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Abstract
Under the influence of long-range attractive and short-range repulsive forces,
thin liquid films rupture and form complex dewetting patterns. This paper
studies this phenomenon in one space dimension within the framework of
fourth-order degenerate parabolic equations of lubrication type. We derive the
global structure of the bifurcation diagram for steady-state solutions. A stability
analysis of the solution branches and numerical simulations suggest coarsening
occurs. Furthermore, we study the behaviour of solutions in the limit that short-
range repulsive forces are neglected. Both asymptotic analysis and numerical
experiments show that this limit can concentrate mass in δ-distributions.

Mathematics Subject Classification: 34B15, 35G25, 35K55, 35Q35

1. Introduction

The competition of attractive van der Waals forces and short-range repulsive forces, such
as Born repulsion, can produce complex instabilities in layers of thin liquid films on solid
substrates. Experimental studies have shown this behaviour for polymer films [33, 50, 54, 55,
63], liquid crystal films [28,57,58], liquid metals [6,28] and evaporating films [13,45]. During
these dewetting processes, large droplets are formed which are connected by ultra-thin films.
In analogy to spinodal decomposition in phase separation for binary alloys described by the
Cahn–Hilliard equation, this evolution is sometimes called spinodal dewetting [42, 43, 45].

The lubrication approximation describes the motion of long-wave unstable thin films of
thickness u by a fourth-order degenerate parabolic partial differential equation (PDE) of the
form [10, 47]

∂u

∂t
− ∇ · (M(u)∇p) = 0 (1)
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where the pressure p in the thin film is given by

p = P(u)−�u. (2)

The explicit form of the nonlinear mobility M(u) depends on the boundary condition at the
liquid–solid interface. The forms

M(u) = u3 and M(u) = u3 + βub (3)

with β > 0, b ∈ (0, 3), correspond to no-slip and various classes of slip boundary conditions,
respectively. The Laplacian term in (2) gives the linearized contribution of surface tension to
the total pressure. The termP(u) encompasses forces exerted on the film, such as a hydrostatic
body force and disjoining/conjoining intermolecular forces due to van der Waals interactions
and Born repulsion [15]. This latter effect is the focus of this paper; we examine a class
of pressure relations P(u) describing the competition of disjoining and conjoining pressure
components of singular type. Generically, we consider functions

P(u) = 1

un
− εm−n

um
= 1

un

(
1 −

[
ε

u

]m−n)
0 < n < m (4)

where ε is a small positive parameter—as considered in the context of partial wetting films [14].
The standard 6–12 Lennard-Jones potential [30, 42, 43, 47] corresponds to the exponents

(n,m) = (3, 9) in this model. Theu−n term describes the aforementioned long-range attractive
force, while the second term in (4) models the short-range stabilizing effect of Born repulsion.
Oron and Bankoff [45,46] consider (4) with (n,m) = (3, 4) to describe a thin film on a layered
solid substrate. Our results show that the solutions of these models have the same qualitative
structure for a large set of (n,m) values.

Early studies of van der Waals-driven instabilities of thin films, by Williams and Davis
[7,60] and de Gennes [10], considered this problem without repulsive pressure terms, i.e. P(u)
given by equation (4) with ε = 0. In general, classical solutions of this problem can cease to
exist in finite time due to singularities which occur if the film ruptures, u → 0. In this context,
for n = 3, self-similar finite-time rupture solutions were studied by Zhang and Lister [64] and
Witelski and Bernoff [61, 62].

In contrast, for ε > 0, the problem is globally well-posed, and solutions exist for all times.
In [27], Grün and Rumpf studied the convergence of numerical schemes suggested in [26].
As a by-product, existence of strictly positive, unique and smooth solutions to equations (1)
and (2) was proved—provided the dimension is d = 1 and m > 3. Corresponding results
for multiple space dimensions can be found in [25]. Numerical simulations of thin films with
generalized van der Waals disjoining pressure show complex pattern formation during which
films evolve to a metastable state composed of a collection of droplets connected by a thin
film of thickness approximately ε. A comparison with physical experiments shows striking
similarities to the characteristic features of dewetting including the formation of capillarity
ridges at the edges of growing holes (cf [27]).

We show that the parameter ε in (4) gives a minimum thickness for non-trivial thin-film
equilibrium states. Viewed as a regularization, it is natural to consider the limit of these ‘post-
rupture’ solutions as ε → 0. We show via numerical simulations and asymptotic analysis of
the equilibria, that concentrations [16] occur in this model. That is, this limit makes sense
only as a measure; for fixed times after rupture numerical simulations show the ε → 0 limit
concentrate mass as a δ-distribution.

Appropriate boundary conditions for equation (1) corresponding to the physical problem
of a fluid confined in an impermeable solid container are

n · ∇p = 0 n · ∇u = 0 on ∂�. (5)
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The latter condition specifies a 90◦ contact angle between the fluid surface and vertical
boundaries at ∂�. This condition makes a uniform fluid layer, u(x, y) = ū, an exact solution of
the full problem and is physically equivalent to neglecting any positive or negative meniscus
due to wetting or non-wetting properties of the container holding the fluid. By the former
condition, mass is conserved, as is the average film thickness ū which is given by

ū = 1

A
∫
�

u dA (6)

where A = area(�). We use ū as a bifurcation parameter for the set of equilibrium solutions
of (1). An energy, or Lyapunov integral, for (1) is given by

E =
∫
�

1
2 |∇u|2 +Q(u) dA (7)

where Q is the primitive of P ,

Q(u) = −
∫ ∞

u

P (v) dv. (8)

This energy is monotonically decreasing, with the rate of dissipation given by

dE
dt

= −
∫
�

M(u)|∇p|2 dA � 0. (9)

In the next section we prove that in one dimension the local minimizers of the energy correspond
to states with a constant uniform pressure, p = p̄, and that they solve the semilinear elliptic
equation

p̄ = P(u)−�u on � (10)

with Neumann boundary conditions. Solutions satisfy the compatibility condition

p̄ = 1

A
∫
�

P (u) dA. (11)

In this paper, we confine ourselves to the case of two-dimensional thin films, i.e. � is
given as an interval (0, L) and u solves the equation

∂u

∂t
+
∂

∂x

(
M(u)

∂

∂x

[
∂2u

∂x2
− P(u)

])
= 0. (12)

This is a special case of the general long-wave unstable model [5, 36–38]

ut = −(F (u)uxxx)x − (G(u)ux)x (13)

with F(u) = M(u) and G(u) = −P ′(u)M(u). In section 2 we prove the existence of a
positive global minimizer of the energy (7) with mass constraint (6) in one dimension. In
section 3 we rigorously derive the complete structure of the set of equilibrium solutions in one
dimension. We show that all non-trivial steady states lie on branches that bifurcate from trivial
solutions. In section 4 we compute the local bifurcation structure near critical values on the
branch of constant solutions. In section 5 we study stability of the equilibria, showing that
the only non-trivial steady states are those that lie on the first bifurcating branch. In section 6
we investigate the asymptotic structure of the steady solutions in the limit as ε → 0. For a
fixed mass, the non-trivial stable solution concentrates in a δ-distribution. This behaviour is
also observed in results from simulations of the dynamics for a sequence of time-dependent
solutions (see figure 9).



1572 A L Bertozzi et al

2. Positive solutions of the PDE and minimizers in one space dimension

In this section we discuss the existence theory for the one-dimensional problem and prove the
existence of a smooth global minimizer of the Lyapunov functional (7). For a pressure of the
form (4), we have the following theorem for positive initial data:

Theorem 1. Consider initial data satisfying

u0 > 0 u0 ∈ H 1(�) and 1
2

∫
�

|∂xu0|2 dx +
∫
�

Q(u0) dx < ∞ (14)

and assume that 0 < n < m, m � 3 in (4). Then a unique positive smooth solution of (1)–(4)
exists for all t > 0.

Proof. Following arguments from previous papers [4,5] it suffices to derive a priori pointwise
upper and lower bounds for the solution. We derive an a priori bound on the H 1 norm and
show this implies pointwise bounds. Then uniform parabolicity implies that the solution is
completely smooth. Similar arguments are presented in [4] for the case P(u) = 0 and in [5]
for a destabilizing non-singular P(u).

First we note that the Lyapunov functional implies that for any time T > 0,

1
2

∫
�

|∂xu(T )|2 dx � 1
2

∫
�

|∂xu0|2 dx +
∫
�

Q(u0) dx −
∫
�

Q(u(T )) dx.

The initial data are in H 1 and positive. Since m > n, −Q(u) has an a priori upper bound
independent of u, implying an a priori bound for

∫ |∂xu|2 dx at the later time T . In one space
dimension this immediately implies an a priori pointwise upper bound on u and also on the
C1/2 norm, at time T .

To show that u has a pointwise a priori lower bound at time T note that the above
implies

∫
Q(u(T )) dx � C. Let umin = min� u be attained at x0. By Hölder continuity,

u(x) � umin + Ch|x − x0|1/2, where Ch is the Hölder constant. Hence

C >

∫
Q(u) dx � C(ε)

∫
(umin + Ch|x − x0|1/2)−m+1 dx + O(1) � C(ε)η(umin) + O(1)

where η(umin) = − log umin for m = 3 and η(umin) = u3−m
min for m > 3. Thus the solution is

forbidden to go below a positive threshold form � 3. Note that all the bounds depend strongly
on ε as it nears zero. In particular, these results are not true for the case ε = 0. �

Remark. In higher space dimensions or when P(·) does not contain singular repulsive terms,
strict positivity of corresponding solutions cannot be guaranteed. Hence, the classical Schauder
approach used in the one-dimensional setting has to be replaced by an ansatz involving weaker
solution concepts [9,24,25]. Moreover, the positivity condition on initial data might be replaced
by the weaker condition that initial data are non-negative and that the total energy is initially
bounded.

The long-time behaviour of solutions of the PDE is related to minimizers of the Lyapunov
functional (7). Define Q(u) to be ∞ for u � 0; we can then prove the following results
concerning the global minimizer. By direct methods of the calculus of variations, we deduce
the following theorem in arbitrary space dimensions.

Theorem 2. Let � be a bounded domain of class C0,1, let ū > 0 and assume 0 < n < m in
(4). Then a global minimizer of E(·) (7) exists in the class V := {u ∈ H 1(�) :

∫
�
u dx = ū}.

In particular, u > 0 almost everywhere in �.
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Proof. Let (uk)k∈N be a minimizing sequence which clearly exists since E(u0) < ∞ for
u0 ≡ ū. Observe that Q(·) is bounded from below by a constant B ∈ R. Hence, a constant C
exists such that

∫
�

|∇uk|2 dx � C < ∞ for all k ∈ N .
Rellich’s compactness result implies that a subsequence (again denoted by (uk)k∈N )

exists which converges strongly in L2(�) and pointwise almost everywhere to a function
u ∈ H 1(�). By Fatou’s lemma, we deduce that also Q(u) lies in L1(�). Using the weak
lower semicontinuity of the norm, we obtain

E(u) � lim inf
k→∞

E(uk) = inf
w∈V

E(w).

Consequently, u is a minimizer and the integrability of Q(u) implies that u > 0 almost
everywhere in �. �

Corollary 1. In space dimension d = 1, u is strictly positive on �, provided m � 3 in (4).

The proof of this result is identical to the positivity of solutions of the evolution equation (see
theorem 1). If m � 3 and d = 1, the minimizer constructed above is sufficiently regular in
order to give a meaning to the corresponding Euler–Lagrange equations. This allows us not
only to obtain better regularity results for solutions, but also to investigate their qualitative
properties as solutions of a second-order ordinary differential equation (ODE).

Theorem 3. Letm � 3 and 0 < n < m in (4). Then a minimizer u as constructed in theorem 2
is a solution of the ODE on � = {x| 0 � x � L},

P(u)− uxx = p̄ (15)

ux(0) = ux(L) = 0
1

L

∫ L

0
u dx = ū. (16)

Moreover, u is smooth.

Proof. Due to the strict positivity of u, the function Fφ(s) := E(u + sφ), φ ∈ H 1(�) is
differentiable for s in (−δ, δ) for sufficiently small δ. Since u is a minimizer, by differentiation
of Fφ(s) at s = 0, we obtain

∫ L

0
uxφx dx +

∫ L

0
P(u)φ dx = 0 ∀ φ ∈ H 1(�)

∫ L

0
φ dx = 0.

Here, P(u), given by (4), is continuous due to the strict positivity of u. Rewriting this for
arbitrary + ∈ H 1(�) yields

∫ L

0
ux+x dx +

∫ L

0
P(u)+ dx =

∫ L

0
p̄+ dx ∀ + ∈ H 1(�)

where p̄ is given by (11). Observing thatP(u)− p̄ is of classCα , elliptic regularity theory [23]
ensures that u is a strong solution, i.e. of class C2 with vanishing normal derivatives at the
boundary. In particular, the right-hand side is of classC2. We may iterate, and theC∞-property
for u follows. �
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3. One-dimensional steady-state solutions

From theorem 3 we know that all minimizers of E are smooth steady-state solutions on
0 � x � L satisfying

P(u)− uxx = p̄ (17)

ux(0) = ux(L) = 0 p̄ = 1

L

∫ L

0
P(u) dx. (18)

In this section we examine the number and structure of steady-state solutions.
While aspects of this problem parallel the Cahn–Hilliard and constrained Allen–Cahn

equations [1, 2, 12, 22, 44], the nonlinear function P(u) in (17) has a different form from that
considered in most previous works and leads to a different structure of the bifurcation diagram.

Equation (17) can be written as an autonomous phase plane system,

ux = v vx = P(u)− p̄ (19)

where p̄ is a control parameter. Observe that every Neumann solution of (17) and (18) on
x ∈ (0, L) can be extended by reflection symmetry to yield a periodic solution of (19) on
x ∈ (0, 2L). Hence, a necessary condition for the existence of Neumann solutions is that (19)
admits periodic solutions. Moreover, the symmetry of (19) guarantees that periodic solutions
on [0, 2L] can be shifted to yield Neumann solutions on [0, L].

LetPmax be the maximum ofP(u) on u > 0. Observe that for anyP(u) of the form (4) and
p̄ ∈ (0, Pmax), equation (19) has a unique elliptic centre point at uc satisfying P(uc)− p̄ = 0
with P ′(uc) < 0. Note that for p̄ < 0 there are no elliptic equilibria, and hence no periodic
orbits and no Neumann solutions of (17). In addition, for 0 � p̄ < Pmax, equation (19) has
a hyperbolic saddle point at us ∼ ε + εn+1p̄/(m − n) as ε → 0 with uc > us . The stable
and unstable manifolds of the saddle point form a homoclinic orbit that encloses uc and all of
the periodic solutions of (19). Periodic solutions surrounding the centre uc have a minimum
greater than the saddle-point value us . Therefore, every non-trivial equilibrium solution is
bounded from below by us , u(x) > ε.

Equation (18) has the trivial uniform constant solution u = ū for any positive value
ū > 0; the corresponding average pressure is p̄ = P(ū). Branches of non-trivial solutions
can bifurcate from the constant solutions only at singular points ū∗, where the linear operator
L = P ′(ū∗)− ∂xx has a non-trivial nullspace [31]; hence the bifurcation points are given by

P ′(ūk) = −k2π2/L2 k = 1, 2, . . . , K. (20)

For ε > 0, P ′(u) is bounded from below for u > 0, therefore there are only a finite number of
branches, k = 1, 2, . . . , K . For each k, there are two roots, ū+

k > ū−
k , with P ′′(ū+

k ) > 0 and
P ′′(ū−

k ) < 0. It is straightforward to show that as ε → 0, K = O(ε−(n+1)/2) by noting that
the minimum scales like P ′(u∗) = O(ε−(n+1)), where the critical point scales as u∗ = O(ε).
For ε = 0 there are an infinite number of upper solutions ū+

k while the lower solutions ū−
k

disappear.
In this section we consider ε > 0 and prove that for each k there is a branch of non-

trivial steady-state solutions that bifurcates from ū+
k and reconnects at ū−

k . We consider an
interval of fixed length L and examine the bifurcating branches of solutions as the total mass,
Lū = ∫ L

0 u(x) dx, varies. We begin by specifying the range of m and n for which our results
hold.
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Figure 1. The set of admissible values for (n,m) satisfying definition 1 (shaded regions for cases I
and II).

Definition 1. We call a pair of positive exponents (n,m) in (4) admissible if they satisfym > n

and either (I) or (II):

(I)
{
n > 1

2 and 3n2 − 10mn + 3m2 −m− n + 2 > 0
}

(II)
{
3n2 − 14mn + 3m2 − 2m− 2n + 7 < 0

}
.

A diagram of the set of admissible values given by definition 1 is shown in figure 1.
The main result of this section is the following theorem.

Theorem 4. Consider P(u) as given in (4) and admissible (n,m) in the sense of definition 1.
Then, for each positive integer k � K there exists a non-trivial branch of solutions to (17) and
(18). Parametrized by p̄ ∈ (P (ū+

k ), P (ū
−
k )), each branch of non-trivial solutions bifurcates

from ū+
k and reconnects to the constant state branch at ū−

k . Furthermore, all solutions of (17)
and (18) are either trivial constant solutions or lie on one of these bifurcating branches.

Figure 2 shows the bifurcation diagram for the set of equilibria of (17) and (18). At each ū,
the diagram gives the maximum and minimum values of each solution u(x). Specifying two
out of three of the values umin, umax, ū, specifies an equilibrium solution u(x), unique up to
the reflection symmetry, x → L− x.

Theorem 4 is proved in lemmas 1 and 3 below.

Lemma 1. For p̄ ∈ (0, Pmax), parametrize the family of periodic solutions u(x) of (19) by
their minimum,

q = min
x
u(x). (21)

Furthermore, letLk(q) be the length of the x-interval on which u(x)−ū has exactly k zeros and
u(x) satisfies the Neumann boundary conditions (18). Then for each k, Lk is a monotonically
decreasing function of q and Lk(q) → ∞ for each k as q ↘ us .

Proof. This lemma is a direct consequence of a general result by Schaaf [52], which can be
summarized as follows. �
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Figure 2. Bifurcation diagram of equilibria for (4) with (n,m) = (3, 4) and ε = 0.14, yielding
K = 4 branches.

Proposition 1. Consider the two-point boundary value problem

uxx + f (u) = 0 ux(0) = ux(L) = 0.

Assume f (u0) = 0, f ′(u0) > 0, and f has only one other root at u1 < u0. Suppose that f is
strictly negative in a right neighbourhood of u1 and that it is continuous in u1. If in addition
S := f ′f ′′′ − 5

3 (f
′′)2 < 0 for all u � u1, then there is a family of solutions parametrized by

u1 < q < u0 with corresponding interval length Lk(q) (q and Lk are as defined in lemma 1)
such that for all k � 1, Lk(q) is a monotonically decreasing function of q.

Proof. This proposition is a direct consequence of several results stated in Schaaf [52]. In
particular, by definition 1.4.1 of [52] f is an ‘A-function’. In addition, proposition 1.5.6 of [52]
says that if f is an A-function, f ′ < 0 near u1, f < 0 near u1 and limu→u1 f (u) = 0 then
f is an A–B function. This implies (theorems 1.4.2 and 2.1.3 of [52]) that L′′

k(q) > 0 for all
u1 < q < u0, i ∈ Z+. Also L′

k(u0) = 0 so that Lk is strictly decreasing. Finally, note that
the phase portrait has nested solutions inside a homoclinic orbit, thus the period approaches
infinity as q → us . �

Lemma 2. Let P(u) be as defined in (4). Let ε > 0 and assume that (n,m) in (4) are
admissible in the sense of definition 1. Then f (u) = p̄ − P(u) is an A-function on R

+, i.e.
S(u) = P ′P ′′′ − 5

3 (P
′′)2 < 0 on R

+.

Proof. For P(u) given by (4), the Schaaf functional S(u) can be written in the form

S(u) = N(w)

3u2n+4
w = (ε/u)m−n > 0

where

N(w) := m2(m + 1)(1 − 2m)w2 −mn(3n2 − 10mn + 3m2 −m− n + 2)w

+n2(n + 1)(1 − 2n).

Note that S(u) is the ratio of a quadratic polynomial in w, N(w), over a positive-definite
function of u. Therefore, to show that S(u) < 0 for u > 0 it is sufficient to guarantee that
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the quadratic polynomial is negative. First, N(w) must be concave, hencem > 1
2 . Then there

are two cases; (I) the maximum of N(w) occurs for w < 0 and (II) the maximum occurs for
w > 0. In case I, to satisfy the A-function condition, it is sufficient to show that N(0) � 0,
yielding n > 1

2 , and that N ′(0) < 0,

3n2 − 10mn + 3m2 −m− n + 2 > 0. (22)

This equation describes the region outside a branch of a rotated hyperbola in the first quadrant
of the (n,m)-plane (see figure 1). To show that S(u) < 0 in case II, it is sufficient to show that
the maximum of N(w) is negative. Following some algebraic manipulations, this condition
reduces to

3n2 − 14mn + 3m2 − 2m− 2n + 7 < 0 (23)

describing the interior of a different rotated hyperbola (see figure 1). Figure 1 shows the set of
admissible (n,m) subject to all of the above constraints as shaded regions for cases I and II. �

Lemma 1 implies the following characterization of the bifurcation diagram.

Lemma 3. LetP be as defined in (4) withm and n satisfying definition 1 and let k be a positive
integer less than or equal to K . Then the following hold.

(a) For all p̄ ∈ (P (ū+
k ), P (ū

−
k )), there exists a non-trivial solution uk = uk(· , p̄) of (17) and

(18) such that uk − ūk has precisely k zeros.
(b) Modulo reflections x → L− x, this solution is unique.
(c) The non-trivial solution uk(· , p̄) depends continuously on p̄ for p̄ ∈ [P(ū+

k ), P (ū
−
k )]. As

p̄ → P(ū±
k ), uk(· , p̄) approaches the constant solutions ū±

k .
(d) All non-trivial steady-state solutions of (17) lie on one of the solution branches uk(x, p̄),

with P(ū+
k ) � p̄ � P(ū−

k ).

Remark. For each k, the family uk(· , p̄), with p̄ ∈ [P(ū+
k ), P (ū

−
k )], defines a branch of

solutions that bifurcates from the constant states. Each of these branches originates at a
constant value ū±

k where an eigenvalue of the linearized problem changes sign. In the next
section we perform weakly nonlinear asymptotic analysis that shows that the bifurcations are
generically either subcritical or supercritical pitchfork bifurcations.

Proof of lemma 3. Recall that the length of the interval L is fixed and let the period map
Lk(q, p̄)be as introduced in lemma 1. Now we emphasize the dependence ofLk on p̄ explicitly.
Recall that for fixed p̄, Lk(q, p̄) tends monotonically to kπ/

√|P ′(uc)| as q approaches the
elliptic centre point uc = uc(p̄). Furthermore, Lk(q, p̄) tends monotonically to infinity when
q decreases to the hyperbolic saddle point us = us(p̄). In the proof of proposition 1 (see [52]),
we found that for each p̄, L′′

k(q) > 0 for us < q � uc, and L′
k(uc) = 0. Moreover, this

period map is a smooth function of q on (us, uc]. Therefore, Lk is a monotonically decreasing
function on this interval and defines a bijection

Lk(· ; p̄) : (us, uc] →
[

kπ√|P ′(uc)|
,∞

)

also see figure 3 for a graph of L1(q, p̄). Thus existence of a non-trivial solution uk occurs
when L is in the range of Lk(q, p̄). Therefore, to prove (a), it is sufficient to show that

p̄ ∈ (P (ū+
k ), P (ū

−
k )) ⇒ L ∈

(
kπ√|P ′(uc)|

,∞
)

(24)
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Figure 3. L1(q; p̄) for p̄ = 5, ε = 0.2.

where ū±
k are given by (20). From direct calculation with (4) for p̄ ∈ (P (ū−

k ), P (ū
+
k )), i.e. for

uc ∈ (ū−
k , ū

+
k ), P(·) satisfies

|P ′(uc(p̄))| > |P ′(ū±
k )| = k2π2

L2

and we use the fact that P(uc(p̄)) = p̄. This implies that L is in the range of Lk(· , p̄),

L >
kπ√|P ′(uc(p̄))|

and hence this proves (a).
Conversely for p̄ /∈ [P(ū−

k ), P (ū
+
k )], Lk(q) is always greater than L so there are no non-

trivial solutions. This proves (d). Assertion (b) follows from the Picard–Lindelöf theorem.
To finish the proof, we prove continuity of the bifurcating branches of solutions, uk(p̄),

as a function of the parameter p̄. Note that solutions of the differential equation (17) depend
continuously on the parameter p̄ and on initial conditions ux = 0, u = q. Thus, it remains
to be shown that q(p̄) ≡ minx uk(x; p̄) depends continuously on p̄. To show this we apply
the implicit function theorem to the map W(q, p̄) = Lk(q, p̄) − L. Note that all non-trivial
equilibria correspond to solutions of W(q(p̄), p̄) = 0. From the proof of (a) we know that
for all p̄ ∈ (P (ū−

k ), P (ū
+
k )), the Jacobian DW is invertible with respect to the first argument.

Hence q(p̄) depends continuously on p̄ for all p̄ ∈ (P (ū−
k ), P (ū

+
k )).

The final step is to prove the limiting result for the endpoints of the interval. From
continuity of Lk(q, p̄) and uc(p̄), for p̄ → P(ū±

k ),

Lk(uc(P (ū
±
k )), P (ū

±
k )) = kπ√

|P ′(uc(P (ū±
k )))|

uc(P (ū
±
k )) = ū±

k .

Thus,

lim
p̄→P(ū±

k )
Lk(uc(p̄), p̄) = kπ√

|P ′(ū±
k )|

= L.

Recall that Lk(· , p̄) is continuously invertible on (us(p̄), uc(p̄)]. Hence,

min
x
uk(x, P (ū

±
k )) = qk(P (ū

±
k )) = L−1

k (L) = uc(P (ū
±
k )) = ū±

k
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i.e. the solution uk(· , P (ū±
k )) is identical to the constant solution ū±

k by virtue of Picard–
Lindelöf’s theorem. This proves the lemma. �

We note that the index k is also called the lap number [3, 22].

4. Local structure of the equilibrium bifurcation diagram

We analytically compute the local structure of equilibrium bifurcation points using perturbation
methods [29, 32]; we use a strained parameter expansion to calculate the local bifurcation
diagram from the Lyapunov–Schmidt reduction [12, 20]. For simplicity we assume L = 1.
Let 0 � σ � 1 be an expansion parameter for non-trivial solutions near a bifurcation point
ū∗,

u(x) = ū∗ + σu1(x) + σ 2u2(x) + σ 3u3(x) + · · · . (25)

For convenience, we write the average pressure, p̄, as P(u) applied to an effective uniform
film thickness, U(σ), that also depends on σ ,

p̄ = P(U(σ)) U(σ) = U0 + σU1 + σ 2U2 + σ 3U3 + · · · . (26)

Substituting these expansions into (17) yields a regular perturbation problem as σ → 0.
At leading order, P(ū∗) = P(U0) and hence U0 is one of the bifurcation values ūk ,
k = 1, 2, 3, . . . , K . At O(σ ), we obtain the linear equation

L̂u1 ≡ P ′(ūk)u1 − u1xx = P ′(ūk)U1 (27)

with the solution u1(x) = A cos(kπx) + U1 for P ′(ūk) = −k2π2, see equation (20), and A is
the amplitude of the solution. At next order, we obtain

L̂u2 = −P ′′(ūk)
[
AU1 cos(kπx) + 1

2A
2 cos2(kπx)

]
. (28)

Applying the Fredholm alternative to ensure that the right-hand side is in the range space
of the linear operator L̂ determines a unique solution u2(x) subject to the condition that
U1 = 0. This observation reduces (27) to the form (18) noted earlier. Finally, at O(σ 3),
we use the equation for u3(x), L̂u3 = R3(ūk, u1, u2, U3), to determine A, the amplitude of
the solution, where R3 is an inhomogeneous term. Applying the Fredholm alternative to this
equation,

∫ 1
0 R3 cos(kπx) dx = 0, determines the amplitude A. The condition that A is real

determines the sign of U2. Apart from this condition, there are no other restrictions on U2 that
cannot be eliminated by a rescaling of variables. Hence, without loss of generality, we take
U(σ) = ūk ± σ 2 where the sign is chosen appropriately to obtain a real solution,

Ak = 2kπ

√∣∣∣∣ 6P ′′(ūk)
5P ′′(ūk)2 + 3k2π2P ′′′(ūk)

∣∣∣∣. (29)

Consequently, the average and extrema of the solution can be written as

ū =
∫ 1

0
u(x) dx ∼ ūk − σ 2 sgn(P ′′(ūk))[3k2π2P ′′′(ūk)− P ′′(ūk)2]

|5P ′′(ūk)2 + 3k2π2P ′′′(ūk)| (30)

uk,min ∼ ūk − σAk uk,max ∼ ūk + σAk. (31)

Combining these results we obtain the local structure of the bifurcation near the bifurcation
point ū±

k for k = 1, 2, . . . , K ,

[u(0)− ūk]
2 = 24k2π2P ′′(ūk)

P ′′(ūk)2 − 3k2π2P ′′′(ūk)
(ū− ūk) � 0. (32)

We see that, except for isolated degenerate cases, all bifurcations are either supercritical or
subcritical pitchfork bifurcations [15]. Figure 4 shows the bifurcation diagram for P(u) given
by (4) with n = 3,m = 4 and ε = 0.18 compared with (32).
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Figure 4. Numerical calculation of the bifurcation diagram for P(u) = u−3 −εu−4 with ε = 0.18.
Dashed curves show the analytic results for the local bifurcation structure (29)–(31).

5. Stability of the equilibrium solutions

In this section we consider the stability of equilibria with respect to mass-preserving
perturbations. We begin with the linear analysis for uniform constant equilibrium solutions
and go on to make more global statements for the entire set of equilibrium solutions.

If the initial data for the PDE (12), with M(u), P (u) given by (3) and (4) is near an
equilibrium u(x), then it is convenient to write the solution in the form u(x, t) = u(x)+ũ(x, t),
where ũ is a zero-mean perturbation. Linearizing (12) yields the evolution equation for ũ,

∂ũ

∂t
= Lũ ≡ ∂x

(
M(u)∂x

[
P ′(u)− ∂xx

])
ũ (33)

with the corresponding linearized Neumann boundary conditions (5),

∂xxxũ = 0 ∂xũ = 0 at x = 0, 1. (34)

The choice ũ(x, t) = û(x)eλt in (33) yields the associated Neumann eigenvalue problem,
Lû = λû.

We note that the linear stability of the uniform constant solutions u(x) = ū can be
computed directly [62]. For these states

λ: = −M(ū):2π2(P ′(ū)− :2π2) : = 1, 2, 3, . . . (35)

with corresponding eigenmodes û = A cos(π:x).
We now briefly summarize the results of a standard weakly nonlinear analysis near the

bifurcation points. In an ε neighbourhood of the bifurcation point ūk , ū = ūk+ε, the eigenvalues
are λk,: ∼ −:2π2M(ūk)(P

′(ūk) − :2π2 + εP ′′(ūk)). From (20), the eigenvalue λk,k = O(ε)
and crosses zero at the bifurcation point. Combining the dominant eigenvalue of the trivial
solution with the local bifurcation structure found in section 4 yields the amplitude equation
for the dynamics near the first bifurcation point,

dA

dt
∼ −π2M(ū1)P

′′(ū1)A

(
P ′′(ū1)

2 − 3π2P ′′′(ū1)

24π2P ′′(ū1)
− A2

)
(36)

where ū1 = ū±
1 . An equivalent amplitude equation can be written for the other bifurcation

points ūk; it describes weakly nonlinear dynamics of solutions restricted to the k-fold symmetry
of the kth branch of equilibrium solutions.
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5.1. General linear stability theory for long-wave unstable lubrication equations

The linear stability of long-wave unstable nonlinear equations of the type (12) has been
considered recently for lubrication-type equations [36–38] and for a number of years for
Cahn–Hilliard problems [1–3, 12, 22, 44]. Some of the results from these papers are relevant
for our problem and we briefly review them here.

The operator (33) is the composition of two second-order operators, Lû = M̄L̄û, where
the mobility operator, M̄, and non-local operator, L̄, are, respectively

M̄v ≡ ∂x(M(u)∂xv) L̄w ≡ P ′(u)w − wxx − 1

L

∫ L

0
P ′(u)w dx (37)

for zero-mean w(x) satisfying Neumann boundary conditions. We note that L is self-adjoint
with respect to a weighted H−1 norm using an inner product defined by the mobility. For
every zero-mean function w(x), there exists a unique zero-mean potential, W , such that
M̄W = w. The weighted H−1 inner product of two zero-mean functions w and v is then
〈w, v〉 ≡ ∫

M(u)∂xW ∂xV dx. This norm can be used to describe the thin-film evolution as
a gradient flow in H−1. In this context, let us also mention the paper [48] by Otto which
shows that the surface-tension-driven thin-film flow in the Hele–Shaw cell has a gradient flow
structure with respect to the Wasserstein metric (see also [18] for a rigorous derivation of the
lubrication approximation within that framework). As the operator L is self-adjoint and the
domain is compact, the spectrum is real and discrete [17, 38]. We note that related results on
the properties of the linearized spectrum can be obtained from analysis of a Rayleigh quotient,
as considered by Bates and Fife for the Cahn–Hilliard equation [3] and by Laugesen and
Pugh [36, 38] for equations of the type (13).

In the case of constant mobility M(u) = M , Bai et al [1] and Grinfeld and Novick-
Cohen [22] showed that the properties of the spectrum of (33) can be obtained from analysis
of the second-order problem for L̄. Since the equilibria are smooth and bounded away from
zero, the problem with non-constant mobility M(u) can be treated equivalently; the operator
M̄ is invertible and hence Lû = λû can be written as L̄û = λM̄−1û. These results directly
extend to (33) using the homotopy

L̄û = λ
[
α + (1 − α)M̄−1

]
û (38)

where α = 0 gives the fourth-order operator L and α = 1 gives the second-order operator
L̄. Lemma 1.2 in [22] and theorem 3.1 in [1] show that the number of positive and negative
eigenvalues of (38) is independent of 0 � α � 1. Furthermore, Grinfeld and Novick-Cohen’s
theorem 5.1 [22] for excluding λ = 0 from the spectrum of L directly extends to our problem
and can be stated as

Theorem 5. Consider the linearized equation (33) with M(u), P (u) given by (3) and (4).
Then, away from the bifurcation points ū±

k on the line of constant solutions, and apart from
turning points, λ = 0 is not in the spectrum of (33) on the branches of non-trivial solutions.
No secondary bifurcations are possible.

The proof follows directly from [22] with appropriate changes for M(u) and P(u).

5.2. Existence of stable non-trivial solutions

For the Neumann problem for (13), Laugesen and Pugh have proved that equilibrium solutions
with interior critical points are unstable (see theorem 4 [38]). We now combine these results
to prove the existence of a family of stable non-trivial solutions for (12).



1582 A L Bertozzi et al

Theorem 6. For problem (12) with P(u) (4) satisfying theorem 4 andM(u) given by (3), there
exists an interval I = (ūmin

1 , ūmax
1 ) containing (ū−

1 , ū
+
1) such that for each ū ∈ I , there exists

a stable non-trivial steady-state solution. These stable monotonic solutions lie on the first
branch of solutions, k = 1.

Proof. Theorems 2 and 3 ensure the existence of a globally stable solution that minimizes
the energy (7) under the mass constraint (6). The linear stability results (35) show that
the uniform constant solutions are unstable for ū ∈ (ū−

1 , ū
+
1). Likewise, theorem 4 of

Laugesen and Pugh [38] shows that the non-trivial solutions branches with k-fold symmetry
for k = 2, 3, . . . , K must also be unstable. Therefore, stable solutions for ū−

1 < ū < ū+
1 can

only exist as part of the k = 1 branch of non-trivial monotonic solutions. By theorem 5 the
stability of any portion of a branch of solutions extends up to turning points. Then, there exist
turning points ū = {ūmin

1 , ūmax
1 } that define the largest interval containing (ū−

1 , ū
+
1) for which

there are stable solutions on the first branch. �

Remark. Figures 2 and 3 with ε = 0.14 and 0.18, respectively, show that for moderately
small ε the branches have a very simple structure. There is precisely one turning point for
each subcritical bifurcation. We conjecture that this is generically true for this problem with
P(u) of the form (4). In this case, we can determine the number of positive eigenvalues for
all solutions along the first bifurcating branch. In figure 3, the first branch has two unstable
portions, one near each of the bifurcation points. By theorem 6, on the portion of the non-trivial
branch between the turning points, all of the solutions must be stable. In the next section we
study the asymptotic structure of this branch in the limit as ε → 0.

Corollary 2. For k = 2, . . . , K , a subset of solutions along the kth branch of non-trivial
solutions (connecting u−

k to u+
k ) is stable with respect to perturbations with the same k-fold

symmetry.

This result follows directly from theorem 6 by noting that the kth bifurcating branch for the
problem with domain size L is the first bifurcating branch for the problem with domain size
L/k. Instability of these reduced-domain-stable solutions to perturbations on the full domain
is called coarsening [3]. An example of this effect can be seen in the numerical simulation
described in figure 10 of the final section of this paper.

6. Asymptotic structure of equilibrium solutions for ε → 0

We now study the structure of the equilibrium solutions of (17) and (18) in the limit that ε → 0.
Our approach in this section is a leading-order matched asymptotic analysis [32] of the solution
branches. Figure 5 shows the first branch for ε = 0.1 with (n,m) = (3, 4). This branch has
subcritical pitchfork bifurcations at ū+

1 and ū−
1 . Turning points occur on this branch at ūmax

1
and ūmin

1 , respectively, describing the maximum and minimum average film thicknesses for
non-trivial solutions. As described above, the turning points separate families of stable and
unstable solutions on this branch. The unstable solutions have a finite-amplitude structure,
with umin = O(1) as ε → 0, while the stable solutions are localized droplets connected by
an ultra-thin film with thickness u ∼ ε (see figure 6) and approach the homoclinic solution of
(19). We show that these stable droplet solutions concentrate mass as a δ-distribution in the
limit of vanishing ε. Moreover, from the asymptotic analysis, we obtain an estimate for the
turning point ūmax

1 as a function of ε.



Dewetting films: bifurcations and concentrations 1583

Figure 5. Log–log plot of the asymptotic structure for the first branch of solutions in the bifurcation
diagram for ε = 0.1.

Figure 6. The stable (full) and unstable (broken) equilibrium solutions, and the leading-order
asymptotic approximations (dotted), for ε = 0.1 and (n,m) = (3, 4) with ū = 1, and the leading-
order asymptotic approximations (dotted).

Recall the equation for equilibria (17) on 0 � x � 1,

P(u)− uxx = p̄ p̄ =
∫ 1

0
P(u) dx. (39)

Uniform and weakly non-uniform solutions of (39) are accurately described by the weakly
nonlinear bifurcation analysis of section 4. Weakly nonlinear solutions, with u(x) ∼ ū = O(1)
as ε → 0, have p̄ ∼ P(ū), hence the local and average pressure terms in (39) are of comparable
size everywhere. In contrast, for large amplitude solutions, we can simplify equation (39) in
regions where p̄ � P(u). Let P0(u) ≡ u−n denote the pressure function P(u) in (4) with
ε = 0. For ε = 0 we note that p̄ � P0(ū) is a consequence of Jensen’s inequality. For
0 < ε � 1, we can obtain asymptotic estimates for the branches of solutions away from the
bifurcation points.

We focus on the k = 1 branch of non-trivial solutions. Without loss of generality, we
consider monotonically decreasing solutions with the maximum of the solution at x = 0
and the minimum at x = 1 (see figure 6). We will describe the structure of these solutions,
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parametrized by ū, in the asymptotic limit ε → 0. By rescaling variables, the asymptotic
structure of the first branch also applies to the other solution branches, k = 2, 3, . . . , K (see
the remark below).

Neglecting the local pressure P(u), reduces (39) to the problem −uxx = p̄ with the
parabolic droplet solution

u(x) ∼ 1
2 p̄(x̄

2 − x2) 0 � x < x̄ (40)

with the maximum

umax = u(0) ∼ 1
2 p̄x̄

2. (41)

This is a leading-order outer solution for p̄ � P(u). This outer solution does not hold as
x → x̄, where (40) yields u → 0 and the local pressure P(u) makes a strong contribution.
There, a rescaled inner problem must be solved to balance the curvature with the local pressure.
The form of this problem depends on the size of umin compared with O(ε). If P(u) is locally
greater than p̄, then P(u) must have a local maximum, with dP/dx = P ′(u)ux = 0. The
maximum can occur either at the edges of the domain, where ux = 0, or at a point where
u(x) = up, the unique root of P ′(up) = 0, that is up = (m/n)1/[m−n]ε > ε > 0. We now
describe these two cases for the k = 1 branch of solutions.

6.1. Finite-amplitude solutions

If umin = O(1) � ε, then P(u) ∼ P0(u) everywhere. Furthermore, since umin > up,
the maximum of P(u) must occur at a boundary and we obtain a localized boundary layer
correction at x̄ = 1 (see figure 6). In this case, the leading-order average value of the solution
is given by the integral of (40) on 0 � x � 1, that is ū ∼ p̄/3. Consequently, p̄ ∼ 3ū, and
we obtain umax ∼ 3ū/2 from (41). The corresponding values of umin for these solutions can
be found by solving an algebraic equation given by the first integral of (39),

Q(umax)−Q(umin) = p̄(umax − umin) (42)

where for n > 1,

Q(u) = − 1

un−1

(
1

n− 1
− 1

m− 1

[
ε

u

]m−n)
(43)

to obtain umin in terms of ū. These approximations for umax and umin for ε = 0.1 are shown
in figure 5; these results describe the large-ū portion of the unstable part of the k = 1 solution
branch. Comparison of these leading-order asymptotic approximations with the numerically
calculated bifurcation diagram show negligible differences for ε ≈ 0.05 or smaller. As noted
above, the structure of this part of the bifurcation diagram is independent of ε as ε → 0 and
will converge to the results for ε = 0 given in [39, 62].

6.2. Localized parabolic droplet solutions

The solutions considered above have pressure P(u) strictly less than the maximum possible
pressure Pmax = P(up) = O(ε−n). In contrast, if umin < up = O(ε) then the monotonically
decreasing solution must have an interior layer since the maximum of the pressure deviation,
P(u)− p̄, occurs within the domain, in a neighbourhood of the point x̄, (40).

For these solutions, p̄ � Pmax, that is P(u) = O(ε−n) only on a small neighbourhood
of x̄ (see figure 7), so that the contribution of the maximum pressure to the average pressure,
(39), is smaller than O(ε−n). Consequently, the matched asymptotic [32] description of these
solutions consists of three parts:
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Figure 7. A linear–log plot of the local pressure P(u) for the stable equilibrium solution u(x) for
ε = 0.1 with ū = 1 (see figure 6). The three regimes for the matched asymptotic construction of
the solution are shown: (a) the droplet, (b) the ultra-thin film and (c) the interior layer.

(a) the droplet, the outer solution (40) on [0, x̄), where u(x) and P(u) are both O(1),
(b) the ultra-thin film, the outer solution describing the nearly flat solution on (x̄, 1] where

u = o(1) and the local pressure is large,
(c) the interior layer, the inner solution in a small neighbourhood of x̄ where P(u) = O(ε−n)

and the curvature of u(x) is large.

We begin with the structure of the ultra-thin film; there the solution u(x) and its gradients are
small. As a result, the leading-order balance in (39) is between the local and average pressures,
P(u) ∼ p̄, with u < up = O(ε). The condition that p̄ � O(ε−n) determines the constant
value for the thickness of the ultra-thin film, umin = u ∼ ε + εn+1p̄/(m − n). Note that the
leading-order result, u ∼ ε, is given by the balance of attractive and repulsive terms in (4),
P(u) = 0. This value for umin differs from the value of the saddle point us , found in section 3,
only by higher-order terms. Consequently, the structure of these equilibria is very similar to
the homoclinic orbit of (19).

In the interior layer, the leading-order balance is between the second derivative and the
local pressure, uxx ∼ P(u), with u = O(ε). This balance requires large gradients in u(x)
and determines the layer to be an O(ε(n+1)/2) neighbourhood of x̄. This result also shows that
the local contribution of the pressure maximum to the average pressure, O(ε1−n/2), is much
smaller than O(ε−n), satisfying our initial assumption. Further details of the structure of the
interior layer are not needed to complete the construction of the leading-order solution, as
shown below.

Returning to (40), we can now complete the description of these solutions. Since
Q(umax) � Q(ε), then from (42) we find that umax ∼ −Q(ε)/p̄. From (41) we determine
that x̄ ∼ √

2|Q(ε)|/p̄. Finally, integrating (40), we obtain the average value to leading order,
ū ∼ (2|Q(ε)|)3/2/(3p̄2), yielding the maximum value of the solution for this portion of the
k = 1 branch (see figure 5) as

umax ∼
(

9|Q(ε)|
8

)1/4√
ū (44)

and the average pressure as

p̄ ∼
(

2|Q(ε)|
32/3

)3/4 1√
ū
. (45)
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Figure 8. Stable solutions on the first branch for fixed mass ū = 1 and values of ε = 0.2, 0.1,
0.05, 0.025, 0.0125, 0.006 25. The solutions become more concentrated at x = 0 as ε decreases.

Consequently, as ε → 0, for each allowable fixed value of ū ∈ (ūmin
1 , ūmax

1 ), we obtain the
solution

u(x) ∼



3ū

2x̄3
(x̄2 − x2) 0 � x < x̄ = (

9
2 ū

2/|Q(ε)|)1/4

ε x̄ < x � 1.
(46)

From (43), for ε → 0, Q(ε) = O(ε−(n−1)) and we obtain

x̄ ∼
√
ūO(ε(n−1)/4) → 0 p̄ ∼ O(ε−3(n−1)/4)/

√
ū → ∞. (47)

Hence for ε → 0, equation (46) is a delta sequence, which converges to a Dirac δ-distribution
with mass ū, ūδ(x). As ε decreases, equation (46) approaches a parabolic profile with fixed
area and support that vanishes as ε → 0. The stable solutions for a sequence of decreasing ε
with fixed mass ū = 1 are shown in figure 8.

An estimate of the maximum mass ūmax
1 of the first branch of the bifurcation diagram

is given by the intersection of the two asymptotic families of solutions. This occurs when
umax ∼ 3ū/2 and (44) are set equal to yield

ū � ūmax
1 ∼ 2

9

√
2|Q(ε)|. (48)

Figure 5 shows that this is an excellent estimate for the position of the turning point in the
k = 1 branch. Note that the entire set of stable localized solutions has saturated pressure,
maxx P (u(x)) = Pmax, though this condition does not define the position of the turning point
(48).

Furthermore, we can make use of a result of Laugesen and Pugh [35] to validate the
asymptotics. The contrapositive of theorem 5 of [38] states that if an equilibrium solution of
(13) is stable then the ratio R(u) = G(u)/F (u) must be non-convex over part of the range of
u(x). In our problem, this ratio is R(u) = −P ′(u). The condition for non-convexity is that
R′′(u) = −P ′′′(u) < 0. This condition holds if umin < ur ,

umin < ur =
[
m(m + 1)(m + 2)

n(n + 1)(n + 2)

]1/(m−n)
ε. (49)

We note that this stability criterion, ur > umin [38], yields a weaker upper bound than the
condition for the occurrence of an interior pressure maximum, up > umin since ur > up.
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Remark. We note that the asymptotic structure of the k-fold symmetric solutions can be found
analogously by solving for the monotonic solutions of (39) on 0 � x � 1/k. Alternatively, the
results for the k = 1 branch of solutions can be mapped onto the other branches k = 2, . . . , K
at different values of ε using the scalings,

x̂ = :x û = :2/(n+1)u ε̂ = :2/(n+1)ε (50)

where : = 1/k describes the kth branch of solutions.

7. Discussion

We have proved that for a large class of admissible (n,m) in (4), including the interesting
physical models for van der Waals rupture, there is a common structure to the equilibrium
bifurcation diagram. We found that, as ε → 0, the bifurcation diagram develops more
branches and the stable steady state approaches the δ-distribution mass concentration. Finite
ε > 0 provides a regularization of (12); the resulting problem has global existence for smooth
solutions. In contrast, for (12) with ε = 0, classical solutions exist only up to a finite-time
rupture singularity, and the problem is ill-posed after rupture.

It is interesting to compare our study with regularizations of other problems in fluid
dynamics that produce finite-time singularities. In the study of classically ill-posed two-
dimensional vortex sheets, well-posed regularizations, involving either viscosity [56] or a de-
singularization of the Birkhoff–Rott kernel [34], are used to compute past finite-time curvature
singularities. Moreover, whether vorticity concentrations can occur in the flow has been an
active area of research [11, 21]. Finite-time singularities also occur in Hele–Shaw flows as
a consequence of topological transitions during the break-up of bubbles. The dynamics of
these flows is likely to be locally well-posed before and after breakup, however, it is unclear
how to pass through the topology change [8, 49]. A diffuse interface approach provides a
regularization of the Hele–Shaw problem that is globally well-posed [19,40,41]. In our study,
for finite ε > 0, the conjoining pressure term in (4) regularizes the ε = 0 finite-time rupture
problem. For ε > 0 the evolution is well-posed through topological transitions, as in diffusive
interface models for Hele–Shaw flows. And, for ε → 0, we will present numerical simulations
of the dynamics of (12) that show the occurrence of concentrations.

To examine the formation of mass concentrations as ε → 0 after rupture, we consider a
sequence of numerical solutions uε(x, t) of the initial-value problem for (12) with L = 1,
M(u) = u3, and P(u) = u−3 − εu−4, with the monotonically decreasing initial data
u0(x) = 0.4 + 0.002 cos(πx). Figure 9 shows the maximum and minimum of the solution
as a function of time for the following values of ε: 0.1, 0.05, 0.025, 0.0125, 0.006 25, and
ε = 0. The ε = 0 problem exhibits finite-time rupture at time TR ≈ 0.041. For ε > 0,
the solutions do not rupture, but each ‘dewets’ shortly after TR , that is the minimum of each
solution becomes small, umin(t) = O(ε). Thereafter, the ε > 0 solutions rapidly converge to
the unique non-trivial stable steady-state solution for this problem (see figure 8). The graphs of
the minimum and maximum of the solutions uε(x, t) shown in figure 9 give one indicator of the
convergence to the steady state. We find that for smaller values of ε the convergence to steady
state happens on shorter time scales. Since the steady states converge to a Dirac δ-distribution,
the computations suggest that for each time after the rupture time TR , the time-dependent
solution sequence converges to a δ-distribution, i.e. for all t � 0,

lim
ε→0

uε(x, t) =
{
u0(x, t) t � TR

ūδ(x) t > TR .
(51)
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Figure 9. A sequence of dynamic simulations in the ε → 0 limit. Numerical results indicate
convergence to the equilibrium rapidly after rupture for ε → 0.

Thus concentrations occur in this solution sequence for ε → 0. In fact, the only estimate,
independent of ε, that is known for the PDE is the L1 norm, that is the conservation of
mass. This simulation of uε(x, t) suggests that sharper analytical control is not possible.
Finally, it is clear from this simulation that there is a droplet formation timescale, TD ,
i.e. the time it takes for the solution to converge to a parabolic droplet after the onset
of dewetting at TR . This preliminary numerical study suggests that TD → 0 as ε →
0.

To briefly study the influence of the limit ε → 0 on the dynamics of topological
transitions (described in [47] as ‘morphological phase separation’), we look at simulations
illustrating long-time coarsening dynamics in (12). We use the algorithm in [26] to compute
the solution of (12) with M(u) = u3, P(u) = u−3 − εu−4, L = 20, and the initial data
u0(x) = 1 + 0.005 sin(6(x − 13)2), for ε = 0.1 and 0.01. Unlike the simple monotonic
initial data used in figure 9, these new initial data have the potential to form complicated
patterns of droplets that may depend sensitively on the structure of u0(x). As shown in
figure 10, these simulations illustrate the dynamics of dewetting (or formation of ‘dry spots’)
and coarsening starting from small perturbations of a flat thin film. Similar results have
been observed in other studies for fixed values of ε [43, 45, 47]; our interest here is the
dependence of the dynamics on ε, in the limit that ε → 0. Figure 10 shows the results
for ε = 0.1 and 0.01. In both situations, after an initial period of dewetting dynamics,
the solutions converge to a series of droplets, at arbitrary positions in the domain, generally
with different masses, all connected by an ultra-thin film. Each of these droplets is close
to an equilibrium solution, and, in fact, they persist for very long times. However, from
section 5, we know that there cannot be any stable equilibria with interior extrema [38],
hence these states are unstable. These states are called metastable, and their long-time
dynamics has been studied for Cahn–Hilliard equations [51, 59]. The long-time dynamics
is characterized by coarsening instabilities that ultimately lead to a final stable droplet (see
figure 8) which is the global minimizer. The time needed for the coarsening process depends
on ε, with smaller ε requiring more time to evolve to the global minimizer. Thus there is
a coarsening time scale, TC , that describes the time it takes for the number of droplets in
the solution to decrease. As suggested by figure 10, this time scale increases, TC → ∞,
as ε → 0, a dramatically different dependence on ε than the droplet formation time-scale,
TD → 0.
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Figure 10. The long-time dynamics for (12) with n = 3,m = 4 for ε = 0.1 (left) and ε = 0.01
(right). Note that the time-scale for the coarsening process increases as ε → 0 and that the final
state converges to the global minimizer.

Physical problems for droplet formation involve instabilities of two-dimensional thin
films, u = u(x, y, t). These problems have more complicated dynamics and a richer set
of equilibrium patterns, given by the solutions of nonlinear elliptic equations. Moreover,
analysis of some fundamental issues, such as positivity and pointwise boundedness, for the
dynamics of (1)–(4) remain as open questions [25]. Specific analysis problems are raised by
this study, including a proof of the small-ε asymptotics of the bifurcating branches and the
details of the location of the turning points. Some progress has been made on related questions
for the Cahn–Hilliard equation (see [22] and references therein).

We conjecture that mass concentrations for ε → 0 also exist for our problem in two
dimensions. Of course, the one-dimensional equilibrium droplet solutions u(x) we have
described exist in two dimensions as fluid ridges, with parabolic cross sections. We expect
that these fluid cylinders are unstable and will break up to form patterns of axisymmetric
droplets. It is also interesting to study the dynamics of the coarsening process and the statistics
of droplet sizes over time for general initial conditions and in comparison with experimental
data [33,53–55]. It is important to study whether the physics on very small scales, which sets
a finite value for ε and controls the time-scales in the model, can be accurately represented by
a simple continuum model such as (4).
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