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Abstract

Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its
strengths of spatial resolution, non-destructive characterization and realistic in situ
environments. However, accurate spatial data are required for quantitative applications but this
is challenging for SPM especially when imaging at higher frame rates. We present a new
operation mode for scanning probe microscopy that uses advanced image processing
techniques to render accurate images based on position sensor data. This technique, which we
call sensor inpainting, frees the scanner to no longer be at a specific location at a given time.
This drastically reduces the engineering effort of position control and enables the use of scan
waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster
scanning, typically only trace or retrace images are used for display, in Archimedean spiral
scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial
resolution is achieved. In the new mode, the grid size of the final generated image is an
independent variable. Inpainting to a few times more pixels than the samples creates images
that more accurately represent the ground truth.

(Some figures may appear in colour only in the online journal)

1. Introduction

The pace of discovery in nanoscience accelerated significantly
with the invention of scanning probe microscopy [1, 2].
Scanning probe microscopy has the ability to image material
surfaces with exquisite resolution in a large variety of
environments from vacuum [3] to high temperature and
pressure [4]. Furthermore, careful probe design facilitates
nanoscale measurement of specific physical or chemical

properties such as electrostatic [5, 6], magnetic [7, 8],
or surface energy [9, 10]. While spatial resolution and
precision are traditional strengths of scanning probe
microscopy, achieving high accuracy is challenging. As
scanning probe microscopy matures scientists seek to
perform more quantitative measurements and place higher
demands on instrument accuracy. For example, measuring
the interaction energy landscape for aggregating proteins
requires precise intermolecular distance measurements [11].

10957-4484/13/335703+07$33.00 c� 2013 IOP Publishing Ltd Printed in the UK & the USA



Nanotechnology 24 (2013) 335703 D Ziegler et al

Unfortunately, the poor accuracy is exacerbated as researchers
push instruments to achieve higher temporal resolution.
Increasing image accuracy and temporal resolution for the
next generation of scientific discovery requires rethinking how
we do scanning in scanning probe microscopy.

Image inaccuracy results from raster scanning being the
entrenched paradigm for image creation in scanning probe
microscopy. The German expressions for AFM and STM,
‘Rasterkraftmikroskopie’ and ‘Rastertunnelmikroskopie’ re-
spectively, show how the raster concept is fundamentally
linked to scanning probe techniques. But the idea of
raster scanning predates AFM and STM. For applications
like analog television, where transmission bandwidth was
precious, it was economical that a single data series could
create images without using X, Y position data. When AFM
and STM were invented in the mid-1980s before digital
signal acquisition became commonplace raster scanning
facilitated crafting 3D topographs from individual paper
scan lines printed by pen plotters [12]. In the digital age,
the advantage of raster scanning is that it speeds display
and saves memory. By sampling at a constant rate, only a
single channel needs to be recorded and each sampling maps
directly to a corresponding pixel in the final image. However,
achieving non-distorted images requires the tip to be at a
specific location at a given time with perfectly linear motion
of the scanner. Unfortunately, piezoelectric nanopositioners
have notoriously nonlinear displacement response and high
inertia with mechanical resonances, which significantly
compromises image accuracy. Specifically designed nonlinear
output voltages can partially compensate the errors caused
by piezo nonlinearities. Open-loop techniques frequently use
second order modeling of piezo displacement and a few
coupling terms to create a more linear displacement [13]
(see figure 1(a)). The results are satisfactory for the fast
scan axis but creep is not managed well causing errors in
the slow scan axis and poor offset and zoom performance.
For recently designed scanning probe microscopes it is
more common to operate in a closed-loop configuration
where X, Y positions are controlled using feedback [14, 15]
(see figure 1(c)). Unfortunately, feedback loops have sig-
nificantly lower bandwidth than the position sensor signal
such that accuracy is maintained only up to scan rates of
a few lines per second. Feed-forward, also called adaptive
scan, is a mode of operation very similar to open-loop
but the piezo model used to transform the scan waveform
is developed by measuring the response of the piezo with
position sensors [16, 17] in the fast scan direction. As
an open-loop technique, feed-forward has high bandwidth
performance but creep is not managed well. Combining
feedback and feed-forward harnesses the advantages of each
correction method but is complicated to implement [18]. The
enormous engineering effort to control the piezo position
has its roots in the paradigm of raster scanning. In the
paradigm, the controller dictates strict position requirements
based on the scan parameters. But position inaccuracies
of the instrument do not influence how data are received
and interpreted. This simplifies image display and the onus
is on the instrument to provide accurate positioning even

Figure 1. (a) Open-loop scanning: a raster scan wave is applied in
both fast and slow scan directions and they define the pixel positions
for image display. (b) Open-loop 15 µm ⇥ 15 µm scan of a
calibration grating using 512 scan lines (256 trace and 256 retrace).
Zoom-ins of the yellow dashed rectangle region display topography
and amplitude data. Piezo nonlinearity leads to 1.45 µm mismatch
between trace and retrace and creep compresses the feature in the
slow scan direction. (c) Closed-loop scanning: a feedback loop is
used to control piezo position based on independent position sensor
data but pixel positions are still defined by the input scan waveform.
(d) Closed-loop 15 µm ⇥ 15 µm scan of the same calibration grid
as (b). Zoom-ins of the yellow dashed rectangle region display
topography and amplitude data. The feedback controller regularizes
the scan well but delay in the topography feedback loop as well as
the XY position feedback cause 0.23 µm mismatch between trace
and retrace.

though piezo nanopositioners present formidable physical
challenges. Another negative consequence of the raster scan
paradigm beyond the unnecessary control of piezo position is
that sequential scan lines moving in opposite directions are
adjacent to each other. Any delay from either X, Y scanner
control or the Z-feedback cause adjacent scan lines to be
mismatched. Thus the convention is to discard half the data
and only show trace or retrace in one image compromising
spatial and temporal resolution.
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While it may initially seem trivial, to relax X, Y control
and passively measure position sensor data to create images
is a much more elegant solution to the problem of poorly
behaved piezo nanopositioners. The absence of any feedback
in X, Y position results in the high bandwidth of open-loop
scanning and greater accuracy than any piezo control system.
More importantly, the technique frees us from the raster
scan paradigm and enables the use of scan waveforms
better matched to the physical limitations of piezoelectric
nanopositioners and for which all scan time can be used to
create images.

In section 2 we discuss the difficulties of raster scanning
to display trace and retrace in a single image in greater detail.
Section 3 introduces our new sensor inpainting technique to
reconstruct images from sensor data. Section 4 highlights
the results for a constant velocity Archimedean spiral, and
section 5 presents conclusions.

2. Raster scan pattern

2.1. Open-loop scanning

Figure 1 illustrates the difficulties of raster scanning to
generate accurate images from trace and retrace scan lines in
a single image. The performance of conventional open and
closed-loop configurations are compared. The schematic of an
open-loop scan mode, the most basic positioning technique
for scanning probe microscopy, is shown in figure 1(a). The
scan parameters (image size, resolution, and speed) define
scan waveforms that drive the piezo actuator and delineate the
pixel positions in the image. Figure 1(b) shows topography
data, where 256 trace and 256 retrace lines are displayed in the
same image. All data presented in this paper were collected
on a MFP-3D (Asylum Research, Santa Barbara) using
amplitude modulation AFM in air with a free amplitude of
30 nm and an amplitude set-point of 24 nm. The cantilever had
a nominal resonance frequency and stiffness of 70 kHz and
3 N m�1 respectively (Multi75Al, Budget Sensors, Bulgaria).

The scan pattern was a triangular raster scan without
using model based correction nor using overscan. The X, Y
positions are the applied piezo voltage scaled by the first order
coefficient of piezo sensitivity. The total acquisition time was
205 s, with 512 scan lines and 15 µm scan size, resulting in
an average tip velocity of 37.5 µm s�1. The sample features
are isolated 6 µm wide squares with a spacing of 3 µm and
height of 100 nm (calibration grating by Bruker Nano). The
edges of the calibration steps in figure 1(b) clearly show that
trace and retrace scan lines do not overlay. The multi-domain
structure of high sensitivity piezoelectric ceramics causes
sensitivity to increase as field increases and hysteresis when
field reverses such that the same applied voltage does not
result in the same position. Thermally activated alignment of
domains causes additional displacement or creep along the
slow scan axis, such that a larger scan is compressed into the
image. The zoom-ins of the yellow dashed rectangle region
in figure 1 display topography and amplitude data and focus
on a particle defect. This same area will be used throughout
the paper for comparing all the methods discussed. Using

open-loop scanning the mismatch between trace and retrace
is up to 1.45 µm for a 15 µm scan or 10%. The amplitude
image shows the alternating dark and light features typical for
descending and climbing the step on the calibration grating.
For trace and retrace they clearly do not occur at the same
location. This large mismatch is mainly due to hysteresis.

2.2. Closed-loop scanning

Another common mode of operation is closed-loop scanning,
where feedback loops control piezo position based on
independent position sensor data. The pixel positions are still
defined by the input scan waveform (figure 1(c)). Closed-loop
scanning not only significantly improves image accuracy by
compensating hysteresis of the piezo material (figure 1(d))
but also corrects for creep enabling excellent reproducibility
for zooming and large offsets. Furthermore, active monitoring
of the sensor allows the instrument to respond to unique
mechanical characteristics of each scanner and measured drift
and slip. While the large scale 15 µm ⇥ 15 µm images appear
to be correct, the zoom-ins reveal a remaining discrepancy
of 0.23 µm or 1.5% in the closed-loop image. Any delay
from either X, Y scanner control or the Z-feedback still causes
this mismatch. The result clearly demonstrates that using
raster scan lines that move in opposite directions necessitates
throwing away half the data for image creation, even when
closed-loop operation is used.

3. Sensor inpainting

The enormous engineering effort to control piezo position has
its roots in the paradigm of raster scanning. In the paradigm,
based on the scan parameters, the controller dictates strict
position requirements. Sensor inpainting relaxes this control
and uses advanced image processing techniques to create
gridded images from non-gridded sensor data (figure 2(a)).
Inpainting is a class of digital image processing methods
used to solve missing data problems [19]. Traditionally
it has been used for such problems as digital restoration
of films, artwork restoration such as old frescos [20],
and removal of occlusions such as text from photographs.
Special effects in the movie industry can also make use
of inpainting algorithms, e.g. for removing objects/people
from movies, while reasonably filling in the background [21].
Recently inpainting has also been used in 3D fluorescence
microscopy or tomography to address low z-axis resolution
and gaps between slices [22]. Many inpainting algorithms
are based on partial differential equations [21, 23–25] or
variational minimization approaches [26]. One of the most
basic inpainting methods is heat equation inpainting (also
called harmonic inpainting). It has the same functional
form as diffusion problems in physics and when applied
to image processing it linearly diffuses the known data to
unknown regions. More advanced methods better maintain
edge sharpness by using total variation (TV) priors [26–28]
representing nonlinear diffusion, or use similar regions (patch
comparisons) elsewhere in the image to inform the regions of
interest (Non-Local Means, NLM) [29–32]. Those nonlocal

3



Nanotechnology 24 (2013) 335703 D Ziegler et al

Figure 2. (a) Sensor inpainting scanning: scan waves drive the
scanner and position sensor data is used to create images.
(b) Non-gridded position sensor data with the color of each square
representing height values. (c) To distribute the non-gridded data to
the grid, the height information of each data point is spread to the
four nearest neighbors. Close proximity of the data point to the pixel
position leads to higher weights shown as size of the squares.
Original data positions shown as dotted squares. (d) Heat equation
inpainting diffuses the existing weighted data out to the entire grid
filling empty data points while denoising. (e) Final rendered image.
(f) Inpainted result from the open-loop data in figure 1(b). Despite
hysteresis and creep, a correct and non-distorted image is generated
(g) Zoom-in of dashed area in (f) shows good overlap of forward
and backward scan lines without any control of X, Y piezo position.
Mismatch is only due to Z-feedback delay. (h) A delay correction
can be used to improve the mismatch but subtle inaccuracies remain
from raster scan lines moving in opposite directions.

and nonlinear inpainting approaches are often based on
nonlocal derivatives or dictionary learning techniques.

In the scanning probe microscopy application, the
missing data are the values of the pixels in a gridded image.
The collection of these unknown, not-measured pixels is

called the inpainting domain. Figures 2(b)–(e) present the
steps for image generation from non-gridded data using heat
equation inpainting. Figure 2(b) shows the measured X, Y
positions of non-gridded sensor data. The topography data
recorded at each point are represented by the color of each
square. To redistribute the non-gridded data back to the grid
of the desired image we use linear binomial interpolation.
The height information of each data point is spread to the
four nearest points on the grid (figure 2(c)). Furthermore, we
attribute to each point a weighting factor, which describes the
confidence of the data, and is given by the distance from the
data point to the grid. When only one data point contributes to
the pixel the height value is simply copied and the weighting
saved for use in the inpainting algorithm. When more than
one data point contributes to the same pixel, the weights
are used to linearly interpolate height information from the
contributing data points to determine the value (figure 2(c))
and a composite weighting value is saved for the inpainting
algorithm. Hence, for large data sets and coarse grids this
first step might be sufficient to attribute a value to each pixel
and thereby generate a full image. But pixels might remain
empty when sparse data sets are projected on a fine grid. In
this case, heat equation inpainting (figure 2(d)) diffuses the
existing weighted data points over the entire grid, �. To this
end, an energy functional,

min
u

E(u) =
Z

�
|ru|2 +

Z

D
�(u � f )2

is minimized to compute the inpainted result, u, from
the collected data, f , which was distributed on the grid
(figure 2(e)). The domains D and � represent the collected
data area and area to be inpainted respectively. While � is
a scalar based on the weightings used to create the gridded
data set, f . The equation includes a gradient term to produce
a smooth result and difference terms for fidelity to the
original measured data. Since the functional is minimized
over the whole image, the relative contribution of the
gradient term determines the amount of smoothing of the
data during inpainting. Sensor inpainting of open-loop data
from figure 1(b) produces an accurate result in figure 2(f).
The square shape of the features and the fact that the final
resulting image is elongated in the Y-axis are evidence that
hysteresis and creep are accommodated properly. A full
image can be restored using all the data but the zoom-ins
still reveal a mismatch between trace and retrace scan lines.
In the closed-loop configuration (figure 1(d)) the 0.23 µm
discrepancy was partially due to X, Y control delay. Sensor
inpainting removes all X, Y delay however an offset of
0.17 µm remains from Z-feedback delay (figure 2(g)).
Identifying the Z-feedback loop as a persistent source of
delay between topography values and their position enables
compensation of the delay by offsetting the data before
generating the image using inpainting. Figure 2(h) shows the
result with a 5 ms offset, which corrects for line mismatch.
However, subtle differences between trace and retrace due
to hysteresis of the Z piezo as well as effects from the z
feedback loop overshooting remain. Even while using sensor
inpainting, these unavoidable artifacts result from persisting
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with the raster scan paradigm. Fortunately, sensor inpainting
enables use of scan waveforms better matched to the physical
limitations of piezoelectric nanopositioners.

4. Spiral scan pattern

The image artifacts associated with raster scan lines moving
in opposite directions necessitates throwing away half the data
for image creation. Scan waves that direct the scanner to move
in the same direction for adjacent scan segments enable the
display of 100% of the scan data without artifacts. Scanning
the perimeter of consecutively smaller concentric squares
would satisfy this condition. However, stopping and starting
the massive scanner is challenging, as the present need for
overscan of triangular raster scan waveforms attests. As sensor
inpainting conveniently renders non-gridded data, following
a grid is not important when creating scan waveforms.
Scanning a smooth spiral allows adjacent scan segments to
move in the same direction and does not have sharp turns
with high acceleration making it preferable for high inertia
scanners. Spiral techniques are common to many data storage
techniques on spinning mediums (vinyl records, hard drives,
compact disks, or DVDs). But the spiral scan concept only
recently found appearance in scanning profilometers [33],
nanoscale data storage [34] or scanning probe microscopy,
where spiral [35–37], cycloid [38], Lissajous [39], and various
other non-raster scan patterns [40] have been demonstrated.
Most of these non-raster scan attempts use sensors to steer
the probe over the sample in closed-loop. Spiral scanning has
been shown to be useful for fast scanning [35–37]. The narrow
frequency spectrum of sinusoidal scan trajectories has been
shown to require less bandwidth of the feedback loop [39].
As sensor inpainting uses no feedback at all, its bandwidth is
simply given by the performance of the position sensor itself.

In figure 3 we show the results for a constant
velocity Archimedean spiral which has the simple waveform
as a function of time, t, X = ↵

p
t sin(�

p
t) and Y =

↵
p

t cos(�
p

t), where the frequency decreases as 1/
p

t while
the amplitude increases as

p
t. ↵ and � are coefficients

derived from the scan parameters: number of loops, scan
size, and scan speed. Topography and amplitude data for
the sensor inpainting result of a 256 loop spiral are shown
in figures 3(a) and (b) respectively. For illustrating the scan
direction a spiral scan pattern with few loops is overlaid
onto the amplitude image. The scanned area is approximately
equal to the previous 15 µm ⇥ 15 µm raster scans so 256
loops result in a similar tip velocity (37.5 µm s�1) and
spacing between adjacent scan lines as used in figures 1(b)
and (f). Sensor inpainting diffuses data to the edges of
the square grid circumscribing the collected data and pixels
outside the scan region do not accurately depict sample
properties. Figure 3(c) contains zoom-ins of the yellow dashed
rectangle. Since all adjacent points are scanned in the same
direction the quality for the reconstructed step on the feature
is outstanding. The amplitude data further confirm the fidelity
of the image as each scan segment has similar climbing or
descending characteristics without offsets. No artifacts from
the physical limitations of the X, Y scanner are evident and

Figure 3. Sensor inpainting of topography (a) and amplitude (b)
data from an Archimedean spiral scan of the calibration sample. 256
loops within an area approximately equal to figure 2(f) inpainted to
a 1024⇥1024 grid. Image values outside the circle result from the
inpainting algorithm diffusing information to the edges where no
data was acquired. (c) Topography zoom-in of dashed square shows
a straight edge, resulting from all adjacent scan segments having the
same direction of motion as evidenced by amplitude data.
(d) Inpainting from position values calculated from scanner drive
voltage and first order piezo sensitivity. Hysteresis only leads to
slight dilation of the center of the image and rotation along the scan
direction.

100% of the scan data are displayed. Using sensor data
for sensor inpainting guarantees accurate image generation
but it is important to mention that it is equally possible to
perform inpainting algorithms on model based position data
instead of measured position data from the sensors. This
is analogous to open-loop scanning and applicable to any
waveforms. Figure 3(d) shows the inpainted result when the
piezo output voltage scaled by the first order piezo sensitivity
is used as the position information to create the image.
Using an Archimedean spiral, piezo hysteresis results in slight
dilation of the center of the image and a rotation in the scan
direction. But still 100% of the scan time is used to create the
image increasing temporal resolution by over a factor of two
compared to raster scanning.

Another advantage of sensor inpainting over raster
scanning is that sparse data can be more accurately depicted
using inpainting. The number of loops, scan speed, and
scan size determine the pitch of data spacing and the time
required to collect each spiral scan image. Increasing the
sampling rate increases the data density along the scan path
but does not provide information between loops. In contrast
with raster scan, the pixel size of the final rendered image is
not determined by the data collection so it becomes important
to determine the amount of inpainting required to most
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Figure 4. Comparison of ‘ground truth’ high resolution image (a)
with images created by inpainting sparse data (c)–(e). The vertical
columns are for three different sampling rates (I, II, III) leading to
different numbers of data points for the images. (b) is the raw data
with each point represented with a rectangle. (c), (d), and (e) are
inpainted to 17⇥17, 34⇥34, and 68⇥68 pixels respectively. The
image that most closely represents the ground truth is (d)II.

accurately render the data for sparse datasets. Figure 4(a)
shows a high resolution spiral scan image with dense enough
loops and samples to make it evident that the image is tip
convolution limited. For this study, this image is ‘ground
truth’. Subsequent images are from a spiral scan using
eight times fewer loops over the same region and contain
the features within the white square of the ground truth.
Figure 4(b) shows the raw data at three different sampling
rates. The number of data points used to create the images
are 77, 207, and 831 in I, II, and III respectively. These
images are not inpainted and instead a rectangle as wide as

the spacing between samples and as tall as the pitch of the
spiral scan represents each data point. This rendering is most
analogous to the pixels in a raster scan image. The scan path
from upper left to lower right is evident from the tilt of the
rectangles. The three data sets with different sampling rates
are inpainted to three different resolutions (figures 4(c)–(e))
in the following nine images for comparison to ground truth.
Figure 4(c) uses 17⇥17 resolution and the pixels are too large
leading to rough edges that do not capture the curvature of
the features. Figures 4(d)I and (e)I have few data points and
the positions of individual data points are evident in the image
with blur in between. This is an artifact of the heat equation
inpainting algorithm pinning the result where the data is good
(fidelity term) and diffusing information from the surrounding
lower valued samples in between high valued samples causing
a ‘tent pole’ effect. Tent poling is also evident in the high
resolution image of moderately sampled data (figure 4(e)II).
Figures 4(d)III and (e)III have dense sampling along the scan
path so the tent poling is effectively a line and the surface
looks like a sheet draped over two clothes lines. In all of these
images the sagging between the data points does not capture
the smooth curvature of the ground truth image. The middle
image (figure 4(d)II) best represents the features shapes by
capturing the smooth curvature and not misleading the eye
with tent poling. Interestingly, the inpainted result which most
closely resembles the ground truth has many more pixels than
samples in the original dataset.

5. Conclusions

The raster scan paradigm severely limits scanning probe
microscopy by dictating scan patterns and operation that is
not well suited for piezoelectric nanopositioners. The results
are significant expenditure of engineering effort and still a
loss of at least half of the data when making images. Sensor
inpainting breaks the raster scan paradigm by rendering
accurate images from position sensor using missing data
image processing algorithms and provides a software solution
to a challenging hardware problem. Since most instruments
of recent design have high-speed position sensors built into
the scanner, implementation of sensor inpainting is simple. It
enables the display of 100% of the scan data and alternate scan
waveforms, like Archimedean spirals, that are best suited for
the physical characteristics of the scanner. Sensor inpainting
allows choosing the amount of pixels in the generated final
image. Sampling data a factor of two higher in the fast scan
direction and displaying on a grid with around twice as many
pixels as samples produces the best representations of the
data. Together these innovations will facilitate quantitative
scientific investigation and discovery.
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