

4
(
1− η2k4

∗
)

η2k6
∗

[
P (T )2e2ix + c.c.

]
. (3.14)

The particular solution to this equation, which is all we are after, is

A(2)(x, T ) =
4
(
1− η2k4

∗
)

9η2k6
∗

[
P (T )2e2ix + c.c.

]
. (3.15)

At order |ε|3/2, we find the equation(
∇2 + 1

)2
A(3)(x, T ) = f3,1 [P (T ); η, k∗] eix + f3,3 [P (T ); η, k∗] e3ix + c.c. ; (3.16)

we do not reproduce the full expressions for f3,j here for sake of simplicity. Note
that Eq. 3.16 contains a secular term ∝ eix. In order for the particular solution of
Eq. 3.16 to fit the periodic boundary conditions chosen, this secular term must vanish,
meaning that f3,1 [P (T ); η, k∗] = 0. Upon enforcing this constraint, rescaling T back
to t, and letting |ε|1/2P (t) ≡ Q(t), we find the amplitude equation

Q̇ = σ∗εQ− C1(η, k∗)|Q|2Q , (3.17)
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where

C1(η, k∗) =
−8 + 56ηk2

∗ − 31η2k4
∗ − 8η3k6

∗
3η2k8

∗ [2η + ηk2
∗(3− η)]

, (3.18)

and σ∗ is given by Eq. 3.5 above. As expected, this is the standard form for a
dynamical system exhibiting a pitchfork bifurcation, with the distinction between a
supercritical and subcritical bifurcation determined by the sign of C1. Upon inspec-
tion, it is found that C1 will be negative for any ηk2

∗ . 0.157 (indicating a subcritical
pitchfork bifurcation here) and positive otherwise (indicating a supercritical pitchfork
bifurcation). The steady state value Qs is either zero (the homogeneous case) or given
by

Qs = ±
√

σ∗ε

C1(η, k∗)
. (3.19)

Finally, our solution for Q is only valid to order |ε|, so our solution for A(x, T ) is also
only valid to this order, and is given by

A(x, t) = A+Q(t)eix +
4
(
1− η2k4

∗
)

9η2k6
∗

Q(t)2e2ix + c.c. . (3.20)

One can in general continue the expansion up to higher orders in ε by defining
subsequent slow timescales Tj for j ≥ 2, each of which will modify ∂t by adding a term
|ε|j∂Tj . One then continues with the above results and eliminates the secular terms
at higher orders in the expansion, with the net result being amplitude equations that
govern the various PTj

. For example, the next order amplitude equation for the 1D
case takes the form

Q̇ = σ∗ε [1 + εa1(η, k∗)]Q−
C1(η, k∗) [1 + εa2(η, k∗)] |Q|2Q− C2(η, k∗)|Q|4Q , (3.21)

where a1, a2, and C2 are the new corrections that arise as we move to the higher
order (the exact formulas for these expressions are unimportant here). We will refer
to this higher order amplitude equation later when discussing numerical simulations
to help explain some of the results seen there.

3.2. 2D, radially symmetric. We now consider solutions on a disk r ∈ [0, R]
with R = β1,n, where β1,n is the nth root of the Bessel function J1(r); we enforce
Neumann conditions on the boundary edge. For these boundary conditions in this
geometry, the solution to Eq. 3.12 is

A(1)(r, T ) = P (T )J0(r) . (3.22)

In this regime, therefore, the inversion symmetry of the 1D case is broken (P → −P
is physically different here), so we expect a transcritical bifurcation rather than a
pitchfork. Hence, we choose α = 1, and the first interesting equation in our system is
proportional to |ε|2:(
∇2 + 1

)2
A(2)(r, T ) =

9ηk2
∗P (T )sign(ε)−

(
1 + ηk2

∗
) [

2η + ηk2
∗(3− η)

]
PT (T )

3η2k4
∗

J0(r)+

2
(
1− η2k4

∗
)

η2k6
∗

P (T )2
[
J2

0 (r)− J2
1 (r)

]
. (3.23)
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As before, we will need to eliminate any secular term proportional to J0(r) on the
right hand side of Eq. 3.23 so that our solution will respect the Neumann boundary
conditions imposed. In order to do so, we take advantage of the fact that the Bessel
functions can be used as an orthogonal basis for expanding other functions, so we are
free to write the J2

0 (r) − J2
1 (r) portion on the right as a sum of Bessel functions to

the first power, one of which will be J0(r). With the definition that

q =
2
∫ R

0

rJ0(r)
[
J2

0 (r)− J2
1 (r)

]
dr

R2J2
0 (R)

, (3.24)

we see that setting the secular term to zero (and rescaling T to t and letting |ε|P (t) ≡
Q(t)) is equivalent to the amplitude equation

Q̇ = σ∗εQ+ C3(η, k∗)Q2 , (3.25)

where

C3(η, k∗) =
6q(1− ηk2

∗)
k2
∗ [2η + ηk2

∗(3− η)]
. (3.26)

As expected, we find that in the 2D, radially symmetric case our system will undergo a
transcritical bifurcation. Interestingly, the constant C3 will always be positive for any
value of ηk2

∗ for which the above analysis is valid. That is, C3 would only be negative
if ηk2

∗ > 1, but the maximum value of ηk2
∗ for which linear instability is at all possible

(which must be the case for our analysis to work) is ηk2
∗ =
√

3 − 1 < 1, as discussed
previously. Hence, there is really only one qualitatively distinct bifurcation diagram
in this case. The steady state value Qs in this case is either zero (the homogenous
case) or

Qs = − σ∗ε

C3(η, k∗)
. (3.27)

As in the 1D case, our amplitude equation is only valid to order |ε|, so our equation
for A(r, t) in this case is

A(r, t) = A+Q(t)J0(r) . (3.28)

As stated above, in this geometry there is a physical difference between positive Q
and negative Q solutions, with the former corresponding to a solution that exhibits a
bump in A at the origin (hereafter referred to as the “bump solution”) and the latter
corresponding to a solution that has a ring of high A at the outer edge of the domain
(hereafter referred to as the “ring solution”). Our theoretical results from Eq. 3.27
state that the steady state bump solution will exist only for negative ε and that it
will be unstable, and that the steady state ring solution will exist only for positive ε
and be stable.

3.3. Fully 2D. For the fully 2D system, the first order equation 3.12 (along with
suitable boundary conditions) admits solutions of the form

A(1)(x, T ) =
N∑
j=1

Pj(T )eiqj ·x + c.c. (3.29)

for any N , so long as |qj | = 1. We will limit our discussion here to the simple
cases of rolls, squares, and hexagons, however, as they display simple periodicity.
Rolls (N = 1), though, are just the 1D patterns discussed previously extended into a
second dimension, so we need not perform any further analysis for them here.



NONLINEAR PATTERNS IN URBAN CRIME 9

3.3.1. Squares. We begin our analysis with squares: N = 2, q1 = x, q2 = y,
a domain x ∈ [0, Lx], y ∈ [0, Ly] where Lx = 2nπ and Ly = 2mπ for some integers
n,m > 0, and periodic boundary conditions for both A(x, T ) and ρ(x, T ). The first
order solution is therefore

A(1)(x, T ) = P1(T )eix + P2(T )eiy + c.c. . (3.30)

Eq. 3.30 displays the same inversion symmetry as the 1D case, hence we expect a
pitchfork bifurcation here as well. Consequently, the mathematics in this case follow
almost exactly as in the 1D case above, so we omit the small details. In the end, we
arrive at the second order solution

A(2)(x, T ) =
4
(
1− η2k4

∗
)

9η2k6
∗

[
P1(T )2e2ix + P2(T )2e2iy+

9P1(T )P2(T )ei(x+y) + 9P1(T )P2(T )∗ei(x−y) + c.c.
]

(3.31)

and amplitude equation for Q1 (as in 1D, Q1 =
√
|ε|P1)

Q̇1 = σ∗εQ1 − C1(η, k∗)|Q1|2Q1 + CS(η, k∗)|Q2|2Q1 . (3.32)

Here, C1(η, k∗) is as given in Eq. 3.18 above and

CS(η, k∗) =
6
(
8− 8ηk2

∗ − 9η2k4
∗ + 8η3k6

∗
)

η2k8
∗ [2η + ηk2

∗(3− η)]
; (3.33)

the amplitude equation for Q2 is symmetric with Eq. 3.32, with the subscripts 1 and
2 switched.

The steady states for squares (Q1 = Q2 ≡ Qs) are therefore Qs = 0 or

Qs = ±
√

σ∗ε

C1(η, k∗)− CS(η, k∗)
. (3.34)

For all valid values of ηk2
∗, CS > 0, and for all values of ηk2

∗ . 0.7, CS > |C1|. Hence,
squares almost always develop through a subcritical pitchfork bifurcation from the
homogenous state, only developing through a supercritical pitchfork over the narrow
range 0.7 . ηk2

∗ <
√

3− 1. In either case, the roll steady state is unstable to squares.
This is because the roll steady state is simply the square system with Q1 = Qs
from Eq. 3.19 and Q2 = 0. This fixed point is always unstable along the direction of
increasing Q2, however, since the eigenvalue in this direction is σ∗ε(1+CS/C1), which
is always positive: either C1, ε > 0 (a supercritical roll) where it is clearly positive
since CS > 0, or C1, ε < 0 (a subcritical roll) where it is positive since CS > |C1|.

3.3.2. Hexagons. The final pattern we will examine are hexagons: N = 3,
q1 = x, q2 = − 1

2x +
√

3
2 y, q3 = − 1

2x−
√

3
2 y, a domain x ∈ [0, Lx], y ∈ [0, Ly] where

Lx = 4nπ and Ly = 4mπ/
√

3 for some integers n,m > 0, and periodic boundary
conditions for both A(x, T ) and ρ(x, T ). The first order solution is therefore

A(1)(x, T ) = P1(T )eix + P2(T )ei(−x/2+
√

3y/2) + P3(T )ei(−x/2−
√

3y/2) + c.c. . (3.35)

The lack of inversion symmetry in this case, along with the resonance q1+q2+q3 = 0,
will generally cause our amplitude equations to display a quadratic nonlinearity, as
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seen in the radially symmetric system above, leading to a transcritical bifurcation.
Correspondingly, we choose α = 1 in this case, and follow a derivation similar to
the radially symmetric case. We find that the amplitude equation for Q1 (recall
Q1 = |ε|P1 in this case) is given by

Q̇1 = σ∗εQ1 + CH(η, k∗)Q∗2Q
∗
3 , (3.36)

where

CH(η, k∗) =
6(1− ηk2

∗)
k2
∗ [2η + ηk2

∗(3− η)]
; (3.37)

the amplitude equations for Q2 and Q3 are given by cyclic permutations of the indices
1, 2, and 3 in Eq. 3.36.

The valid hexagonal steady states (Q1 = Q2 = Q3 ≡ Qs) are Qs = 0 or

Qs = − σ∗ε

CH(η, k∗)
. (3.38)

Note that CH is positive for all valid values of ηk2
∗, and is in fact just C3 (Eq. 3.26)

without the factor of q, meaning that the bifurcation diagram for hexagons will be
quite qualitatively similar to that of the radially symmetric state for very small |ε|
and amplitudes. Therefore, and for future reference, we will continue to denote the
positive Q solutions as “bumps” and the negative Q solutions as “rings”, even in the
hexagonal geometry. However, unlike the radially symmetric system, the hexagonal
ring solution is not stable, but is instead a saddle point, meaning that the only stable
hexagonal steady state predicted by this approximation is Qs = 0 for ε < 0. However,
the quadratic nonlinearity of the hexagons dominates over the cubic nonlinearity of
the rolls and squares near onset; hence, hexagons are the preferred pattern for our
model at small |ε|. This is not surprising, as it is a generic feature of systems that
lack inversion symmetry [12], as ours does.

4. Numerical Results. As a verification of our analytical results above, we
numerically solve our model system in various geometries. For the dynamical system,
we use a fully-implicit Newton-Raphson-based solver; for the steady state solutions,
we use a Newton-Raphson-based relaxation method. For each case, we look at a
quantity we will refer to as simply the “amplitude” of A, which we define as

Aamp(t) =

√
1
|D|

∫
D

[
A(x, t)−A

]2
dx , (4.1)

where D is the domain of the simulation, and |D| is its size. Our measure is, therefore,
essentially an RMS measure of the attractiveness field’s deviation from the homoge-
neous steady state. Finally, for all simulations in this section we employ Neumann
boundary conditions.

4.1. 1D. In this geometry, our domain D is x ∈ [0, π/k∗]. The first case we
explore is a supercritical system, in which ηk2

∗ = 0.4 (η = 0.1 and k∗ = 2). The
two plots in Fig. 4.1 summarize the results here. Figure 4.1(a) shows a bifurcation
diagram for our system as derived by computing the steady state value Aamp(∞) as a
function of ε, plotting both the analytical and numerical results. We find there is good
agreement in this case for essentially all ε values. Figure 4.1(b) plots the analytic and
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Fig. 4.1. 1D system with ηk2
∗ = 0.4. In (a) is a bifurcation diagram for the system where

dashed lines represent unstable branches and solid lines are stable branches; numerical results are
in black and analytic results in red (with circles). We find very good agreement for essentially all ε
values. In (b) are plots of the numeric (black) and analytic (red with circles) solutions for Aamp(t)
with ε = 0.01 and Q(0) = 0.01; there is very good agreement here as well.
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Fig. 4.2. 1D system with ηk2
∗ = 0.1. In (a) is a bifurcation diagram for the system where

dashed lines represent unstable branches and solid lines are stable branches; numerical results are
in black, analytic results from Eq. 3.19 in red (with circles), and a higher order analytic solution as
in Eq. 3.21 in blue (with squares). There is good agreement between the numerics and both analytic
solutions for smaller ε values along the unstable branch, but only the higher order analytic solution
predicts the existence of the large amplitude branch seen in the numerics. In (b) are plots of the
numeric (black) and analytic (red circles and blue squares) solutions for Aamp(t) with ε = −0.001
and varying Q(0); the dashed line represents the analytic steady state value for this ε. The lower
line corresponds to Q(0) = 0.0028, with the analytic solution from Eq. 3.19 in red (with circles);
there is good agreement here between the two. The upper line corresponds to Q(0) = 0.0032, with the
higher order analytic solution in blue (with squares). The agreement between these two is reasonable,
though the analytic solution predicts a higher steady state value than the numerics.

numerical solutions for Aamp(t) using ε = 0.01 and Q(0) = 0.01; there is very good
agreement here as well.

The next case we explore is a subcritical system, in which ηk2
∗ = 0.1 (η = 0.1 and

k∗ = 1), with the results shown in Fig. 4.2. Referring to Fig. 4.2(a), the numerical
solutions (black) display the small amplitude, unstable branch predicted by the theory
above, and the numerics match the theory (red with circles) well at small ε. However,
there is also a stable, large amplitude branch in the bifurcation diagram that is not
predicted by the theory above. As alluded to before, however, if we continue our
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Fig. 4.3. Radially symmetric 2D system with ηk2
∗ = 0.2. In (a) is a bifurcation diagram

for the system where dashed lines represent unstable branches and solid lines are stable branches;
numerical results are in black and analytic results in red (with circles). We find good agreement
between the two for smaller ε values, though the numerics display a large amplitude stable branch
that the analytic solution does not. In (b) are plots of the numeric (black lines) and analytic (red
with circles) solutions for Aamp(t) with |ε| = 0.01 and varying Q(0). The horizontal dashed line
indicates the analytical unstable steady state for ε < 0. The lower line corresponds to Q(0) = −0.01,
ε > 0 and the middle line corresponds to Q(0) = 0.3, ε < 0; the agreement is good in these two
cases. The upper line corresponds to Q(0) = 0.36, ε < 0. This is above the unstable branch, so it
grows to the large amplitude stable branch, which is not available from our analytical results.

analytic solution to the next higher order in ε as in Eq. 3.21 (blue with squares), we can
predict the location of the secondary bifurcation where the upper and lower branches
meet. Note, however, that this higher order amplitude equation is not necessarily valid
along the upper branch seen in the numerics, explaining the substantial deviation seen
there. Fig. 4.2(b) shows the evolution of Aamp(t) using ε = −0.001 and two different
values for Q(0). The first value is Q(0) = 0.0028, which is just slightly below the
unstable branch, so we expect our analytic results above (red with circles) to be close
to the numerical results (black). However, the second Q(0) is 0.0032, which is slightly
above the unstable branch, so our results above cannot be used. Instead, we compare
with the higher order analytic result (blue with squares), and find reasonably good
agreement until t ≈ 800. After this time the validity of Eq. 3.21 is clearly lost, as the
true solution exhibits oscillatory behavior before settling down to the steady state,
something our amplitude equation could not predict.

4.2. 2D, radially symmetric. In this geometry, D is r ∈ [0, β1,1/k∗]. Fur-
thermore, we have chosen a convention whereby bump solutions are shown with a
positive Aamp value, while ring solutions are shown with a negative one. Simulations
use ηk2

∗ = 0.2 (η = 0.01 and k∗ = 2
√

5), and the results are shown in Fig. 4.3. In
Fig. 4.3(a), we see our bifurcation diagram for this geometry, which exhibits a trans-
critical bifurcation near the origin (black) that matches the theory (red with circles)
well at small |ε|. However, the numerics also display a large amplitude, stable bump
solution that our theory does not predict. Unlike the subcritical 1D case above, we
do not extend to higher order approximations here. This large amplitude branch in-
dicates that both the bump and ring steady state solutions are stable and available
at positive ε values, with the bump also being available in both a stable and unstable
form over some range of negative ε values. Fig. 4.3(b) shows the evolution of both
the numeric (black) and analytic (red with circles) Aamp(t) using |ε| = 0.01 and three
different values for Q(0). The first and lowest value is a ring with Q(0) = −0.01 (and
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Fig. 4.4. Fully 2D, square system with ηk2
∗ = 1/

√
2. In (a) is a bifurcation diagram for the

system where dashed lines represent unstable branches and solid lines are stable branches; numerical
results are in black and analytic results in red (with circles). We find good agreement for the smallest
ε values. In (b) are plots of the numeric (black) and analytic (red with circles) solutions for Aamp(t)
with ε = 10−6 and Q(0) = 10−3; there is very good agreement here.
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Fig. 4.5. Fully 2D, square system with ηk2
∗ = 0.2. In (a) is a bifurcation diagram for the system

where dashed lines represent unstable branches and solid lines are stable branches; numerical results
are in black, analytic results in red (with circles). There is good agreement between the numerical
and analytic solution for smaller ε values along the unstable branch, but the actual solution also
displays a large amplitude, stable branch. In (b) are plots of the numeric (black) and analytic (red
with circles) solutions for Aamp(t) with ε = −0.001 and varying Q(0); the dashed line represents the
analytic steady state value for this ε. The lower line corresponds to Q(0) = 0.025, and there is good
agreement here between the two. The upper line corresponds to Q(0) = 0.027, and the solution in
this case rapidly grows to the large amplitude steady state.

positive ε), which compares well with the analytic results. The second, intermediate
value is a bump with Q(0) = 0.3 (and negative ε), which is just slightly below the
unstable branch, so we expect our analytic result above to work reasonably well in
this case, and it does. However, the final value is a bump with Q(0) = 0.036 (and
negative ε), which is slightly above the unstable branch, so our analytic results above
cannot be used. Numerically, though, we see that the solution grows until it reaches
the stable, large amplitude branch.

4.3. Fully 2D.

4.3.1. Squares. In this geometry, D is x ∈ [0, π/k∗], y ∈ [0, π/k∗]. The first
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Fig. 4.6. Fully 2D, hexagonal system with ηk2
∗ = 0.2. In (a) is a bifurcation diagram for the

system where dashed lines represent unstable branches and solid lines are stable branches; numerical
results are in black and analytic results in red (with circles). We find good agreement between the two
for smaller ε values, though the numerics display both a large amplitude stable branch and secondary
instabilities along the ring solution that the analytic solution does not. In (b) are plots of the numeric
(black lines) and analytic (red with circles) solutions for Aamp(t) with |ε| = 0.001 and varying Q(0).
The horizontal dashed line indicates the analytical unstable steady state for ε < 0. The lower line
corresponds to Q(0) = −1.25 × 10−4, ε > 0, with good agreement until t ≈ 2500 (the ring solution
is a saddle point in this geometry). The middle line corresponds to Q(0) = 6.125× 10−3, ε < 0 and
the agreement is relatively good in this case. The upper line corresponds to Q(0) = 6.375 × 10−3,
ε < 0, which is above the unstable branch, so it grows to the large amplitude stable branch.

case illustrated is a supercritical system, in which ηk2
∗ = 1/

√
2 > 0.7 (η = 0.01 and

k∗ = 10/21/4). The two plots in Fig. 4.4 summarize the results here. Figure 4.4(a)
shows the bifurcation diagram for this system at very small ε values, and we find
there is good agreement at the smallest ε values. Figure 4.4(b) plots the analytic and
numerical solutions for Aamp(t) using ε = 10−6 and Q(0) = 10−3; there is very good
agreement here, as ε is very small in this case.

The next case is a subcritical system, in which ηk2
∗ = 0.2 (η = 0.01 and k∗ = 2

√
5),

with the results shown in Fig. 4.5. Referring to Fig. 4.5(a), the numerical solution
(black) displays the small amplitude, unstable branch predicted by the theory above,
and the numerics match the theory (red with circles) well at small ε. However, there is
also a stable, large amplitude branch in the bifurcation diagram that is not predicted
by the theory, but which is similar to that seen in cases above. Fig. 4.5(b) shows
the evolution of Aamp(t) using ε = −0.001 and two different values for Q(0). The
first value is Q(0) = 0.025, which is just slightly below the unstable branch, so we
expect our analytic results above (red with circles) to be close to the numerical results
(black), and they are. However, the second Q(0) is 0.027, which is slightly above the
unstable branch, so our analytic results cannot be used; we find here that the system
rapidly approaches the large amplitude steady state seen in the bifurcation diagram.

4.3.2. Hexagons. In this geometry, D is x ∈ [0, 2π/k∗], y ∈ [0, 2π/
√

3k∗]. As in
the radially symmetric geometry, we have chosen a convention whereby bump solutions
are shown with a positive Aamp value, while ring solutions are shown with a negative
one. Simulations use ηk2

∗ = 0.2 (η = 0.01 and k∗ = 2
√

5), and the results are shown
in Fig. 4.6. In Fig. 4.6(a), we see our bifurcation diagram for this geometry, which
exhibits a transcritical bifurcation near the origin (black) that matches the theory (red
with circles) well at small |ε|. However, the numerics display both a large amplitude
stable bump solution and secondary bifurcations along the ring branch that our theory
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above cannot predict. As in the radially symmetric case, the large amplitude branch
indicates that the bump solution is stable and available at all positive ε values, in
addition to some range of negative ε values. The ring branch follows an interesting
series of secondary bifurcations as ε varies: the ring first breaks up into separate
spots that grow in amplitude, the spots then begin moving toward each other to form
a rectangle, and the spots of the rectangle eventually merge into the roll solution (the
final continuous portion displayed for this branch is in fact just the roll solution). Of
course, all of these solutions are unstable, and therefore unlikely to be observed as
steady states in any dynamical simulation.

Fig. 4.6(b) shows the evolution of both the numeric (black) and analytic (red with
circles) Aamp(t) using |ε| = 10−3 and three different values for Q(0). The first and
lowest value is a ring with Q(0) = −1.25 × 10−4 (and positive ε), which compares
well with the analytic results until t ≈ 2500. Due to the saddle point nature of
the ring, the numerics eventually begin to diverge from the analytic solution, and
end up at the large amplitude, stable state (albeit shifted from the standard bump
solution due to the initial conditions). The second, intermediate value is a bump with
Q(0) = 6.125×10−3 (and negative ε), which is just slightly below the unstable branch,
so we expect our analytic result above to work reasonably well in this case, and it
does. However, the final value is a bump with Q(0) = 6.375× 10−3 (and negative ε),
which is slightly above the unstable branch, so our analytic results above cannot be
used. Numerically, though, we see that the solution grows until it reaches the stable,
large amplitude branch.

5. Hotspot suppression. Now that we know our system may exhibit two quali-
tatively different types of crime hotspots (supercritical and subcritical) it is natural to
question what differences may exist, if any, between the behavior of these two classes
of pattern with regards to hotspot suppression. As mentioned in the introduction,
“hotspot policing” is a law-enforcement strategy whereby more police resources are
focused on areas currently believed to be within a hotspot in an effort to disrupt and
destroy said hotspot. Field studies conducted to test the effectiveness of this strategy
reveal that in some instances the hotspots seem to be destroyed, while in others they
seem to simply be displaced. The 2D analyses we have performed above seem to offer
an explanation as to why these two very different responses to suppression occur (refer
to Figs. 4.3 and 4.6). First, imagine a crime hotspot that exists within a linearly stable
parameter regime (ε < 0); the hotspot is therefore subcritical. If the police presence is
enough to drive the attractiveness of the hotspot below the critical unstable branch of
the bump solution in the bifurcation diagram, the system will tend to naturally drop
down to the homogeneous state once suppression is relaxed, destroying the hotspot
in question utterly. However, imagine now that the hotspot in question exists within
the linearly unstable regime (ε > 0), and is therefore supercritical. Any effort to sup-
press the bump solution will simply lead to the attractiveness being displaced to the
surrounding area, i.e., a ring-like solution. Of course, in a fully 2D system, the ring
solution will not be stable and will break-up into separate spots, leading to a system
that looks similar to the original one, but with the hotspots shifted to nearby regions.
In this case, then, the hotspot policing will have simply lead to a displacement of the
hotspot to nearby areas, rather than its destruction.

The above hypothetical scenarios have been verified in computer simulations of
the radially symmetric 2D continuous system and the full 2D system in both the
continuous and the discrete crime models. To do so, we choose a combination of
parameters that are known to make the homogeneous steady state either linearly
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Fig. 5.1. Suppression in the radially symmetric 2D system with ηk2
∗ = 0.316, κ = 3. The

curves show A(r, t) as it evolves following the suppression that occurs at t = 0, and the horizontal
dashed line represents Acutoff = 1. Shown in (a) is the case ε = 0.4 and the suppression of the bump
drives the system to the ring solution, which persists after suppression is removed. Shown in (b) is
the case ε = −0.02 and the suppression of the bump drives the system to a temporary ring structure
that decays to homogeneity once suppression is removed.

unstable or stable, whichever is desired. Then, we run simulations as described above
in Sec. 4 with initial conditions set to give a bump solution at the origin (considered
to be the center of the field in the fully 2D case). We allow the simulation to run until
a time ts when it seems to have reached a steady state, at which point we begin the
suppression. This is accomplished by first defining an instantaneous damping field
d(x) in the following way

d(x) =
1
2

[1− tanh [κ (A(x, ts)−Acutoff)]] , (5.1)

where κ sets the width of the transition region between total suppression and no sup-
pression and Acutoff sets the attractiveness value above which suppression is desired.
This damping field is meant to represent police presence, which is concentrated al-
most exclusively in the areas of high attractiveness (hotspots). We assume that this
presence has two effects. First, the damping field will reduce the crime rate in areas
where there is a large police presence (d ' 1). Second, the police presence will prevent
burglars from beginning their search in these same areas. Mathematically, then, our
PDE system is modified to

∂A

∂t
= η∇2A−A+A0 + dρA , (5.2)

∂ρ

∂t
= ~∇ ·

[
~∇ρ− 2ρ

A
~∇A
]
− dρA+ d

(
A−A0

)
. (5.3)

Note that this damping field remains unchanged between any two successive ts values.
In other words, the police may remain within an area for some time even after the
crime there has been reduced. This is reasonable in the sense that in the real world,
police do not have instantaneous information about what areas are most attractive,
and must instead rely on where events have occurred in the recent past when deciding
where to allocate resources. Therefore, there is an inherent lag between the informa-
tion possessed by the criminals and that possessed by the police. The typical timescale
for this lag in the real world may be on the order of weeks to months [26], which is
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Fig. 5.2. Suppression results for the fully 2D system with ηk2
∗ = 0.2, ε = −0.05, κ = 5, and

Acutoff = 5.72. The top row are results from the PDE system, while the bottow row are results from

the discrete system with equivalent parameters. These colormaps display high A in red, A in green,
and low A in blue to purple. Shown in (a) is the system configuration right before suppresssion is
first implemented. Soon after implementation, the central hotspot has disappeared entirely, but no
further spots have emerged (b). Eventually the suppression is lifted and the system begins to adopt
the homogenous steady state (c).

enough time for new hotspots to emerge [32, 5]. Of course, this damping method is
only one of many possible choices, some of which are explored in [21]. However, we
suspect that for a large range of damping models, especially those with an appreciable
temporal lag between criminal events and decisions on where police resources should
be allocated, the basic outcomes described here will remain - subcritical spots may
be destroyed, but supercritical spots will simply move.

Results for the radially symmetric case are shown in Fig. 5.1, and the hypothetical
scenarios play out as anticipated. In the supercritical case, suppression of the bump
drives the system to the ring solution, which, due to its stability, remains even after
suppression is relaxed (Fig. 5.1(a)). Suppression of the subcritical bump initially
sends the system to a ring-like state as well, since the suppression by definition will
cause the origin to have very low A values, leaving the outer edge as the only place
for criminal activity to occur. However, once the suppression is removed, the ring’s
instability causes it to decay to the homogeneous state, and the original hotspot is
now destroyed (Fig. 5.1(b)).

Figure 5.2 illustrates the effects of hotspot suppression in a fully 2D, subcritical
system with periodic boundary conditions. Before suppression (Fig. 5.2(a)), we see
that our initial condition has lead to a stable hotspot in the center of the field in
both the continuum and discrete cases, though the discrete case also displays some
quasi-hotspots near the edges of the domain due to random fluctuations that push
the system at least temporarily above the unstable branch . Once suppression is
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(a) (b) (c)

Fig. 5.3. Suppression results for the fully 2D system with ηk2
∗ = 0.2, ε = 0.05, κ = 5, and

Acutoff = 6.12. The top row are results from the PDE system, while the bottow row are results

from the discrete system with equivalent parameters. These colormaps display high A in red, A in
green, and low A in blue to purple. Before suppression is first implemented, the system displays a
number of hotspots (a). Soon after the implementation of suppression the original hotspots vanish,
but the attractiveness of the neighboring regions correspondingly increases, leading to a transient,
ring-like structure that surrounds the location of the original central hotspot (b). By the time the
next suppression time ts has arrived, a new steady state featuring hotspots near the original ones
has been achieved (c).

introduced (Fig. 5.2(b)), the hotspot dies away rather quickly, leaving an area of very
low A in the center where the police presence remains and a faint ring near the domain
edges. Critically, though, we do not see the emergence of new hotspots. Finally, when
the next ts is reached (Fig. 5.2(c)), there is actually no suppression needed since no
hotspots remain, and the “coldspot” in the center returns to the homogeneous value
soon after the police leave the area. As predicted, the suppression was effective in
eradicating the hotspot in the subcritical case.

Figure 5.3 illustrates the effects of hotspot suppression in a fully 2D, supercritical
system with periodic boundary conditions. Before suppression (Fig. 5.3(a)), we see
that our initial condition has lead not only to a hotspot in the center of the field, but
a number of other hotspots have developed near the edge due to the linear instability
of the system. Once suppression is introduced (Fig. 5.3(b)), the original hotspots dis-
appear quickly. However, we see in the continuum case especially that the eradication
of these spots has simply pushed the system into a different non-homogeneous config-
uration, with a temporary ring-like structure surrounding the area where the central
hotspot was located. Finally, by the time the next ts has arrived (Fig. 5.3(c)), the
system has reached a new steady state that exhibits hotspots in areas near where the
original spots were. So, the suppression was ineffective in eradicating the supercritical
hotspots, and merely lead to their displacement.
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6. Conclusions. Through a weakly nonlinear analysis of our coupled PDE sys-
tem (Eqns. 2.4 and 2.5), we have shown that in both the 1D and 2D cases, our
system may exhibit stable hotspots in both the supercritical and subcritical regime.
The existence of the subcritical hotspots offers another mechanism for crime pattern
formation, in addition to the linear instability discussed in our previous work.

Importantly, these distinct hotspot mechanisms may help explain the varying
measures of success that police agencies have when attempting to suppress hotspots.
In the supercritical case, suppression of a hotspot seems to simply displace the spot
to neighboring regions, as the bump solution gives way to the ring solution, which
will either be a new stable state (in the radially symmetric case) or will then break up
into separate bumps (in the fully 2D case); this is illustrated in Figs. 5.1(a) and 5.3.
In the subcritical case, on the other hand, the suppression of the hotspot below the
unstable bump solution branch of the bifurcation diagram (Figs. 4.3 and 4.6) should
destroy it completely, as the only other stable state available in this regime is the
homogenous one; this is illustrated in Figs. 5.1(b) and 5.2.

As a corollary to this argument, we point out that the existence of these large
amplitude branches introduces the possibility of hysteresis into the system. That is,
if the parameters of the system are slowly varying with time (as social or economic
conditions vary, perhaps), what was once a peaceful city (ε < 0, homogenous state)
may experience a sudden burst of crime once the stability threshold is passed (as
ε > 0), rather than the crime slowly increasing as the parameters move further into
the unstable regime (as would happen if the system were supercritical). Once in
this linearly unstable state, police attempts at suppression may only have the effect
of displacing crime hotspots. Furthermore, even if the parameters then change in
such a way that ε begins to decrease, this high level of crime may persist until the
relevant parameters are even lower than when the initial outbreak occurred, though
once the stability threshold is passed (so that ε < 0) police suppression should help
in destroying hotspots.
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