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Abstract

Particle settling in driven viscous films is a complex physical process involving different physical effects. A recent analysis in [1]
identified a balance between hindered settling and shear-induced migration as the dominant large scale physics for particle/liquid
separation. However, experimental data for this has been lacking. This paper presents new data including the role of particle size
and liquid viscosity showing clear agreement with the theory. We discuss the role of timescales in the dynamics of the experiment
and present results from a dynamic model.
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1. Introduction and background

Particle-laden flows in general are important in a variety
of contexts, including environmental, industrial and biologi-
cal ones, where transport and manipulation of suspensions oc-
cur. Specific examples are mud flows, debris flows, slurry
transport, food processing, various coating processes in ce-
ramics and electronics industries, and manufacturing processes
in pharmaceutical and paper industries, where uniformity in
particle distribution is usually required. While many studies
in the literature address gravity-driven clear liquid flows (e.g.
see [2, 3, 4, 5, 6, 7]) and pure granular flows (e.g. [8, 9, 10]),
comparatively fewer studies have centered on particle-laden
thin film flows [1, 11, 12, 13]. Apart from complexities asso-
ciated with moving contact lines, the study of slurries also in-
volves an intricate interplay between particle settling/migration
and viscous fingering mechanisms.

1.1. Settling of particles due to gravity
The settling of particles in quiescent liquids and sedimenta-

tion in suspensions have also garnered significant attention (e.g.
see [14, 15, 16, 17, 18, 19]). For rigid spherical particles, the
well-known Stokes’ Law applies, neglecting inertial effects of
the liquid due to the smallness of Reynolds number. In order
to account for the presence of a large number of identical par-
ticles, the velocity given by Stokes’ Law is typically modified
by a purely empirical multiplicative hindrance function which
depends on particle volume fraction, φ. This function, typically
denoted by f (φ), has been a matter of much discussion through
the decades. In [14], a so-called Richardson-Zaki expression
was proposed, where f (φ) ∼ (1 − φ)m, with m ≈ 5.1, and found

to compare favorably with experimental data for moderately di-
lute suspensions. For dilute dispersions, f (φ) ∼ (1 − 6.55φ)
was suggested in [15]. Other, more complex expressions for
f (φ) were discussed in [16, 17, 18] and [19]. In the presence of
shear, a hindrance function of form f (φ) ∼ (1 − φ) was shown
to be appropriate in [20].

1.2. Shear-induced migration of particles

Concentrated suspensions of spherical particles have been
shown to behave curiously when subjected to shear. This phe-
nomena was first detected in experiments with Couette vis-
cometer, where unusual decrease in measured viscosity oc-
curred during prolonged shearing. The theoretical framework
for this phenomena was laid out in [21, 22] and subsequently
rephrased in [23]. Its key element was shear-induced migra-
tion, a diffusive mechanism resulting from gradients in both
particle volume fraction and suspension viscosity, µ(φ). Net
fluxes caused by these gradients were deduced by considering
irreversible interactions between pairs of smooth spherical par-
ticles (for details, see [22]). In [23], the predictions of this
model were shown to be in excellent agreement with experi-
mental data for Couette flows, and the use of the model was also
extended to flows of concentrated suspensions through cylindri-
cal tubes. Recently, the model was employed in [24] to carry
out numerical simulations for suspension flows in more com-
plex geometries. Other studies, focusing on migration of parti-
cles in pressure-driven channel flows [25], steady and unsteady
flows in various geometries [26], and inclined free-surface
channel flows [27], were carried out using a different approach,
inspired by Stokesian Dynamics. In particular, in [25] and [26],
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the coupling between particle mass and momentum conserva-
tion was analyzed, whereby particles migrated due to the re-
quirements of the momentum balance when normal forcing is
exerted by neighboring particles. We note that, at least for the
set-up we consider here, the migration flux resulting from this
alternate approach turns out to be similar to the one based on
the diffusive mechanism.

1.3. Particle-laden thin film flows

More recent studies addressed particle-laden thin film flows
with contact lines. Zhou et. al [11] reported on their prelim-
inary experimental results for incline flows of suspensions of
polydisperse glass beads with diameter ∼ O(100µm), focusing
on a single bead size. As they varied the bulk particle vol-
ume fraction, φ0, and the inclination angle, α, they identified
three distinct settling regimes: for small φ0 and α values, the
particles would settle out of the flow, clear liquid film would
flow over the particulate bed and the fingering instability re-
sulted; for large values of φ0 and α, the particles would move
faster than the liquid, leading to aggregation of particles in the
contact line region, formation of particle-rich ridge, and almost
complete suppression of the fingering instability; finally, inter-
mediate values of these parameters would lead to a well-mixed
regime in which fingering instability occurred. A theoretical
model was also derived in [11], based on the Navier-Stokes
equations for the liquid and a diffusive model for particle vol-
ume fraction, including capillary effects and hindered settling.
A simplified version of this model, which neglected higher or-
der capillary terms was studied in a shock dynamics framework
in [11] and [12]. Although successful in explaining qualita-
tively the formation of the particle-rich ridge, they did not pro-
vide a quantitative model nor did they ever attempt to model
the other regimes. In an effort to improve understanding of
these regimes, Cook [1] included shear-induced migration in
his model. He assumed that the outcome of particle settling
is guided by the balance between shear-induced migration and
hindered settling. Through his steady state formulation, he de-
rived a system of ODEs for φ and shear stress, σ. However, this
model did not include a hindrance effect due to the presence of
the solid track. Furthermore, while he found good agreement
between model’s predictions regarding well-mixed regime and
the experimental data, the data itself was from [11] – old, pre-
liminary and rather limited. Additional work in [13] focused on
studying the propagation of contact lines in particle-laden thin
film flows experimentally. We note that this work only focused
on the well-mixed and particle ridge regimes and did not focus
on the transitions studied by Cook [1], but rather on the dynam-
ics of the front. Apart from varying φ0 and α, particle size and
density, and liquid viscosity were all varied in order to examine
their influence on the front speed. It was found that the depen-
dence of the front position on time was of power-law type, with
exponents similar to 1/3 proposed in [2].

1.4. The objectives

The two papers discussed at the end of the last section,
namely [1] and [13], suggest key important points for further

study. Cook’s paper [1] suggests that the balance between
shear-induced migration and particle settling may be important
in understanding a broad range of dynamics of particle laden
flows. However, given the lack of experimental data in that
paper, more detailed experiments are needed showing the role
of particle size and fluid viscosity on the settling behavior, to
better understand the importance of this physical balance. In
this work we carry out a systematic experimental study of set-
tling regimes over a range of particle sizes and liquid viscosi-
ties. Through comparison between our experimental results and
the predictions of equilibrium theory, we uncover the transient
nature of the well-mixed regime, where bifurcation to either of
the remaining regimes eventually occurs. In addition, our ex-
perimental results clearly indicate how the particle size and the
liquid viscosity affect the timescale on which we observe this
transient regime. These results point towards a new dynamic
model that might better explain some of the departures from
clear fluid behavior observed in the experiments by Ward et.
al. [13]. We discuss a possible way to incorporate this physics
into a dynamic continuum model and discuss mathematical is-
sues associated with this model.

In contrast to the preliminary experimental results from [11],
which included only a few experiments with a single parti-
cle/silicon oil combination, we perform thorough experiments
with three different particle sizes and two different liquid types,
and vary φ0 and α over wide ranges of values, in order to study
the influence of these two material parameters on the settling
regime. The liquid viscosity and the particle size are found to
affect the width of the region in (φ0, α)-space over which the
transition between settled and ridged regimes occurs. There-
fore, we show that these parameters dictate both the likelihood
of observing the well-mixed regime for given φ0 and α values,
and the timescale over which the well-mixed suspension is pre-
served. We also present an argument based on a competition be-
tween two relevant times scales which qualitatively explains the
connection between particle size and the well-mixed regime.
This role of particle size has not been documented in the lit-
erature. Next, we derive a theoretical model. We consider the
steady state of the system where hindered settling balances the
shear-induced migration of particles. Our modeling approach
is similar to the one in [1], with one difference: we also in-
clude the hinderance to settling due to the presence of the solid
track. We show excellent agreement between model’s predic-
tions and our experimental results over all ranges of viscosi-
ties and particle sizes. Furthermore, we show how the results
of numerical simulations of our model provide additional evi-
dence for transiency of well-mixed regime. The experimental
data shows a clear dependence of the different flow regimes on
particle size. Most notably, the well-mixed regime occurs over
a wider range of inclination angles and particle concentrations
for smaller sized particles. We explain this by examining the
respective timescales associated with the motion of the front
on the track versus the timescale of particle settling. Dimen-
sional analysis of these timescales provides a good qualitative
understanding of this behavior. Finally, we derive a dynamic
model inspired by the flux balance from the equilibrium the-
ory. We show preliminary numerical simulations that exhibit
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Figure 1: The experimental apparatus.

the same dynamic behavior observed in the experiment. We
discuss interesting findings regarding conditional hyperbolicity
of the resulting system.

This paper is organized as follows. In §2 we describe our ex-
perimental set-up, list material parameters and identify the tech-
niques employed in collecting data. This is followed by a dis-
cussion of our experimental results in §3, and the outline of the
derivation of the equilibrium model in §4. Also in §4, we com-
pare the predictions of the model with the experimental results.
In §5 we present a dimensional analysis of relevant timescales
and compare theoterical predictions of these timescales with
the experimental data, in particular the dependence of the well-
mixed regime on particle size. Next, we discuss a possible dy-
namic model for particle-laden thin film flows in §6. Finally, we
summarize our findings and discuss challenges in going from
equilibrium to full dynamic theory in §7.

2. Experimental apparatus and techniques

Figure 1 shows the experimental apparatus we use. It con-
sists of a steel base platform and an acrylic track, with ad-
justable inclination angle, α (range: 5◦ - 80◦). The track is
0.9 m long and 0.14 m wide, with 0.02 m side walls. A liq-
uid/particle mixture prepared beforehand is poured into the
reservoir situated at the top of the track (reservoir dimensions:
height × width × length = 0.04 × 0.14 × 0.1 m) and the gate
is lifted, allowing it to flow down the track, with the contact
line initially straight. Here, we only focus on experiments with
finite, constant suspension volume. The evolution of the flow
is monitored using a digital camera, which is positioned above
the track and captures images of the moving front at predeter-
mined time intervals, typically 0.25 − 4 s. Using this setup, we
are able to monitor the film motion, starting from release, until
the front has reached approximately 0.6 m down the track (few
additional images of the flow are taken just before the contact
line reaches the lower end of the track). Several fluorescent

ν (m2/s) ρl (kg/m3) ρp (kg/m3) d (mm)
L1 10−4 966 – –
L2 10−3 971 – –
P1 – – 2475 0.143
P2 – – 2475 0.337
P3 – – 2475 0.625

Table 1: Physical properties of liquids and particles used in the experiments.

P1 P2 P3
L1 Experiment C Experiments A,C –
L2 Experiment B Experiments A,B Experiment B

Table 2: Different liquid/particle combinations we consider. We study the man-
ner in which viscosity of suspending liquid (Experiment A) or particle size
(Experiments B and C) affects the settling regime.

lights are placed below the track for imaging purposes, while
food-coloring dye is employed to enhance contrast. Images are
subsequently analyzed, and each experimental run is classified,
based on observed settling regime, as either ‘settled’, ‘well-
mixed’ or ‘ridged’ (see §3 for details).

Our experiments involve three different particle types and
two different liquids. The particles are smooth spherical glass
beads (Ceroglass), and we consider three different diameters:
d = 0.143 mm (‘P1’), 0.337 mm (‘P2’), and 0.625 mm (‘P3’).
The standard deviation of particle diameters is 26% for all par-
ticle sizes. For suspending liquid, we use polydimethylsilox-
ane (PDMS) (AlfaAesar) in two different kinematic viscosities:
ν = 10−4 m2/s (‘L1’) and 10−3 m2/s (‘L2’). The particles are
heavy, i.e. ρp > ρl for all particle and liquid types, where ρp

and ρl are particle and liquid densities respectively. Relevant
material parameters are summarized in Table 1.

Suspensions are prepared by first weighing the particles and
PDMS individually, pouring PDMS into a container, and then
adding particles; slow manual stirring is used until uniform
mixture is obtained. This procedure prevents formation of air
bubbles. Typically, no haste is required between the preparation
of suspension and its release down the track since uniformity
of the mixture is preserved for sufficiently long time-intervals.
The settling which occurs in the sample before it is released is
negligible. The bulk volume fraction of particles, φ0, is defined
as φ0 = Vp/V , where V = Vl + Vp is the total volume of the
mixture, and Vl and Vp are liquid and particles volumes respec-
tively. Here, we focus on V between 75 ml and 103 ml.

The experiments are carried out in open air and at room tem-
perature (298 K), maintained by the air-conditioning unit. The
fluorescent lights we use for imaging purposes radiate heat, but
the amount is insufficient to affect either viscosity of liquid,
flow dynamics, or observed particle behavior in any significant
manner. The track, gate and reservoir are cleaned after each
experimental run using a squeegee to remove the excess partic-
ulate and dust which may accumulate. Although this cleaning
procedure does not remove PDMS entirely, it ensures repro-
ducibility of our experimental results.
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Figure 2: The settling regimes: a) settled; b) well-mixed; and c) ridged. The fingering instability typical to clear liquid flows is only observed in settled and
well-mixed regimes.

We carry out three different sets of experiments, conveniently
summarized in Table 2. In all experiments, we vary φ0 between
0.25 and 0.50, and α between 20◦ and 50◦. In Experiment A, we
consider medium-sized particles, P2, and both PDMS types in
order to study the influence of the viscosity of suspending liquid
on the settling regime. Experiments B and C focus on studying
the influence of particle size, by fixing the liquid type (L2 in B
and L1 in C) and varying the particle size. When L1 PDMS and
P3 particles are used, rapid settling occurs. Regardless of our
best efforts, significant fraction of particles often settles to the
bottom of the reservoir before suspension is ever released down
the track. Hence, we omit experiments with this mixture.

3. Experimental results

In all experiments, the observed flows are relatively slow. In
addition, settling behavior can only be classified after an ini-
tial transient stage which typically lasts up to 900 s. The set-
tling regimes observed in our experiments resemble the ones
discussed in [11]: each experimental run is labeled as either set-
tled, well-mixed, or ridged. Typical examples of these regimes
are shown in Fig. 2. In general, these three regimes occur in
each experimental set, A, B and C (an exception is discussed
below).

In settled regime, the particles tend to quickly settle out of the
flow, forming a particulate bed, with the suspending liquid mov-
ing down the track faster than particles. Virtually clear liquid
film ultimately leaves the particulate bed far behind and devel-
ops the fingering instability as described in [2]. The particulate
bed moves down the incline slowly until the end of the exper-
iment, its front remaining stable. Typically, this regime occurs
for small values of φ0 and α. In contrast, when φ0 and α are
large, the particles move faster than suspending liquid, they ag-
gregate in the contact line region, forming a particle-rich ridge,
often several times thicker than trailing film. Hence, we refer to
this regime as ridged. The large volume fraction of particles at
the front appears to suppress the fingering instability. We do not

measure the local particle volume fraction in our experiments.
However, we suspect that in this regime its value at the free
surface is close to the maximum packing, but slightly smaller
since we rarely encounter solid-like behavior for the range of
parameters considered here. Intermediate values of φ0 and α
lead to well-mixed regime, where volume fraction of particles
remains almost uniform throughout the film. The fingering in-
stability occurs, but compared to settled regime, it is typically
characterized by longer wavelength.

Initially, as the mixture is released from the reservoir, the ob-
served flow is unsteady. However, as the front moves down the
track, the flow typically becomes fully developed (it reaches
a quasi-steady state where downstream variations are not im-
portant to the leading order). The distance from the release
gate at which this occurs varies depending on the liquid/particle
combination used; in most of our experimental runs this hap-
pens while the front is in the zone where high frequency im-
ages are taken (< 0.6 m down the track); beyond this point
on the track, the unsteady transitions between settling regimes
occur only when lower viscosity PDMS/smaller particles are
used, and only in a few runs the front reached the end of the
track without the flow becoming fully developed (all such runs
are with the lowest viscosity PDMS/smallest particles combi-
nation). Indeed, this observation agrees with the experimental
and numerical results from [27], concerning free-surface chan-
nel flows in the case of density matched particles suspended
in ethanol-based liquids (with the liquid viscosity and particle
size similar to the L2/P1 mixture, and α = 33.5◦). In particular,
based on their results, one expects all our runs to exhibit fully
developed flows before the end of the track is reached, save per-
haps for runs involving L1 and P1 or P2, when φ0 < 0.3. The
flow details of each run are analyzed based on captured images;
the classification of each run (settled, well-mixed, or ridged)
is carried out based on recorded behavior throughout the en-
tire run, with emphasis on the images of the flow as the front
closes in on the end of the track (0.6 m from the release gate
and beyond). For any particular liquid/particle combination,
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Figure 3: Phase diagrams for Experiment A. Particle type is fixed (P2), vis-
cosity of suspending liquid is varied: a) low (L1); and b) high (L2). Symbols
denote regimes observed in experimental runs: circles (�) for settled, triangles
(N) for well-mixed, and diamonds (�) for ridged. The solid curve represents
prediction of the equilibrium model (see §4) for a regime where φ′ = 0 (well-
mixed).

we classify each experimental run and compile the results of
the classification in a corresponding (φ0, α) phase diagram (see
Figs. 3, 4 and 5). These diagrams show distinct bands of settling
behavior. We use color to label these bands: white for settled,
light for well-mixed, and dark for ridged. Boundaries between
different regime bands are determined based on the behavior
recorded in images (i.e., the details of the flow) for each exper-
imental run. Figures 3, 4 and 5 each include a solid black curve
superposed on the experimental results. These curves represent
a well-mixed regime prediction (i.e. φ′ = 0, where φ(z) is parti-
cle volume fraction) of the equilibrium model. The discussion
regarding the model and the agreement between its predictions
and the experimental results is given in §4.

We note that other more complex behavior also occurs. In
some experimental runs, we notice capillary motion of parti-
cles along the side walls or their alignment in linear streaks
along the track. Irregularities in shape and size of fingers, and
extreme cases of ridged regime, where sections of contact line

experience jamming with particles, become solid-like and vir-
tually break off in blocks are also observed. These phenomena
are attributed to either finite width of track and presence of side
walls or complex interplay between particle migration and con-
tact line effects. While very intriguing, we leave detailed study
of such complex behavior for future work, and focus here on
three settling regimes described above.

We proceed by discussing dependence of settling behavior on
viscosity of suspending liquid and particle size by presenting
results of Experiments A, B and C.

3.1. Experiment A: influence of viscosity of suspending liquid
In Experiment A, we consider intermediate size particles, P2,

and both the low and the high viscosity liquid (L1 and L2 re-
spectively). This allows us to study the dependence of observed
settling behavior on PDMS viscosity. Since, based on Stokes’
Law (e.g. see [15]), the settling velocity of particles is inversely
proportional to liquid viscosity, a decrease in PDMS viscosity
should result in enhanced tendency of particles to settle out of
the flow. Figure 3 shows phase diagrams which result for low,
a), and high viscosity, b).

At a first glance, the outcomes appear to be rather similar
for the two liquids, although the band for the settled regime is
somewhat wider in Fig. 3a) compared to b), confirming our ex-
pectations based on the settling time. A closer inspection also
reveals that the well-mixed band is wider when the viscosity of
the suspending liquid is lower (Fig. 3a)). In order to better un-
derstand this difference, we consider the timescales of the mo-
tion of the front and the settling of the particles. For clear liquid
inclined flows, the former timescale is proportional to the vis-
cosity of the liquid, µ (e.g. see [11]). However, for suspensions
µ = µ(φ). For estimation purposes, we may assume uniformity
of the slurry (i.e. well-mixed case), and by using the Krieger-
Dougherty relation, µ(φ) = µl(1 − φ/φmax)−2 as in [28, 29], we
get that this timescale is proportional to µl = ρlν, the viscosity
of the suspending liquid; here, φmax denotes maximum packing
volume fraction. It is now clear that a decrease in the viscosity
of the suspending liquid, with all the other material parame-
ters fixed, leads to a faster propagation of the suspension front.
On the other hand, for purely gravity driven particle settling, the
relevant timescale is viscous and also directly proportional to µl

(see §4) – a decrease in viscosity leads to a faster settling of par-
ticles. Therefore, if gravity were the only mechanism respon-
sible for particle settling, the width of the well-mixed bands in
Fig. 3 would have been independent of the viscosity. The fact
it is not, suggests that some part of the relevant settling dynam-
ics occurs on a timescale other than the viscous one. In §4, we
conjecture that the settling behavior is governed by a balance
between the settling due to gravity and the shear-induced mi-
gration. This balance may lead to a settling which occurs on a
different timescale, introducing a correction to the pure viscous
one. Accordingly, while a decrease in the viscosity clearly af-
fects the motion of the front, it may only have a relatively minor
effect on the settling rate. Hence, due to the finite length of the
track used in the experiments, the suspensions with low viscos-
ity PDMS are likely to run out of track length before the final
state of the system has been achieved. As a result, some runs
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which, given a longer track, would eventually become settled
or ridged, are classified as well-mixed. This argument not only
explains the differences between Figs. 3a) and b), but also gives
a hint regarding the nature of the well-mixed regime: it appears
to be an intermediate transient state of the system that eventu-
ally, given a sufficient time, bifurcates to either the settled or
the ridged regime. The notion of transiency of the well-mixed
regime is discussed in more detail in §5.

3.2. Experiments B and C: influence of particle size

Next, we examine the manner in which particle size affects
the settling regime. For this purpose, we carry out Experiments
B and C, where liquid type is fixed and particle size is varied.

In Experiment B, we consider high viscosity suspending liq-
uid, L2, and all three particle sizes, P1, P2, and P3 (note: exper-
imental runs with L2/P2 combination have already been carried
out in Experiment A). According to Stokes’ Law, the settling
velocity is proportional to d2, and hence, largest particles are
most likely settle out of the flow. Based on this reasoning, the
settled band should be widest for P3. The phase diagrams re-
sulting from Experiment B are shown in Fig. 4.

Compared to Experiment A, the differences between dif-
ferent diagrams are much more pronounced. The speculation
based on Stokes’ Law is again proven correct – compared to
Figs. 4a) and b), the band corresponding to settled regime is
widest in Fig. 4c); it is narrowest for smallest particles in
Fig. 4a). But, the most striking feature here is a complete
absence of well-mixed regime for largest particles in Fig. 4c)
– all considered runs with L2/P3 configuration resulted in ei-
ther settled or ridged behavior. In addition, we notice that the
well-mixed band is significantly wider for smallest particles in
Fig. 4a) compared to intermediate ones in Fig. 4b). Hence, the
trend is obvious: for a fixed liquid viscosity, an increase in par-
ticle size makes the well-mixed outcome less likely. This result
further supports our hypothesis regarding the transient nature
of well-mixed regime. In particular, the diffusive fluxes of par-
ticles due to hindered settling and shear-induced migration are
both proportional to d2 (see §4). Since these are, in our opinion,
the two main mechanisms of particle motion in the system we
study, the smallest particles P1 are moving on a timescale much
longer than larger particles P2 and P3. Consequently, and as
seen in Fig. 4a), many runs involving P1 remain well-mixed for
the duration of the experiment. We suspect that given a longer
track and larger sample volume, majority of these flows would
eventually bifurcate to either settled or ridged regime. On the
other hand, the largest particles P3 move on shorter timescale
compared to both P1 and P2. Therefore, the flows involving
particles P3 quickly bifurcate to either settled or ridged. The
complete absence of well-mixed band in Fig. 4c) serves as an
indicator of just how rapid this process is.

Finally, in Experiment C, we study the influence of parti-
cle size on the settling behavior for low viscosity PDMS, L1.
We focus on small and intermediate size particles, P1 and P2.
As discussed in §2, we do not consider the L1/P3 combina-
tion since particles in all suspensions of that type undergo rapid
settling while still in the reservoir. We also note that the ex-

Figure 4: Phase diagrams for Experiment B. Viscosity of suspending liquid is
fixed (high viscosity, L2), particle size is varied: a) small (P1); b) intermediate
(P2); and c) large (P3). Symbols denote regimes observed in experimental
runs: circles (�) for settled, triangles (N) for well-mixed, and diamonds (�) for
ridged. The solid curve represents prediction of the equilibrium model (see §4)
for a regime where φ′ = 0 (well-mixed).
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perimental runs with the L1/P2 combination have already been
carried out in Experiment A.

The results of Experiment C are shown in Fig. 5. The trend
observed in Experiment B is quite noticeable here too: as the
particle size increases, the uniformity of the suspension is less
likely to be preserved. In particular, the well-mixed band is
significantly wider in Fig. 5a) compared to the one in b). The
explanation for this trend is identical to one for Experiment B.
For small particles, the timescale of particle settling is much
longer than for larger ones; therefore, uniformity of suspension
is likely to be preserved longer for small particles. Furthermore,
a comparison of diagrams in Figs. 3, 4 and 5 reveals that the
well-mixed regime is more likely to occur for L1/P1 than for
any other liquid/particle combination we consider – the well-
mixed band in Fig. 5a) is by far the widest. This is particu-
larly evident when Figs. 4a) and 5a) are compared (small parti-
cle size, high and low viscosity suspending liquid respectively).
The latter comparison also shows that for smallest particles, the
influence of viscosity on both prolonging the transient phase
and making it more likely for wider range of φ0 and α values is
much more pronounced than in Experiment A.

To summarize, Experiments A, B and C show that particle
size particularly affects the settling behavior. It dictates the like-
lihood of occurrence of settled regime and the timescale for the
motion of the particles in general. The viscosity of the suspend-
ing liquid also influences the particle motion, with its influence
increasing as the particle size decreases. The influence of the
particle size and the liquid viscosity on the settling outcome is
a novel effect, which has not been captured in any previous ex-
periments. Furthermore, our experiments provide another novel
result: they reveal the transient nature of the well-mixed regime.
This is evident from the manner in which both particle size and
viscosity of the suspending liquid affect the persistence of the
well-mixed regime. We argue that given a longer track length,
a majority of, if not all, well-mixed flows would bifurcate to
either the settled or the ridged regime.

4. Theoretical model

We consider a continuum model for particle volume fraction,
φ. The dynamics of φ are described by a conservation equation
for particles, written in Eulerian reference frame

Dφ
Dt

= −∇ ·
(
Jbd + Jgrav + Jcoll + Jvisc

)
. (1)

Here t denotes time, and D/Dt = ∂/∂t+v·∇, where v = (u,w); u
and w are components of liquid velocity vector v in x-direction
(down the track) and z-direction (normal to track) respectively.
Equation 1 includes hindered settling (Jgrav), and shear-induced
migration effects (Jcoll and Jvisc). It also includes Brownian dif-
fusive flux, Jbd = −D∇φ. We note that since the Péclet num-
ber corresponding to our problem is large (i.e. Pe = γ̇d2/D ∼
O(103), where γ̇ is magnitude of the local shear rate), hence-
forth we neglect this effect. The viscosity of the suspension is
a function of particle volume fraction, µ = µ(φ). Here, we use
the expression from [28, 29], µ(φ) = µl (1 − φ/φmax)−2, known

Figure 5: Phase diagrams for Experiment C. Viscosity of suspending liquid is
fixed (low viscosity, L1), particle size is varied: a) small (P1) and b) interme-
diate (P2). Symbols denote regimes observed in experimental runs: circles (�)
for settled, triangles (N) for well-mixed, and diamonds (�) for ridged. The
solid curve represents prediction of the equilibrium model (see §4) for a regime
where φ′ = 0 (well-mixed).

as the Krieger-Dougherty equation, where φmax denotes maxi-
mum packing volume fraction, and restricts the meaningful in-
terval of values for φ to

[
0, φmax

]
, with the mixture becoming

almost solid-like as φ −→ φmax. Different values of φmax have
appeared in the literature, usually within the range 0.57-0.68
(e.g. see [1, 13, 17, 19, 20, 22, 23, 26, 27]). We use the proce-
dure described in [13] and obtain φmax ≈ 0.61.

The settling of a particle due to gravity is hindered by the
presence of other particles and the solid track/wall [11]. The
net flux of particles caused by this effect is given by

Jgrav = −
d2φ

(
ρp − ρl

)
18µl

f (φ)ω(z)g. (2)

Here, we use the hindrance function from [20]: f (φ) = µl(1 −
φ)/µ(φ). The presence of a solid track at z = 0 is taken into ac-
count through ω(z) = A (z/d)2 /

√
1 + A2 (z/d)4 [12]; A = 1/18

so that ω(z) −→ 0 as z −→ 0, and ω ≈ 1 away from z = 0. We
use this particular function ω(z) because it is an appropriate ap-
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proximation for hinderance to settling of a single spherical par-
ticle due to the presence of a solid wall (a problem approached
via method of images, see [12] for more details; A is a fitting
parameter in the approximation). The settling model from [1],
which omits this type of hinderance, overestimates the settling
velocity of particles as one nears the solid track, resulting in
settling rates which are not physically realistic. By including
ω(z) in the model, we overcome this shortcoming of the set-
tling model used in [1].

As noted in Introduction, two different approaches may be
used to describe the effect of shear-induced migration. Since
they result in similar expressions for migration flux, for sim-
plicity, we follow the diffusion-based one. Hence, this effect
is included in Eq. 1 through two separate terms, Jcoll and Jvisc.
These terms are defined as in [22] and [23]. The net flux of par-
ticles due to irreversibility of collisions between pairs of parti-
cles is given by

Jcoll = −Kcoll
d2

4

(
φ2∇γ̇ + φγ̇∇φ

)
. (3)

The net flux due to gradients in viscosity, µ(φ), is given as

Jvisc = −Kvisc
d2

4
φ2γ̇

1
µ(φ)

dµ
dφ
∇φ. (4)

Here, Kcoll and Kvisc are proportionality constants determined
from experiments. We follow [23] and use Kcoll = 0.41 and
Kvisc = 0.62.

The fluxes given in Eqs. 2, 3 and 4 are all proportional to
d2, a fact we have employed in §3, in our argument regarding
the influence of particle size on settling behavior of particles. It
is interesting to note that in Eq. 3, the first term in the brack-
ets suggests that even if the particle distribution is uniform (i.e.
∇φ = 0), the migration will occur due to gradients in frequency
of irreversible particle collisions. This migration will then in-
duce gradients in φ and hence, the second term in the brackets
of Eq. 3 is activated.

The governing equation given in 1 is accompanied by bound-
ary conditions (zero normal flux at both z = 0 and z = h, where
h is film thickness) and coupled to Navier-Stokes equations for
liquid with viscosity µ(φ). However, in order to gain insight into
settling behavior of particles, it is sufficient to consider Eq. 1 at
steady state [1]. Formally, we assume that the time scale of
adjustment of φ in the z-direction is rapid. This approach is rea-
sonable for describing settling behavior away from the contact
line region and when the front has moved some distance down
the incline, so that the flow may be assumed to be fully devel-
oped. It is therefore consistent with our experimental regime of
studying the settling behavior. Assuming that the thin film is
flat, the steady state is achieved when fluxes given in Eqs. 2, 3
and 4 balance in the z-direction

Jgrav + Jcoll + Jvisc = 0. (5)

We also assume that the flow is simple and unidirectional, so
that γ̇ = ∂u/∂z. Henceforth, instead of using γ̇, we revert to
shear stress σ = µ(φ)γ̇. By scaling Eq. 5 using H ≈ 1 cm
(typical film thickness) as the length scale in the z-direction and

ρlgH sinα as the scale for σ, and integrating once, we arrive at
the following ODE[

1 +
2 (Kvisc − Kcoll)

Kcoll

φ

φmax − φ

]
σφ′ = −σ′φ −

2ρs cotα
9Kcoll

(1 − φ)
Az2√(

d
H

)4
+ A2z4

, (6)

where ρs = (ρp − ρl)/ρl. The assumption that the thin film
is flat is equivalent to neglecting capillary effects; here, this
assumption is justified since the appropriately defined capil-
lary number is Ca = (ρlgH2 sinα)/(3ς) ≈ 10 (ς is the sur-
face tension of the liquid). Therefore, since the surface ten-
sion effects are neglected, the pressure in the suspension is
hydrostatic, and the (scaled) gradient in shear stress is given
as σ′ = − (1 + ρsφ). The accompanying boundary conditions
result from shear-stress balance at the free surface: σ(0) =

1 + ρsφ0 and σ(1) = 0, where we define φ0 =
∫ 1

0 φdz [1]. In
particular, the boundary condition at z = 1 results directly from
the shear-stress balance, while a simple integration of σ′ listed
above (using the boundary condition at z = 1) yields σ(0). We
note that φ0 is equivalent to the total amount of particles in a
given column of suspension normal to the substrate. Hence,
the boundary condition σ(0) essentially enforces the conserva-
tion of total mass of particles in the column. Combining these
expressions with Eq. 6 yields a system of ODEs and accompa-
nying boundary conditions

φ′ = F(z, φ, σ), σ′ = G(φ), (7a, b)

σ(0) = 1 + ρsφ0, σ(1) = 0, (8a, b)

where

F(z, φ, σ) =
1
σ

[
1 +

2 (Kvisc − Kcoll)
Kcoll

φ

φmax − φ

]−1

×(1 + ρsφ) φ −
2ρs cotα

9Kcoll
(1 − φ)

Az2√(
d
H

)4
+ A2z4

 , (9)

and

G(φ) = − (1 + ρsφ) . (10)

This system may be solved numerically for φ(z) and σ(z). In
order to include regions of clear liquid or packed particles,
we use F(z, φ, σ) = 0 instead of Eq. 9 whenever φ(z) = 0 or
φ(z) = φmax. The numerical solutions are discussed below. We
also note that an identical system of equations for φ(z) and σ(z)
may be obtained directly from Eq. 1, by employing scaling ar-
guments typical to thin film flows, and considering a flat film
(see Appendix for details).

The system of equations for φ(z) andσ(z) given by Eqs. 7 and
8 is solved numerically via a shooting method. The shooting is
carried out from z = 0, using σ(0) given by Eq. 8a) and adjust-
ing φ(0) so that the numerical solution satisfies the boundary
condition at z = 1, i.e., Eq. 8b). Since ∂u/∂z = σ(z)/µ(φ(z)),
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Figure 6: Numerical solution for φ0 = 0.250 and α = 15◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φmax > φ(0) > φ0 and φ(1) = 0.
This corresponds to the settled regime.

once φ(z) and σ(z) are known, u(z) is readily found, by sim-
ply integrating once and using the no-slip boundary condition,
u(0) = 0.

As previously noted in [1], when the wall-effect is neglected,
due to the fact that σ is non-negative, φ is a monotonic func-
tion of z. This is because in such case F = σF(z, φ, σ), where
F(z, φ, σ) is given by Eq. 9 with Az2/

√
(d/H)4 + A2z4 = 1, is a

function of φ only, with a single unstable root φ̄(α) in the inter-
val (0, φmax). Hence, either φmax > φ(0) > φ0 and φ(1) = 0, or
φ(0) < φ0 and φ(1) = φmax, corresponding to experimentally
observed settled and ridged regimes respectively. The well-
mixed regime occurs when φ′ = 0 and φ(z) = φ0 = φ̄ for
0 < z < 1. Setting φ′ = 0, φ = φ0 in Eq. 9 allows us to
obtain an expression for the inclination angle corresponding to
the well-mixed regime, αwm, in terms of φ0

αwm = tan−1
[

2ρs

9Kcoll

1 − φ0

(1 + ρsφ0) φ0

]
. (11)

When the wall-effect is included, similar conclusions may be
drawn based on the analysis of Eq. 9, and the settled and ridged
regimes are recovered again. The well-mixed state is again un-
stable just like in the model without the wall-effect. However,
the equivalent of Eq. 11 may not be written in closed form;
the curve αwm(φ0) = α(φ̄) is obtained numerically by seek-
ing (φ0, α) pairs which lead to the transition between settled
and ridged outcomes when solving Eqs. 7 and 8. The resulting
curves are shown as solid lines compared with the experimental
results in the phase diagrams of Figs. 3, 4 and 5. The profiles
for φ(z) and u(z) obtained by numerically solving Eqs. 7-8 us-
ing several representative (φ0, α) pairs are shown in Figs. 6, 7
and 8.

Figure 6 shows the profiles for (φ0, α) = (0.250, 15◦), corre-
sponding to the settled regime in all phase diagrams in Figs. 3, 4
and 5. From Fig. 6a) it is evident this is the scenario where
φmax > φ(0) > φ0 and φ(1) = 0. Most of the particles are
in z ≤ 0.5, after which φ decreases rapidly. Effectively, the
particle-rich lower layer is covered by a less viscous clear liquid
layer. Furthermore, in Fig. 6b), the velocity increases sharply
for z > 0.5, causing clear liquid layer to flow faster than the
particle-rich one. This is equivalent to the regime seen in Fig-
ure 2a) in which particles settled to the substrate and clear liq-
uid continues down the track. In this case, the prediction of our
model agrees well with the experimental results.
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Figure 7: Numerical solution for φ0 = 0.475 and α = 45◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φ(0) < φ0 and φ(1) = φmax. This
corresponds to the ridged regime.
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Figure 8: Numerical solution for φ0 = 0.310 and α = 45◦: (a) particle volume
fraction, φ(z); and (b) velocity, u(z). Note that φmax > φ(0) > φ0 and φ(1) = 0
still apply.

In Fig. 7, the profiles for φ and u resulting from (φ0, α) =

(0.475, 45◦) are given. We note that in all our experiments with
these values of φ0 and α, the ridged regime occurs (see Figs. 3, 4
and 5). Figure 7a) shows, in contrast to Fig. 6a), that φ(0) < φ0
and φ(1) = φmax. Therefore, particles aggregate close to the
free surface of the film, and according to Fig. 7b), flow faster
than the more dilute lower layer. This behavior is typical in the
ridged regime observed in experiments and the model predic-
tions are again in good agreement with our experimental results.

Finally, for (φ0, α) = (0.310, 45◦), the resulting φ and u pro-
files are given in Fig. 8. With the exception of experiments with
the largest particles (see Fig. 4c)), this combination of φ0 and
α values leads to a well-mixed regime. From Fig. 8a), we see
that for most of the film thickness, the particles are uniformly
distributed. However, a close inspection reveals that this case
still belongs to the category of solutions to Eqs. 7 and 8 where
φmax > φ(0) > φ0 and φ(1) = 0, namely the settled regime. In
addition, Fig. 8b) indicates that the very thin layer of clear liq-
uid at the free surface still flows faster than the particle-laden
layer below it. While our model is a steady state one, one could
clearly see how in a dynamic setting the situation shown in
Fig. 8 eventually leads to a settled regime, with the top layer
of clear liquid becoming ever thicker and flowing ever faster as
the system evolves.

Next, we examine the agreement between the numerically
obtained αwm(φ0) curve and the experimental results. We note
that, apart from the inclusion of the hindrance due to the pres-
ence of a solid track in our model, another important difference
between this study and the one in [1] is that we compare the
predictions of our model to the results of much more extensive
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experiments, involving several different liquid/particle combi-
nations. For this purpose, we go back to Figs. 3, 4 and 5. In all
diagrams, except the one in Fig. 4c), the curve lies completely
within the well-mixed band, in excellent agreement with the
experimental results. For largest particles in Fig. 4c), the well-
mixed regime does not occur; however, the curve overlaps a
large section of the border between settled and ridged bands
marking the transition between these two regimes. This again
hints at the transiency of the well-mixed regime. We already
noted that the structure of Eqs. 7 and 8 indicates that the well-
mixed regime is an unstable root of the system. Even if φ0 and α
values are adjusted to lie exactly on the well-mixed curve, even
smallest perturbations eventually cause bifurcation to either set-
tled or ridged regime. The strongest evidence for this argument
is given by Fig. 4c), where relevant settling timescales are short
enough so that bifurcation occurs rapidly and the well-mixed
band simply collapses onto a well-mixed curve. Other phase
diagrams in Figs. 3, 4 and 5 are also in line with our argu-
ment, only the timescales at which the bifurcation occurs are
much longer compared to the one in Fig. 4c), leading to ob-
servable well-mixed regime. A sufficiently long experimental
track would allow for bifurcation to occur, resulting in eventual
collapse of all well-mixed bands in Figs. 3, 4 and 5.

Finally, it is worthwhile to emphasize that the presented
model is a steady state one, while the behavior shown e.g., in
Fig. 2a), where a clear film leaves a particle rich sediment be-
hind and develops fingers, is clearly a dynamic process, which
could only be captured by a more complete dynamic model.
Consequently, the details of the transition between well-mixed
and either of the two other regimes for a given liquid/particle
combination may be captured with an inclusion of additional
non-equilibrium effects. However, the settling behavior, which
our simple model correctly predicts, is the most crucial ingre-
dient, as it truly sets the stage for more complex dynamic pro-
cesses. Therefore, this equilibrium model should be considered
as one of the main components of any fully dynamic model.

5. Comparison of timescales

In this section we present an analysis of two relevant
timescales in the dynamics – namely the timescale of the bulk
flow and the timescale of settling to the substrate. The exper-
imental data from the previous sections shows a pronounced
‘transient’ well-mixed regime in which the particles neither set-
tle to the substrate nor towards the front of the flow on the
timescale of the experiment. Fig. 4 shows that size of this
regime (denoted by the light grey shaded area) depends dra-
matically on particle size – for the very small particles, Fig. 4
a), this is a large portion of the phase diagram, whereas for the
largest particles, Fig. 4 c), we observe no transient regime. It is
possible to develop some analysis of this problem based on sim-
ple timescales of the physics in the problem. We focus on the
most dramatic changes in the data with respect to particle size
- namely the shifting of the boundary between the well-mixed
(light grey) and settled (white) regions, relative to the theoreti-
cal equilibrium prediction shown as a solid dark curve. We de-
fine two timescales for the problem: one for front motion down

the incline, denoted by T f , and a timescale Tp on which parti-
cles settle towards the solid substrate. Both timescales involve
bulk properties of the flow, although the T f is largely insensitive
to particle size, while Tp depends significantly on particle size.
To accurately estimate these timescales we need to understand
delicate details of the physics for this dynamic process, some of
which is still not well understood. Nevertheless we show that
with some basic scaling properties of the system we can gain
some understanding of the experimental data presented here.

Naively, one might consider T f ∼ L3ν/(A2g sinα) as used
for clear liquid thin film flows [2], where A is the cross-
sectional area of the flow, and Tp ∼ Hν/(d2g cosα) based on
the Stokes law. However, this approach oversimplifies the anal-
ysis. In fact, it contradicts the results in §3, which clearly in-
dicate that settling due to gravity on its own is not sufficient
to explain the experimental observations. Hence, we pursue a
different route.

The timescale T f is discussed in detail in the experimental
paper [13] which considers the same experimental setup but
focuses primarily on the well-mixed regime and the dynam-
ics of the flow. In particular, based on the work for clear thin
films in [2], in [13] it was argued that the dimensional quan-
tity CN = t/X3

N , where t is time and XN is front position, is
constant in time for particle-laden thin films as well, at least
when φ0 ≤ 0.45 and α ≤ 55◦. This was shown by measuring
CN for various experimental configurations, using suspension
volumes similar to those in our experiments. Here, it is ap-
propriate to use their CN data for L2/P1 configuration. Hence,
our focus will be on the results in Figs. 4a) and b). More pre-
cisely, Huppert [2] derives the formula for a clear liquid from
an exact similarity solution in which the position of the front is
X(t) = (9A2g sinα/4ν)1/3t1/3. Ward et al. [13] argue that for a
range of parameters this same model holds with ν replaced by
the effective viscosity of the mixture which depends on the bulk
particle volume fraction. The data from [13] actually has quite
good agreement with the model of Van Der Werff et al. [28]
and Brady [29], µ(φ) = µL(1 − φ0/φmax)−2, also known as the
Krieger-Dougherty model. Based on the discussion so far, and
noting that ρ ∝ (1 + ρsφ0), for a well-mixed thin film flowing
down the incline we consider

T f =
C f

(1 − φ0/φmax)2(1 + ρsφ0) sinα
. (12)

Here, the terms (1 − φ0/φmax)−2 and (1 + ρsφ0)−1 appropriately
include the dependence of T f on the bulk particle volume frac-
tion (via appropriate dependence on the suspension viscosity
and density respectively); also ρs = (ρp − ρl)/ρl ≈ 1.5489 and
φmax = 0.61. The ‘mobility’ constant is C f = CN L3, where
L = 0.9 m is the length of the solid substrate; based on data
from [13], C f ≈ 1000 s.

As for Tp, rather than trying to understand the details of the
dynamics of the fluxes, we write the simplest model that in-
cludes the following three effects:

1. The dependence of Tp on particle size. It must scale as
d−2 because this scaling is present in both shear-induced
migration and hindered settling.
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2. The dependence of the settling time on bulk viscosity, as it
depends on the bulk particle volume fraction.

3. The fact that for fixed values of φ0, Tp −→ ∞ as α −→ αwm

because the particles do not settle if the hindered settling
and shear-induced migration fluxes are in perfect balance.

This gives the following general model for Tp

Tp =
Cp

d2(1 − φ0/φmax)2(1 + ρsφ0)
[cos(α+π/2−αwm)]−k,(13)

where k and Cp are positive constants. For simplicity we take
k = 1. The proportionally constant Cp is estimated from the ex-
perimental data – so that Tp = T f at the boundary between well-
mixed and settled regions, e.g., in Fig. 4a) for φ0 = 0.37; this
gives Cp ≈ 0.136 · 10−4m2s. We also note that for parameters
near the well-mixed curve αwm, Tp � T f , because Tp −→ ∞ as
one approaches αwm. Next, in the well-mixed region, Tp > T f ,
while Tp ≈ T f on the boundary with the settled regime. Finally,
below the well-mixed region, we have that Tp < T f .

Next we compare these timescales across different sets of ex-
periments. For fixed values of φ0, we consider T f and Tp as
functions of α, such that α < αwm. The influence of the par-
ticle size d on the position of the intersection between T f (α)
and Tp(α) is studied and the results are compared to experi-
mental data in Figs. 4a) and b). We carry out this comparison
for several different values of φ0 for which we have detailed ex-
perimental data in Fig. 4, namely φ0 = 0.31, 0.37 and 0.425
(second, third and fourth column of data from the left). The
results are given in Fig. 9. For all considered values of φ0, the
intersection between T f and Tp is an excellent indicator of the
transition between settled and well-mixed regime for small par-
ticles P1. For medium size particles P2, the position of the inter-
section slightly overestimates the shrinking of the well-mixed
region observed in experiments; nevertheless, the trend we see
in Fig. 9 for P1 and P2 is consistent with our experimental data.
These results further supports the notion of transiency of the
well-mixed regime. The discussion in this section has focused
on the transition from the well-mixed to settled regimes. We
also note that there is a transition from the well-mixed regime
to the particle-rich ridge. The latter is much less pronounced
than the former, although it is visible in the data. A similar
analysis could be performed to explain this transition as well.

6. Dynamic model

In §4, we show that the predictions of the equilibrium model
agree well with the experimental data regarding different set-
tling regimes. Here, we introduce a dynamic model which is
motivated by the results of our equilibrium theory and lubri-
cation models for clear liquid films. For lubrication models
of clear liquids, to leading order the velocity profile in the z-
direction is described by an equilibrium parabolic profile. Thus
it is natural to consider a similar model for the particle-laden
flow problem in which we assume an equilibrium profile in the
z-direction given by a solution of the equilibrum equations (7-
10). That is, given h and φ0 = h−1

∫ h
0 φ(z)dz (and α of course),

one may use the equilibrium model to obtain φ(z) and u(z).
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Figure 9: Comparison of T f (α) and Tp(α) for small (P1) and medium size par-
ticles (P2) for a) φ0 = 0.31; b) φ0 = 0.37; and c) φ0 = 0.425. For given φ0,
vertical lines indicate the value of α corresponding to the location of the bound-
ary between well-mixed and settled regions in Fig. 4a), for P1, and Fig. 4b), for
P2
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Figure 10: Suspension flux ΦS in a), and particle flux ΦP in b) as functions of
h and φ0 for α = 20◦.

These profiles, in turn enable us to calculate two fluxes, namely
the suspension flux and particle flux

ΦS =

∫ h

0
(1 + ρsφ(z)) u(z)dz, ΦP =

∫ h

0
φ(z)u(z)dz (14a, b)

respectively. We arrive at a dynamic model by using ΦS and
ΦP to write two conservations laws, namely, conservation of
suspension mass and particle mass

∂

∂t
[
(1 + ρsφ0) h

]
+
∂

∂x
[
ΦS (h, φ0)

]
= 0, (15)

∂

∂t
[
φ0h

]
+
∂

∂x
[
ΦP(h, φ0)

]
= 0, (16)

respectively. This is a system of two scalar hyperbolic conser-
vation laws.

Now, for a given α value, we must compute ΦS and ΦP as
functions of h and φ0, using the equilibrium equations (7-10).
These surfaces are given in Figs. 10 and 11 for two different α
values. Both fluxes are smooth functions of h and φ0. Also,
for small α, ΦS is maximum when h is large and φ0 is small
(i.e. low viscosity case), see Fig. 10a). As α increases, an-
other maximum develops for large h and intermediate values
of φ0, see Fig. 11a), for which an increase in density (i.e., the
(1 + ρsφ(z)) term in Eq. 14a)) still overcomes the increase in
suspension viscosity resulting from the presence of additional
particles. On the other hand, ΦP is always largest for large h
and intermediate values of φ0. This is natural since for small
φ0 and large h the suspension flux is large, but there are very
few particles carried with the flow, while when both φ0 and
h are large, the increase in viscosity severely hinders particle

Figure 11: Suspension flux ΦS in a), and particle flux ΦP in b) as functions of
h and φ0 for α = 50◦.

flux. The maximum increases in magnitude as α increases, see
Fig. 10b) versus 11b).

Since these fluxes are smooth, we can easily fit them to a
polynomial using least-squares. This is useful because it gives
us a closed form expression for the fluxes in the equilibrium
model rather than having to recompute these values for every
timestep of the dynamic model. Here we use 5th order polyno-
mials in h and φ0 to fit to ΦS and ΦP. The system, Eqs. 15 and
16, is solved numerically using an upwind scheme. The initial
conditions are step functions h(x) and φ0(x) similar to experi-
mental profiles, i.e. hle f t, hright, φ0le f t and φ0right are given. We
are careful in our choice of time-step in order to maintain stabil-
ity of upwind scheme: we use ∆t < ∆x/10, a time-step perhaps
smaller than needed since the CFL constant is difficult to cal-
culate exactly for Eqs. 15 and 16. An example of the dynamic
solution is shown in Fig. 12. It shows that the front motion in
the settled case is predicted, at least qualitatively, rather well.

However, certain initial profiles h(x) and φ0(x) result in nu-
merical instabilities no matter how small ∆t we use. This can be
understood by examining the hyperbolicity of the system given
by Eqs. 15 and 16. In particular, we may rewrite Eqs. 15 and 16
as ∣∣∣∣∣∣ (1 + ρsφ0) h

ρ0h

∣∣∣∣∣∣
t
+ J

∣∣∣∣∣∣ (1 + ρsφ0) h
ρ0h

∣∣∣∣∣∣
x

= 0,

where

J =

∣∣∣∣∣∣∣
∂ΦS
∂h −

φ0
h
∂ΦS
∂φ0

1
h (1 + ρsφ0) ∂ΦS

∂φ0
− ρs

∂ΦS
∂h

∂ΦP
∂h −

φ0
h
∂ΦP
∂φ0

1
h (1 + ρsφ0) ∂ΦP

∂φ0
− ρs
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Figure 12: Evolution of the particle-laden thin film predicted by the sys-
tem of hyperbolic conservation laws, Eqs. 15 and 16, with α = 20◦, shown
at t = 5 in a), and t = 25 in b). Here, (hle f t , hright) = (0.9, 0.05) and
(φ0le f t , φ0right) = (0.3, 0.075). The h profiles are shown; the color scheme is
produced by running the resulting h and φ0 as inputs to our equilibrium model,
Eqs. 7-10, and represents φ(z) profiles for each x-position.

4
h

(
∂ΦS

∂h
∂ΦP

∂φ0
−
∂ΦS

∂φ0

∂ΦP

∂h

)
. (17)

The regions where hyperbolicity of Eqs. 15 and 16 fails is
shown in Fig. 13 for the situation corresponding to α = 50◦. It
indicates that the system fails to be hyperbolic when both h and
φ0 are large, but surprisingly it is hyperbolic as φ0 −→ φmax.
Furthermore, it is unexpected that small values of h, where
some of the assumptions used in deriving our continuum mod-
els may be violated, are not problematic. The fin-like region of
hyperbolicity loss for relatively small φ0 and intermediate val-
ues of h is also difficult to connect to any immediately obvious
physical mechanism.

The dynamic model shows some promise, however, before
we can proceed with detailed comparison with experimental
data, the issue of loss of hyperbolicity requires better under-
standing. Further work will examine the details of the fitting
approach for fluxes ΦS and ΦP [30].

7. Conclusions

In this paper, we focus on experiments with particle-laden
thin film flows down an incline, where the effects of the vis-
cosity of the suspending liquid and the particle size are exam-
ined. We observe that the settling behavior of particles proceeds

Figure 13: Hyperbolicity of the system of conservation laws, Eqs. 15 and 16,
for α = 50◦. The regions where the system loses hyperbolicity are shown in
grey.

in three distinct regimes: settled, well-mixed, and ridged, de-
pending on the bulk volume fraction, φ0, and the inclination an-
gle, α. Our theoretical model, based on an equilibrium theory,
where the hindered settling balances the shear-induced migra-
tion, is found to be in an excellent agreement with our exper-
imental data. More precisely, its predictions for the transition
between the settled and the ridged regime match the experi-
mental observations exactly over all ranges of viscosities and
particle sizes. Furthermore, both our model and our experi-
mental results suggest that the intermediate well-mixed regime
is a transient. In particular, our equilibrium theory predicts no
such regime; our experiments show how the well-mixed band
collapses as the relevant timescales are changed by varying the
viscosity and the particle size. Therefore, we argue that the
well-mixed regime eventually leads to a bifurcation to either
the settled or the ridged regime.

Our experimental results indicate that the particle size is a
significant parameter. The likelihood of observing the well-
mixed regime increases with the decrease in the particle diame-
ter. The viscosity of the suspending liquid is found to affect the
relevant timescale of the flow. For the smallest considered par-
ticle size, the liquid viscosity also significantly affects the likeli-
hood of the well-mixed regime: it is more prevalent in the case
of a less viscous suspending liquid. A combination of a low
viscosity liquid and small particles significantly affects the rele-
vant timescales; the flowing film runs out of track length before
any substantial disturbance to the uniformity of the suspension
is observed. The viscosity of the suspending liquid most likely
also affects the length scale over which the transition from the
uniform state occurs – particularly the transition to the settled
regime. Namely, larger viscosity results in a longer time scale
on which the balance of the particle fluxes in the z-direction
occurs, leading to a larger length scale of the flow needed to
observe this balance. We argue that given a sufficiently long
track, the well-mixed bands in phase diagrams such as those in
Figs. 3, 4 and 5 might eventually collapse onto a well-mixed
line predicted by our model, so that only the settled and the
ridged regimes are observed.

Our results, both experimental and theoretical, are novel in
several aspects. The influence of the particle size and the liquid
viscosity on the observed settling regime has not been studied
previously. Also, the manner in which these two material pa-
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rameters affect the well-mixed regime, as well as the implica-
tions related to transiency of this regime are also novel. Finally,
our theoretical model improves on the previously used steady-
state models by incorporating an additional hinderance effect,
thereby leading to physically realistic settling predictions.

This paper makes a significant step towards a fully quanti-
tative model by identifying the dominant equilibrium physics
for the flow. In addition, it also implies further modifications
required in order to fully understand the transiency of the well-
mixed regime and the intricacies connected to the timescales
relevant to the front motion and particle settling. We take it a
step further and use the results from the equilibrium model in
deriving a dynamic model based on a system of scalar hyper-
bolic conservation laws. Our preliminary results indicate this
model shows some promise in describing the front motion in
particle-laden thin film flows. We hope to improve this model
and build ever more sophisticated dynamic models based on it.
Our study also raises interesting questions regarding the mo-
tion of the contact lines and the fingering instability. A more
complete theoretical model would allow for a comparison with
the time dependent experimental results from [13], regarding
the front motion in particle-laden films. In addition, the ex-
periments with clear liquid flows in [5] showed that once the
fingering instability occurred, the exponent in the power law
from [2] describing the evolution of the front position was mod-
ified. Carrying out a similar study in the particle-laden setting
would indeed be compelling, especially since it would also al-
low for examination of the connection between different settling
regimes and the wavelength of the fingering instability. The re-
lationship between the motion of the particulate bed in the set-
tled case and the properties of the solid surface is also of inter-
est. Finally, more sophisticated experimental equipment would
also allow for PIV measurements and reveal the details of the
particle motion. This would, in turn, lead to a full quantitative
resolution of volume fraction profiles close to the free surface
and the solid in the ridged and settled regimes respectively.
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A. Appendix

Here, we give an alternate approach for deriving Eqs. 7-10
(i.e. the system of ODEs for φ and σ) directly from the dy-
namic equation for φ, Eq. 1. In fact, this system arises from
a general framework one may employ for studying the contact
line stability, consisting of the Navier-Stokes equations and ac-
companying boundary conditions, coupled with Eq. 1, when flat

film assumption is employed. First, the expressions for particle
fluxes due to the hindered settling and the shear-induced mi-
gration, Eqs. 2-4, are substituted into Eq. 1. Assuming µ(φ) is
given as in §4, and γ̇ = ∂u/∂z, Eq. 1 becomes

φt + uφx + wφz =
d2Kcoll

4
∇ · φ

∣∣∣∣∣∣ (uzφ)x
(uzφ)z

∣∣∣∣∣∣ +

d2Kvisc

2
∇ ·

φ2uz

φmax − φ

∣∣∣∣∣∣ φx

φz

∣∣∣∣∣∣ +

d2ρsρlg
18µlφ2

max
∇ · φ (1 − φ) (φmax − φ)2 ω(z)

∣∣∣∣∣∣ sinα
cosα

∣∣∣∣∣∣ , (18)

where ∇ = (∂x, ∂z). Next, we scale Eq. 18 using the time,
length, and velocity scales typically utilized for thin film flows
(e.g., see [11]). While surface tension will eventually be ne-
glected, at this point, the small parameter is ε = (3Ca)1/3, where
the capillary number Ca is defined as before. The scale in the z-
direction is H, and the one in the x-direction is H/ε; u is scaled
using usc = (H2ρlg sinα)/(3µl), while w is scaled using εusc;
the timescale is given as H/(εusc). In addition, we assume that
φ ∼ O(1). To the leading order in ε, we obtain

Kcoll

(
φ (uzφ)z

)
z
+ 2Kvisc

(
φ2uz

φmax − φ
φz

)
z
+

2ρs cotα
3φ2

max

φ (1 − φ) (φmax − φ)2 Az2√(
d
H

)4
+ A2z4


z

= 0. (19)

We proceed by substituting uz = 3(1 − φ/φmax)2σ and inte-
grating Eq. 19 with respect to z; a simple manipulation yields
Eq. 6. Next, the Navier-Stokes equations and the accompanying
shear-stress balance at the free surface are scaled using identi-
cal scales and leading-order terms in ε are considered. If, for
a moment, we assume that the film is locally flat, the effect of
surface tension drops out of the shear-stress balance. Finally,
this assumption leads to σ′ = − (1 + ρsφ), and hence, Eqs. 7-10
as before.
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