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Pairwise particle interactions arise in diverse physical systems ranging from insect swarms to
self-assembly of nanoparticles. In the presence of long-range attraction and short-range repulsion,
such systems can exhibit bound states. We uses linear stability analysis of a ring equilibrium to
classify the morphology of patterns in two dimensions. Conditions are identified that assure the well-
posedness of the ring. In addition, weakly nonlinear theory and numerical simulations demonstrate
how a ring can bifurcate to more complex equilibria including triangular shapes, annuli, and spot
patterns with N-fold symmetry. Many of these patterns have been observed in nature although a
general theory has been lacking, in particular how small changes to the interaction potential can
lead to large changes in the self-organized state.

PACS numbers: 87.18.Ed, 87.10.Ed, 05.45.-a

Collective behavior of interacting systems [1] is a capti-
vating natural phenomenon. Such systems form patterns
that inspire evolutionary [2] and biological [3] questions
as well as structural and physical ones. More recently,
such natural behavior has inspired intelligent design of
control algorithms for unmanned vehicles. Particle in-
teraction models are extremely prevalent in the biology
literature in many contexts such as insect aggregation
[4], locust swarms [5]; however they also arise in other
important physics applications such as self-assembly of
nanoparticles [6], theory of granular gases [7], and molec-
ular dynamics simulations of matter [8]. Regardless of
whether the model is meant to describe a complex biolog-
ical system such as a bacterial colony or a locust swarm,
or a basic physics application derived from first princi-
ples, a common feature of all particle interaction models
is the attractive-repulsive nature of the potential. Often
a ‘steady state’ pattern can be formulated as a minimizer
of a pairwise interaction energy

E(~x) =
∑

i,j 6=i

P (|xi − xj |), (1)

for some potential P .

Typically, P (r) is a convex function having a single
positive minimum, ~x is the position vector of N particles.
A potential P (r) is called confining if the diameter d =
maxi,j |xi−xj | of the steady state is bounded as N → ∞.
For confining potentials, the equilibrium configuration is
a minimizer of a high dimensional non-convex problem
for which a fully developed predictive theory is elusive.
Our analysis specifically applies to such potentials.

Recent analysis [9] shows that scaling behavior of equi-
librium configuration depends on the classical H-stability
properties of the interaction potential [10] but does not
provide a theory for symmetry breaking of the equilib-
rium configuration. The last five years has seen a surge of
interest in the physics literature for confining potentials
which tend to yield complex equilibrium patterns. One

FIG. 1: Top: Minimizers of the energy (1) with force law (3).
Diameter d = maxi,j |xi − xj | ranges from 0.3 in top-left to
3 in bottom-right. Bottom: time evolution of (4) with values
a = 8, b = 0.67.

particularly interesting question is how to infer proper-
ties of the local interactions from large scale behavior of
the self-organized state [11]. On the other hand, self-
assembly in materials involves design of interaction po-
tentials that lead to desired complex structures [12].

The goal of this letter is to develop a theory for pre-
diction and classification of equilibrium patterns based
on properties of the interaction potential. For simplic-
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ity, we present case studies from two different families of
interaction forces F (r) = −P ′(r), the power law force

F (r) = rp − rq ; 0 ≤ p < q (2)

and a smoothed step discontinuity

F (r) = tanh ((1− r)a) + b; 0 < a; − tanh(a) < b < 1.
(3)

Both of these families yield confined patterns, so that
the spatial extent of the pattern remains bounded as
N → ∞. Minimizers of (1) with confining potentials can
exhibit intricate structure as shown in Figure 1, for the
case (3). Note the complex patterns ranging from rings
and annuli to more complex structures exhibiting period
two and three symmetry breaking to very complex ‘soc-
cer ball’ like shapes. Related patterns (in particular the
annuli and spotted patterns) have been observed in ex-
periments of stressed bacterial colonies [13] which have
associated related nonlocal models [14]. We present a
methodology for analyzing structures of these patterns
from basic properties of the interaction potential.

Our analysis is based on stability of the interaction
energy under a gradient flow, although the results could
be applied to more sophisticated interaction models such
as those arising from the Morse potential considered in
[9]. The gradient flow equations arising from (1) are

dxj

dt
=

1

N

∑

k,k 6=j

F (|xj − xk|)
xj − xk

|xj − xk|
, j = 1 . . .N.

(4)
Simulation of this system with a large number of parti-
cles results in a long time equilibrium shape. The shapes
in Fig 1 are the result of a forward Euler time integra-
tion of (4) with N = 5000, computed to t = 1000 with
dt = 0.5. Up to rotation, the results are independent
of initial condition, typically taken to be randomly dis-
tributed inside a unit square. A well-known approach in
pattern formation is to consider stability of a constant
state for which theory can often be derived in analytic
form, and then consider bifurcations from that state to
understand structures of patterns. Since the potential is
confining, it does not make sense to consider stability of
‘flat’ states but rather that of ‘ring’ states in which par-
ticles are concentrated at a particular radius, as seen e.g.
in the lower left corner of Figure 1. Any potential that
has repulsion dominant in the near field and attraction
dominant in the far field has an exact ring solution whose
radius r0 satisfies

∫ π

2

0

F (2r0 sin θ) sin θdθ = 0, (5)

where we assume a continuum limit for N is large.

The ring is a special case of an extremum of (1) in
which the particles concentrate on a one dimensional

•

FIG. 2: Stability diagram for (2). The curves shown cor-
respond to the boundaries of the stability det(M(m)) = 0,
with m = 3, 4, 5 and m = ∞, as indicated. The line p = q

is also drawn. Crossing any of the curves destabilizes the
ring. The intersection of m = ∞ and m = 3 boundaries is at
p = 0.10779, q = 9.277102. Black dot is the position where
we compute the pitchfork bifurcation in Figure 3.

curve. In the limit N → ∞ such curves satisfy the con-
tinuum equation [15]

∂

∂t

(

ρ

∣

∣

∣

∣

∂z
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∣

∣

∣

∣

)

= 0,
∂z

∂t
= K ∗ ρ (6)

where z (α; t) is a parametrization of the curve;
ρ (α; t) is its particle density and K ∗ ρ =
∫

F (|z(α)− z(α′)|) z(α)−z(α′)
|z(α)−z(α′)|ρ(α

′, t)dS(α′) with dS de-

noting the arclength element. The formula (6) follows
from conservation of mass and is a generalization of the
classical Birkhoff-Rott equation for 2D vortex sheets [16]
- applied to gradient vector fields rather than divergence
free flow. See [15] for details. Linear analysis of the B-R
equation describes the classical Kelvin-Helmoltz instabil-
ity in fluid dynamics and we use this as an analogy to our
study of equilibrium patterns for the pairwise interaction
energy (1).

Consider the perturbations of the ring of N particles
of the form xk = r0 exp (2πik/N) (1 + exp(tλ)φk) where
φk � 1. After some algebra we obtain

λφj =
1

N

∑

k=1..N
k 6=j

G+

(

π(k−j)
N

)(

φj − φk exp
(

2πi(k−j)
N

))

+G−

(

π(k−j)
N

)(

φ̄k − φ̄j exp
(

2πi(k−j)
N

))

,

where j = 1 . . .N , G±(θ) =
1
2 (G1 ±G2), and

G1(θ) = F ′(2r0 |sin θ|), G2(θ) =
F (2r0 |sin θ|)

2r0 |sin θ|
.

Next we substitute φj = b+e
2mπij/N + b−e

−2mπij/N

where we assume that b± are real, and m is a strictly
positive integer. This leads to a 2x2 eigenvalue problem
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FIG. 3: Bifurcation diagram for interaction force (2), with
p = 0.5. The solid curve is derived from weakly nonlinear
analysis; while the dots are simulations of (4).

λ

(

b+
b−

)

= M(m)

(

b+
b−

)

where

M(m) :=

[

I1(m) I2(m)
I2(m) I1(−m)

]

; m = 1, 2, . . . ; (7)

I1(m) =
4

N

N/2
∑

l=1

G+

(

πl

N

)

sin2
(

(m+ 1)
πl

N

)

;

I2(m) =
4

N

N/2
∑

l=1

G−

(

πl

N

)[

sin2
(

πl

N

)

− sin2
(

m
πl

N

)]

.

Taking the limit N → ∞, we obtain

I1(m) =
4

π

∫ π

2

0

G+(θ) sin
2 ((m+ 1)θ) dθ; (8a)

I2(m) =
4

π

∫ π

2

0

G−(θ)
[

sin2(θ) − sin2 (mθ)
]

dθ. (8b)

The ring is linearly stable if the eigenvalues λ of (7) are
non-positive for all integers m ≥ 1; otherwise it is unsta-
ble. There are two possible types of instabilities - ones in
which the ring is long-wave unstable, corresponding to an
instability of a low order mode (small m) but stability of
higher order modes. The second type corresponds to ill-
posedness of the ring in which the eigenvalues are positive
in the m → ∞ limit and grow as m increases. In the lat-
ter case the ring completely breaks up and often forms
a fully two-dimensional pattern. Ill-posedness in curve
evolution problems is known in other problems, most no-
tably the Kelvin-Helmholtz instability of the 2D vortex
sheet [15, 16]. However the types of nonlinear structures
seen here are completely different from the vortex roll-up
behavior familiar from incompressible fluids.
An example of a stable ring is provided by the force

F (r) = r− r2, for which the matrix M(m) and its eigen-
values can be explicitly computed. More generally, if
F (0) > 0 and F is C2, the asymptotics for large m yield

traceM(m) ∼ F (0)
πr0

lnm > 0 as m → ∞, so that all high
modes m are unstable. It follows that a necessary con-
dition for well-posedness of a ring is that F (0) = 0. If

in addition, F is C4, then using integration by parts we
obtain

tr M(m) ∼
2

π

∫ π/2

0

(

F (2r0 sin θ)
2r0 sin θ − F ′(2r0 sin θ)

)

dθ +O
(

1
m2

)

;

det(M(m)) ∼ tr M(m)
F ′′(0)r0

m2
+O

(

1

m4

)

.

In summary, if F (r) is C4 on [0, 2r0], then sufficient
conditions for linear well-posedness of a ring are:

F (0) = 0, F ′′(0) < 0,

∫ π/2

0

G1(θ) +G2(θ)dθ < 0. (9)

In particular, the ring solution for the force (3) is al-
ways ill-posed, since F (0) > 0. Another general result
is if F is odd and C∞ on [0, 2r0], where det(M(m)) = 0
for all m; the ring then has infinitely many zero eigenval-
ues. This observation may be relevant for the Kuramoto
model F (r) = sin(r) [17].
For the force of type (2) with 0 < p < q, the asymp-

totics of the mode m = ∞ can be computed in terms
of Gamma functions. It is shown in [18] that the mode
m = ∞ is stable if and only if pq > 1 and p < 1. In
addition, the low modes m = 2, 3, 4, . . . may also become
unstable, see Figure 2. The dominant unstable mode
corresponds to m = 3, which bounds the stability region
from above. An implicit formula for the boundary can be
computed analytically and it is shown in Figure 2. Simi-
larly, the stability boundary for m = 2 mode happens to
lie well outside the area shown in Figure 2. The stability
boundaries for modes m = 4, 5, . . . are also expressed in
terms of higher order polynomials in p, q.
We now use weakly nonlinear theory to analyze how

the transition of stability occurs. Figure 3 is a bifurcation
diagram for interaction force (2), taking p = 0.5, where
we record the change of the quantity ∆r = rM − rm ac-
cording to the bifurcation parameter q, with rM and rm
being the maximum and minimum of the displacement
from the origin. Numerical simulation for the whole sys-
tem (4) are done with 100 particles with random initial
condition, plotted as black dots. At q = 4.95, the steady
state solution remains a stable ring; while at q = 4.98,
the 3 mode becomes slightly unstable and the points
tend to move tangentially to break the ring into a tri-
angular shape. By further increasing q, the points on
the curve continue to move towards a more triangular
shape. The weakly nonlinear analysis confirms that this
process is in fact a supercritical pitchfork bifurca-
tion. The analytical form of the pitchfork is given by as
∆r =

√

max(0, τ(q − qc)), with qc ≈ 4.9696 and bifurca-
tion value τ ≈ 0.01188, which is plotted as a solid line in
Figure 3. See [18] for detailed derivation.
In fact, a more general result can be stated as follows

[18]: Near the stability transition of a fixed long-
wave (small m) mode, if the interaction force has
a non-vanishing first derivative with respect to
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FIG. 4: Stability of discrete vs. continuous system for
F (r) = tanh(4(1−r))−0.5. Top: det(M(m)).Dashed line cor-
responds to continuum eq. (10) and crosses to discrete eq. (9)
with N = 120, 160. Instability occurs iff det(M(m)) < 0. Bot-
tom: steady states of discrete dynamics with N as indicated;
inserts show the blowup of the ring structure.

the bifurcation parameter, a pitchfork bifurcation
is always exhibited. For example, a mode three bifur-
cation occurs in the first column of Figure 1 at the value
a ≈ 7.912, and second column at a ≈ 8.2115.
Even if (4) is ill-posed in the continuous limit N → ∞,

the ring of discrete particles (4) may be stable with a rel-
atively large N as in Figure 4. Note the slight instability
for N = 160 but stability when N = 120. The continuous
limit is well approximated with N = 5000; the resulting
steady state appears to be a thin annulus, whose inner
and outer radius are approximately r0 given by (5). See
[18] for detailed analysis.
So far, we have concentrated on simple forces (2, 3)

which do not decay for large r. However this is not
a crucial restriction. For example, take F (r) = (r −
r2) exp(−ar). It can be shown that a ring solution exists
for all 0 ≤ a ≤ 3.245 and is stable for all 0 ≤ a ≤ 0.923.
As a is increased past 0.923, the ring becomes ill-posed
due to the violation of the third equation in (9). In gen-
eral, one can add sufficient far-field decay without chang-
ing our analysis.
Numerics suggest that random initial conditions tend

to converge to ring solutions, whenever the ring is stable.
Global stability of the ring remains an open question.
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