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ANALYSIS OF A TWO-SCALE CAHN–HILLIARD MODEL FOR
BINARY IMAGE INPAINTING∗
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Abstract. Image inpainting is the process of filling in missing parts of damaged images based
on information gleaned from surrounding areas. We consider a model for inpainting binary images
using a modified Cahn–Hilliard equation. We prove for the steady state problem that the isophote
directions are matched at the boundary of inpainting regions. Our model has two scales, the diffuse
interface scale, ε, on which it can accomplish topological transitions, and the feature scale of the
image. We show via simulations that a dynamic two-step method involving the diffuse interface
scale allows us to connect regions across larger inpainting domains. For the model problem of stripe
inpainting, we show that this issue is related to a bifurcation structure with respect to the scale ε.
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1. Introduction. Image inpainting is the process of filling in missing parts of
damaged images based on information gleaned from the surrounding areas. It is
essentially a type of interpolation. Its applications include restoration of old paintings
by museum artists [12], removing scratches from old photographs [7], altering scenes
in photographs [20], and restoration of motion pictures [21]. Inpainting is intimately
connected with other well-known computer vision problems, such as disocclusion and
segmentation with depth. Indeed, some of the earlier work in these areas, particularly
the work of Nitzberg, Mumford, and Shiota [26] on segmentation with depth, and the
work of Masnou and Morel [24] on disocclusion, have provided motivation for a number
of inpainting algorithms.

The work of Bertalmio et al. [5] introduced image inpainting as a new research
area of digital image processing. Their model is based on nonlinear PDEs and is
designed to imitate the techniques of museum artists who specialize in restoration. In
particular, Bertalmio et al. elucidated the principle that good inpainting algorithms
should propagate sharp edges in surrounding areas into the damaged parts that need
to be filled in. This can be done, for instance, by connecting contours of constant
greyscale image intensity (called isophotes) to each other across the inpainting region,
so that grey levels at the edge of the damaged region get extended to the interior
continuously. They also impose the direction of isophotes as a boundary condition at
the edge of the inpainting domain.

In subsequent work with Bertozzi (see [4]), they realized that the nonlinear PDE
introduced in [5] has intimate connections to the two-dimensional fluid dynamics of
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the Navier–Stokes equation. Indeed, it turns out that the steady state problem origi-
nally proposed in [5] is equivalent to the inviscid Euler equations from incompressible
flow, in which the image intensity function plays the role of the stream function in
the fluid problem. This analogy also shows why diffusion is required in the original
inpainting problem. The natural boundary conditions for inpainting are to match the
image intensity on the boundary of the inpainting region and also the direction of
the isophote lines, which for the fluid problem is effectively a generalized “no-slip”
boundary condition that requires a Navier–Stokes formulation, introducing a diffusion
term. In practice, nonlinear diffusion (as in Perona and Malik [29] and Rudin, Osher,
and Fatemi [31]) works very well to avoid blurring of edges in the inpainting.

A different approach to inpainting was proposed by Chan and Shen in one of the
earliest works [9] in the field. They introduced the idea that well-known variational
image denoising and segmentation models can be easily adapted to the inpainting
task by a simple modification. Indeed, these models often include a fidelity term that
keeps the solutions close to the given image. By restricting the effects of the fidelity
term in these models to only the complement of the inpainting region, Chan and
Shen showed that very good image completions can be obtained. The principle behind
their approach can be summarized as follows: Variational denoising and segmentation
models all have an underlying notion of what constitutes an image. In the inpainting
region, the models of Chan and Shen reconstruct the missing image features by relying
on this built-in notion of what constitutes a natural image.

The first model introduced by Chan and Shen used the total variation based image
denoising model of Rudin, Osher, and Fatemi [31] for the inpainting purpose. This
model can successfully propagate sharp edges into the damaged domain. However,
because the regularization term in this model exacts a penalty on the length of edges,
the inpainting model cannot connect contours across very large distances. Another
caveat is that this model does not keep the direction of isophotes continuous across
the boundary of the inpainting domain.

Subsequently, Chan, Kang, and Shen [8] introduced a new variational image in-
painting model that addressed the caveats of the the total variation based one. This
model is motivated by the work of Nitzberg, Mumford, and Shiota [26] and includes a
new regularization term that penalizes not merely the length of edges in an image but
the integral of the square of the curvature along the edge contours. This allows both
for isophotes to be connected across large distances and their directions to be kept
continuous across the edge of the inpainting region. Another source of motivation
was the work of Masnou [23] and Morel [24], where a formal variational formulation
for disocclusion and a particular practical implementation is given: they use geodesic
curves to join the isophotes arriving at the boundary of the inpainting region.

Following in the footsteps of Chan and Shen, Esedoglu and Shen [14] adapted the
Mumford–Shah image segmentation model to the inpainting problem. They utilized
Ambrosio and Tortorelli’s elliptic approximations [2] to the Mumford–Shah functional.
Gradient descent for these approximations leads to parabolic equations with a small
parameter ε in them; they represent edges in the image by transition regions of thick-
ness ε. These equations have the benefit that highest order derivatives are linear.
They can therefore be solved rather quickly. However, like the total variation image
denoising model, the Mumford–Shah segmentation model penalizes length of edge
contours and therefore does not allow for the connection of isophotes across large
distances in inpainting applications.

In order to improve the utility of the Mumford–Shah model in inpainting, Ese-
doglu and Shen introduced the Mumford–Shah–Euler image model that, just like the
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previous work [8] of Chan, Kang, and Shen, penalizes the square of the curvature
along an edge contour. Following previous work by March (see [22]), they then used
a conjecture of De Giorgi [18] (which has since been given a proof in [30]) to approx-
imate the resulting variational problem by elliptic ones. The same approximation
is also used in [13] to compute piecewise constant segmentations with depth via the
model of Nitzberg, Mumford, and Shiota. Resulting gradient descent equations are
fourth order, nonlinear parabolic PDEs with a small parameter in them and have a
striking resemblance to the Cahn–Hilliard equation.

A recent paper by the authors [6] presents a new model directly based on Cahn–
Hilliard evolution, rather than a more complex gradient flow to minimize a curvature
functional. This simpler model was shown, in numerical examples, to have many of
the desirable properties of the model introduced in [14]. In particular, both image in-
tensity and the direction of edges are continued smoothly across the inpainting region.
However, the Cahn–Hilliard method was shown to be 2–5 times faster, computation-
ally, than that of [14] and an order of magnitude or more faster than other competing
PDE-based inpainting methods. In this paper, we present rigorous theory for the
existence of solutions of the evolution equation. We also prove, for the steady state
problem, that in the limit of large fidelity, isophote directions of the restored image
will match those of the given background image, provided that it has sufficient regu-
larity. Section 2 provides a review of previous phase field models for image processing,
in which a small scale ε is introduced over which boundaries of objects are diffused.
Section 3 reviews the proposed model. Section 4 presents rigorous existence theory
for the time evolving problem. Section 5 proves continuity of isophotes for the case
ε = 1 and a background image function that is at least C2. Section 6 considers binary
data f and shows that for sufficiently small ε, the direction of edges of the restored
image u again matches the direction of edges of the binary data f in the limit of large
fidelity. As in section 5, this is accomplished by looking at the large fidelity limit.
Section 7 considers a model problem of stripe inpainting. This problem is particularly
useful for understanding the existence of multiple stable solutions of the inpainting
problem and how they are related to each other through a bifurcation analysis. Sec-
tion 8 presents some real-world computational examples with binary data. Section 9
presents a discussion with suggestions for future work.

2. Phase field models for inpainting. We recall very briefly the two models
introduced in [14] and their approximations by elliptic functionals. The first one is
a very simple modification of the Mumford–Shah segmentation model and has the
following form: For a given image f(x), solve the minimization problem

(2.1) inf
u(x)∈L2(Ω)

K⊂Ω

∫
Ω\K

|∇u|2 dx + αLength(K) + λ

∫
Ω\D

(f − u)2 dx.

Here the unknown set K is supposed to be a union of curves and approximate the
edges of the given image f(x). The function u(x), which is also an unknown of the
problem, is required to be smooth away from the edge set K by the Dirichlet energy
that appears in the energy. D ⊂ Ω is the user-supplied inpainting region. The last
integral in (2.1) represents the fidelity term and forces the piecewise smooth function
u(x) to remain close in the L2 sense to the given image f(x). The only difference of
(2.1) from the original Mumford–Shah functional is that the fidelity term is integrated
over Ω \D instead of the entire domain Ω.

Energies of the form (2.1) are difficult to handle because part of the minimization
is to be carried out over collections of curves in the plane. Ambrosio and Tortorelli
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introduced elliptic energies that approximate the Mumford–Shah functional in the
sense of Gamma convergence (details can be found in [10]), whose numerical treat-
ments are consequently much easier. Their approximation, when written for (2.1),
takes the form

(2.2) MSε(u, z) =

∫
Ω

(
z2|∇u|2 +α

(
ε|∇z|2 +

(1 − z)2

4ε

))
dx+λ

∫
Ω\D

(f −u)2 dx.

Here the function z is introduced to keep track of the edge set. As the small parameter
ε → 0, these energies have been rigorously proved to converge to (2.1) in the sense of
Gamma convergence. The implication is that any accumulation point of minimizers
of (2.2) has to be a minimizer of (2.1). These approximations are often called “diffuse
interface” approximations because for a fixed value of ε, the minimizer approximates
the sharp interface problem by one in which there is an interface of thickness of order
ε. Diffuse interface methods are particularly useful for problems in which topology
transitions of the interface are of interest.

Esedoglu and Shen [14] introduce a variant of energy (2.1) that incorporates
curvature of edge contours into the functional. It has the form

(2.3) MSE(u,K) =

∫
Ω\K

|∇u|2 dx +

∫
K

(α + βκ2) dσ + λ

∫
Ω\D

(u− f)2 dx,

where κ is the curvature of K. Based on a conjecture of De Giorgi [18], and fol-
lowing previous work by March in [22], they consider the following diffuse interface
approximation of (2.3):

(2.4) MSEε(u, z) =

∫
Ω

(
z2|∇u|2 + α

[
ε|∇z|2 +

1

ε
W (z)

]

+
β

ε

[
2εΔz − 1

ε
W ′(z)

]2
)
dx + λ

∫
Ω\D

(u− f)2 dx,

where W (z) is the double-welled function W (z) = z2(z − 1)2. Gradient descent
for (2.4) with respect to the L2 inner product gives a system of coupled diffusion
equations. The addition of curvature terms introduced in (2.3) allows for control of
edge directions as well as location of edges. This naturally leads to a higher order
energy in the diffuse interface approximation (2.4). The result is an L2 gradient flow
that is fourth order in space and includes terms that scale as 1/ε3. In the next section
we show that a much simpler model based on the original length functional of (2.1) can
control both edge locations and directions, provided that we consider a superposition
of an H−1 gradient flow and L2 flow, rather than a pure L2 descent.

3. Proposed model. In this paper, we consider a binary image (i.e., shape)
inpainting model that is a much simplified version of the Esedoglu–Shen model from
the previous section. The key observation leading to the model is that the fourth order
gradient flow in the Esedoglu–Shen model has features in common with the Cahn–
Hilliard equation, which is a much simpler model for which fast solution techniques
are available [6, 37]. It is therefore natural to ask if a simpler model can be used
directly for inpainting.

Let f(x) be a given binary image, and suppose that D ⊂ Ω is the inpainting do-
main. We propose solving the following equation to steady state in order to construct
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an inpainted version u(x) of f(x):

(3.1) ut = −Δ

(
εΔu− 1

ε
W ′(u)

)
+ λ(x)(f − u),

where

λ(x) =

{
0 if x ∈ D,
λ0 if x ∈ Ω \D,

u(x, t) satisfies ∂u
∂ν = ∂Δu

∂ν = 0 on ∂Ω, and again W (u) = u2(u− 1)2.
Equation (3.1) is identical with the standard Cahn–Hilliard equation [3, 27], ex-

cept for the second term on the right-hand side. This term is there to keep the solution
constructed close to the given image f(x) in the complement of the inpainting do-
main, where there is image information available. We mention here that such phase
field models have been used for other applications such as shape recovery in computer
vision [11].

Equation (3.1) is not a gradient flow for an energy; however, it can be thought of
as a superposition of gradient descents for two different energies. Indeed, the Cahn–
Hilliard equation is the gradient flow with respect to the H−1 inner product [35] of the
following energy, which appeared already as a part of some of the variational models
introduced in the previous sections:

(3.2) Eε(u) :=

∫
Ω

(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx.

This is the energy of Modica and Mortola [25], which has been rigorously shown to
approximate the perimeter of sets in the sense of Gamma convergence:

Eε
Γ−−−→ E(u) :=

{
Per(Σ) if u(x) = 1Σ(x) for some Σ ⊂ Ω,
+∞ otherwise.

When λ(x) ≡ 0, (3.1) thus decreases (3.2); it can also be easily seen that in this
case the solution preserves total image intensity (i.e.,

∫
Ω
u(x, t) dx is constant in t).

The dynamics of (3.1) in this case has been studied extensively. For instance, it is
well known that under (3.1) with λ(x) ≡ 0, arbitrary initial data form interfaces
of thickness approximately ε at a fast time scale; these interfaces separate regions
where the solution is approximately either 0 or 1 (location of wells for the potential
W ). The fact that energy (3.2) is decreased suggests that the subsequent evolution
involves some sort of coarsening of this configuration of regions. Indeed, as ε → 0,
at a slower time scale the interfaces approximate the solution of the Mullins–Sekerka
problem [1, 28].

When λ(x) �≡ 0, (3.1) is no longer gradient descent for (3.2); the second term in
the right-hand side of (3.1) is gradient descent with respect to the L2 inner product
for the pointwise energy:

(3.3)

∫
Ω

(u− f)2 dx.

Our proposed model (3.1) can thus be thought of as a superposition of gradient descent
with respect to H−1 inner product for (3.2) and gradient descent with respect to L2

inner product for (3.3). However, it is not the gradient descent, either in H−1 or L2

inner product, for the sum of the energies (3.2) and (3.3).
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An important distinction of model (3.1) from those of Bertalmio et al. is that
no explicit boundary conditions are imposed at the boundary ∂D of the inpainting
region D. However, we will show in section 5 that in the limit that λ0 → ∞, stationary
solutions of (3.1) converge to the solution of the following equation:

−Δ

(
εΔu− 1

ε
W ′(u)

)
= 0 in x ∈ D,

u(x) = f(x) on x ∈ ∂D, and

∇u = ∇f on x ∈ ∂D.

(3.4)

This is proved under the condition that the given function f(x) ∈ C2(Ω). The fact
that (3.1) is fourth order naturally leads to the two boundary conditions (3.4) in the
limit of large λ. We note that this feature is not special to the particular nonlinear
equation considered here but is due to the highest order term on the right-hand side
of (3.1). The rigorous results of sections 5 and 6 require only the highest order term
to complete the analysis. The rest of the work in those sections is to show that the
lower order terms, which are responsible for the phase separation, do not adversely
affect the results. We therefore expect that solving (3.1) with a very large choice of
the constant λ0 will approximate a solution of (3.4).

After addressing the case λ → ∞ for f ∈ C2, where we take ε first to be one, we
then consider f a smooth approximation of a binary function, where the smoothing
is on a scale ε, the diffuse interface scale. We show that the same estimates hold as in
the completely smooth case, except that now λ depends on ε. In practice, we do not
find any significant numerical hardship regarding the large value of λ when ε is small.

From the inpainting application point of view, the ability to impose boundary
conditions for both the solution u(x) and its derivative ∇u is one of the great ad-
vantages of fourth order models such as (3.4). Indeed, this allows image information
generated by the model in the inpainting region D to match the original image data
defined on Ω\D not only in intensity but also in isophote directions. That means our
model (3.1) continues edges into the inpainting domain without introducing kinks at
the boundary ∂D.

4. Global existence of weak solutions of the modified Cahn–Hilliard
equation. Before discussing the steady state problem, we show that well-posedness
of the dynamic problem follows from classical methods for the case λ0 = 0.

Consider the time dependent problem on a compact region Ω ⊂ R
2 with an

inpainting region D ⊂ Ω:

(4.1) ut = −Δ

(
εΔu− 1

ε
W ′(u)

)
+ λ0(f − u)χΩ\D.

Following Chapter III, Section 4.2 in [36] for the case λ0 = 0, we define

V =

{
φ ∈ H2(Ω)

∣∣∣∣ ∂φ

∂ν
= 0 on ∂Ω

}
.

We define a weak solution of the evolution equation (4.1) as one that satisfies

(4.2)
d

dt
〈u, v〉 + 〈εΔu,Δv〉 −

〈
1

ε
W ′(u),Δv

〉
= 〈λ(x)(f − u), v〉 ∀v ∈ V,

where 〈., .〉 specifies the L2 inner product.
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We establish the following global existence and uniqueness theorem.
Theorem 4.1. For every u0 in L2(Ω), and every T > 0, the initial-boundary

value problem (4.2) has a unique solution u which belongs to

C([0, T ];L2(Ω)) ∩ L2(0, T ;V ).

The proof of existence follows a similar argument as in [36] for λ = 0. We require
an L2 estimate that includes the additional fidelity term. In fact we show that this
gives a global in time bound for u in L2 when λ is sufficiently large.

Lemma 4.2. Given a weak solution as described above, there exist constants
C(ε, λ, f) > 0 and θ(λ, f, ε) so that

(4.3)
1

2

d

dt

∫
Ω

u2 dx ≤ C(ε, λ, f) − θ

∫
Ω/D

u2 dx

for all t ≥ 0. For λ sufficiently large, θ > 0. The constant C also depends on the size
of the domain D.

This lemma establishes an a priori bound for the L2 norm of the solution u; this
bound is uniform in time for λ sufficiently large. We expect that it would therefore
play an important role in, for example, establishing existence of steady states for the
modified Cahn–Hilliard equation considered in this paper.

Proof. We first reference a standard interpolation inequality:

(4.4)

∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(Δu)2 dx +
C

δ

∫
Ω

u2 dx.

By the L1 version of Poincaré’s inequality, together with the observation that the
domain of integration in the second integral of (4.4) can be taken to be something
smaller than Ω (at the expense of larger constants but no matter),

(4.5)

∫
Ω

u2 dx ≤ C

∫
Ω

|∇(u2)| dx + C

∫
Ω\D

u2 dx,

where C depends on the size of D compared to Ω. By Hölder’s inequality we also
have that (for some α small enough)

(4.6)

∫
Ω

|∇(u2)| dx ≤ |Ω| 12
(∫

Ω

u2|∇u|2 dx
) 1

2

≤ α

2

∫
Ω

u2|∇u|2 dx +
C

2α
.

Putting the last three inequalities together,

(4.7)

∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(Δu)2 dx +
Cα

2δ

∫
Ω

u2|∇u|2 dx +
C

δ

∫
Ω\D

u2 dx +
C

2αδ
.

Now computing the rate of change of the L2 norm of the solution, we get that

1

2

d

dt

∫
Ω

u2 dx = −ε

∫
Ω

(Δu)2 dx +
1

ε

∫
Ω

uΔW ′(u) dx + λ

∫
Ω\D

u(f − u) dx

= −ε

∫
Ω

(Δu)2 dx− 1

ε

∫
Ω

W ′′(u)|∇u|2 dx + λ

∫
Ω\D

u(f − u) dx,(4.8)

where we integrated by parts on the second term in the right-hand side.
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Using the fact that W ′′(ξ) ≥ γξ2 − C for all ξ, for some constants γ and C, in
(4.8),
(4.9)
1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(Δu)2 dx− γ

ε

∫
Ω

u2|∇u|2 dx+
C

ε

∫
Ω

|∇u|2 +λ

∫
Ω\D

u(f −u) dx.

We now put everything together as follows: First, writing the last term above as

λ

∫
Ω/D

ufdx− λ

∫
Ω/D

u2dx ≤ λ

2

∫
Ω/D

f2dx− λ

2

∫
Ω/D

u2dx,

we use inequality (4.5) in order to bound the last term of the inequality above as
follows:

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(Δu)2 dx− γ

ε

∫
Ω

u2|∇u|2 dx +
C

ε

∫
Ω

|∇u|2 dx

+
λ

2

∫
Ω\D

f2 dx +
λ

2

∫
Ω

|∇(u2)| dx− λ

2C

∫
Ω

u2 dx.

Now use inequality (4.6) with α = δ1 to estimate the next to last term in the inequality
above:

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(Δu)2 dx− γ

ε

∫
Ω

u2|∇u|2 dx +
C

ε

∫
Ω

|∇u|2 dx +
λ

2

∫
Ω\D

f2 dx

+
λδ1
4

∫
Ω

u2|∇u|2 dx +
Cλ

4δ1
− λ

2C

∫
Ω

u2 dx.

Now use inequality (4.7) with α = δ1 and δ = δ2 to estimate the
∫
|∇u|2 dx term in

the inequality above as follows:

1

2

d

dt

∫
Ω

u2 dx ≤ −ε

∫
Ω

(Δu)2dx−γ

ε

∫
Ω

u2|∇u|2 dx+
Cδ2
ε

∫
Ω

(Δu)2 dx+
Cδ1
2εδ2

∫
Ω

u2|∇u|2 dx

+
C

2εδ1δ2
+

C

εδ2

∫
Ω\D

u2 dx+
λ

2

∫
Ω\D

f2 dx+
λδ1
4

∫
Ω

u2|∇u|2 dx+
Cλ

4δ1
− λ

2C

∫
Ω

u2 dx.

We now try to satisfy the following conditions with our choice of the constants δ1, δ2,
and λ:

1. Cδ2
ε < ε, i.e., δ2 < ε2

C ;

2. Cδ1
2εδ2

+ λδ1
4 < γ

ε ;

3. C
εδ2

< λ
2C .

To satisfy the first condition, take δ2 = 1
8C ε2. Then, to satisfy the third, we can

choose any λ ≥ 16C3

ε3 . To satisfy the second, choose δ1 < 4ε2γ
16C2+λε3 . With these

choices, we end up with the following inequality:

1

2

d

dt

∫
Ω

u2 dx ≤ C(ε, λ, f) − θ

∫
Ω

u2 dx,

where θ > 0. For any λ, Grönwall’s lemma implies an a priori bound on the L2 norm
of u on any finite time interval [0, T ). Moreover, for sufficiently large λ, we obtain a
uniform in time bound on the L2 norm of u(·, t):

∃M > 0 such that ‖u(·, t)‖L2 ≤ M ∀t ≥ 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CAHN–HILLIARD IMAGE INPAINTING 921

Remark. In the above analysis, the λ needed to obtain a negative θ depends on ε
and the size of the inpainting region compared to Ω.

Following the remaining arguments in [36] one can establish global existence and
uniqueness of a weak solution to the modified Cahn–Hilliard equation. We are not
aware of any Lyapunov function for this problem, as in the original Cahn–Hilliard
model. However, we observe in our numerical simulations that the solution quickly
approaches a steady state as t increases; as we mentioned before, the existence of such
a solution is strongly suggested by the estimate given above. Moreover, the steady
state solution appears to inherit the regularity of the original parabolic problem. In
the next section we show that existence of an H2 solution of the steady state problem
guarantees that the intended boundary conditions for the inpainting problem are
satisfied as λ → ∞. In the analysis, λ depends on ε; however, this dependence is
not something that, in practice, causes us hardship in the computation. We prove
this result while noting that convergence of the time dependent solution to the steady
state problem remains unaddressed.

5. Fidelity and boundary conditions. The fidelity parameter λ in (3.1) en-
forces the original image outside of the inpainting region. One might expect that as
λ gets large, the existing region enforces some kind of effective boundary conditions
on the inpainting region. In this section we prove this rigorously for the steady state
problem. As we mentioned earlier, these solutions turn out to approximate a solution
of (3.4). Our results establish rigorously a connection between the inpainting tech-
nique used by Bertalmio et al. (who prefer to impose boundary conditions at the edge
of the inpainting domain D) and that of Chan et al. (who prefer to use a fidelity term,
similar to the second term in the right-hand side of our model (3.1)). In this section
we consider the case ε = 1 and consider smooth (greyscale) f . In the next section we
show how to extend these results to binary f and small ε.

5.1. Key estimates. We require the following version of the Poincaré inequality.
Lemma 5.1 (Poincaré inequality). Let Ω ⊂ R

N be a bounded domain with Lip-
schitz boundary. There exists a constant C = C(Ω) > 0 such that if v(x) ∈ C1(Ω)
with v = (u− ū)2 for some u ∈ C1(Ω) and ū := 1

|Ω|
∫
Ω
u dx, then∫

Ω

v2 dx ≤ C

∫
Ω

|∇v|2 dx.

Proof. Suppose not. Then there exists a sequence {uj}∞j=1 ⊂ C1(Ω) such that∫
Ω

v2
j dx > j

∫
Ω

|∇vj |2 dx,

where vj = (uj − ūj)
2 for some uj ∈ C1(Ω), and vj �= 0. By normalizing, we make

sure that ∫
Ω

v2
j dx = 1 and ūj :=

1

|Ω|

∫
Ω

uj dx = 0 ∀j.

Then the functions vj are bounded uniformly in L2(Ω) and∫
Ω

|∇vj |2 dx <
1

j
.

By Rellich’s theorem, by passing to a subsequence if necessary, we may assume that
vj converge to some v∞ in the L2(Ω) sense and pointwise a.e.
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Let wj(x) := max2{0, uj(x)}. Then∫
Ω

|∇wj |2 dx ≤
∫

Ω

4
(
max{0, uj(x)}

)2

|∇uj |2 dx ≤
∫

Ω

4u2
j |∇uj |2 dx

= 4

∫
Ω

|∇vj |2 dx −→ 0 as j → ∞.

Once again by Rellich’s theorem we may assume that the sequence wj converges to
some w∞ in L2(Ω). By lower semicontinuity,∫

Ω

|∇w∞|2 dx ≤ lim inf
j→∞

∫
Ω

|∇wj |2 dx = 0.

That means w∞ is a constant.
The very same argument applied to w̃j(x) := min2{0, uj(x)} shows that up to

passing to subsequences, we may assume that w̃j → w̃∞ in L2(Ω) and pointwise a.e.,
where w̃∞ is a constant.

Thus, for a.e. x ∈ Ω, we have that
√

wj(x) = max{0, uj(x)} converges to
√
w∞

and
√

w̃j(x) = −min{0, uj(x)} converges to
√
w̃∞. Since uj(x) = max{0, uj(x)} +

min{0, uj(x)}, we have that

lim
j→∞

uj(x) = C :=
√
w∞ −

√
w̃∞ for a.e. x ∈ Ω.

Moreover, since the sequence {av2
j + b} dominates {(uj −C)4} for some a, b ∈ R, and

{vj} converges in L2, we get that the sequence {uj} converges to the constant C in
L4(Ω). But ūj = 0, and so in fact we must have C = 0. This contradicts the fact∫
u4
j dx =

∫
v2
j dx = 1.

Lemma 5.2. Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary. Let D

be a compactly included subdomain of Ω, also with Lipschitz boundary. There exist
constants C1, C2, and C3 such that if u(x) ∈ C1(Ω), then

∫
Ω

u4 dx ≤ C1

(
1

|Ω \D|

∫
Ω\D

u dx

)4

+ C2

∫
Ω

u2|∇u|2 dx

+ C3

(
1

|Ω \D|

∫
Ω\D

u dx

)2 ∫
Ω

|∇u|2 dx.

Proof. Define the function v to be

v(x) :=

(
u(x) − 1

|Ω \D|

∫
Ω\D

u(x) dx

)2

.

The standard Poincaré inequality implies

(5.1)

∫
Ω

v2 dx ≤ C

∫
Ω\D

v2 dx + C

∫
Ω

|∇v|2 dx.

On the other hand, Lemma 5.1 implies

(5.2)

∫
Ω\D

v2 dx ≤ C

∫
Ω\D

|∇v|2 dx.
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Combining inequalities (5.1) and (5.2) we get∫
Ω

v2 dx ≤ C

∫
Ω

|∇v|2 dx.

Writing the last inequality in terms of u yields the conclusion of the present lemma
after a few elementary manipulations.

Proposition 5.3. Let u be an H2 weak solution of the PDE

−Δ
(
Δu−W ′(u)

)
+ λ(x)(f − u) = 0,

that is,

(5.3) 〈Δu,Δv〉 − 〈W ′(u,Δv〉 = 〈λ(x)(f − u), v〉 ∀v ∈ V,

where

λ(x) =

{
0 if x ∈ D,
λ0 if x ∈ Ω \D

with λ0 ≥ 0. Assume that f ∈ C2(Ω). Then there exist constants C1 and C2 indepen-
dent of λ0, depending only on f , so that∫

Ω

(
Δu

)2

dx ≤ C1 and∫
Ω\D

(
u− f

)2

dx ≤ C2

λ0
.

(5.4)

Proof. First, we consider a test function v ≡ 1 to obtain

(5.5)

∫
Ω\D

u dx =

∫
Ω\D

f dx,

where we used the fact λ = 0 in D. Then, taking a test function v = (u− f), we get

0 =

∫
Ω

−
(
(Δu− Δf)(Δu−W ′(u)) + λ(x)(u− f)2

)
dx

= −
∫

Ω

(
Δu

)2

dx−
∫

Ω

λ(x)(f − u)2 dx + (I) + (II),

(5.6)

where

(I) :=

∫
Ω

W ′(u)Δu dx and

(II) :=

∫
Ω

(
Δu−W ′(u)

)
Δf dx.

By first applying integration by parts we have

(I) = −
∫

Ω

W ′′(u)|∇u|2 dx

≤
∫

Ω

−γu2|∇u|2 dx +

∫
Ω

C|∇u|2 dx,
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where we used the fact that there exist positive constants γ and C such that W ′′(ξ) ≥
γξ2 − C for all ξ ∈ R. By (5.5), Lemma 5.2 applied to u gives∫

Ω

u2|∇u|2 dx ≥ C

∫
Ω

u4 dx− C

∫
Ω

|∇u|2 dx− C.

Hence,

(5.7) (I) ≤ −Cγ

∫
Ω

u4 dx + Cγ

∫
Ω

|∇u|2 dx + Cγ.

By Hölder’s inequality,

(5.8)

∫
Ω

u4 dx ≥ C

(∫
Ω

u2 dx

)2

.

Combining (5.7) and (5.8) and absorbing γ into the constant C, we get

(5.9) (I) ≤ −C

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

+ C

∫
Ω

|∇u|2 + C.

We now use the standard interpolation inequality∫
Ω

|∇u|2 dx ≤ δ

∫
Ω

(
Δu

)2

dx + C(δ)

∫
Ω

u2 dx

(where δ > 0 but arbitrarily small) along with (5.9) to obtain the following estimate:

(5.10) (I) ≤ δ

∫
Ω

(
Δu

)2

dx− C

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

+ C(δ)

∫
Ω

u2 dx + C.

We turn to estimating (II). Since f ∈ C2(Ω), and since |W ′(ξ)| ≤ Cξ3 + C, we get

(II) ≤ δ

∫
Ω

(
Δu

)2

dx + C

∫
Ω

|u|3 dx + C

≤ δ

∫
Ω

(
Δu

)2

dx + δ

∫
Ω

u4 dx + C.

(5.11)

Putting together our estimates (5.10) for (I) and (5.11) for (II) together with (5.6),
we get∫

Ω

(
Δu

)2

dx + λ0

∫
Ω\D

(f − u)2 dx = (I) + (II)

≤ δ

∫
Ω

(
Δu

)2

dx + C(δ)

∫
Ω

u2 dx + C

− (C − δ)

∫
Ω

u4 dx− C

(∫
Ω

u2 dx

)2

.

Choosing δ > 0 small enough, one gets

(5.12)

∫
Ω

(
Δu

)2

dx + λ0

∫
Ω\D

(f − u)2 dx ≤ C(δ)

∫
Ω

u2 dx− C

(∫
Ω

u2 dx

)2

+ C.

Let ξ :=
∫
Ω
u2 dx. Then the right-hand side of (5.12) is −Cξ2 + C(δ)ξ + C for some

positive constants C depending on δ. This is a parabola opening downwards and
hence is bounded from above by a constant. That proves the proposition.
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5.2. Matching isophotes as λ0 becomes large. Of interest is what happens
to the solution u(x) for the modified Cahn–Hilliard equation when λ0 is prescribed
very large values. Will u(x) correctly match f(x) (the existing image) on the boundary
of the inpainting domain? In particular, will the isophote directions be matched? In
this section we consider a smooth function f and show that in regions where f changes
significantly, the direction of isophotes of the solution will match the direction of
isophotes of the prescribed image function; see Figure 5.1. In the next section we
extend this result to a binary image with sharp edges. We first establish the following
lemma showing that an H2 steady state solution is actually in C2,α. This result is
necessary to establish a pointwise bound for the isophotes on the boundary.

Fig. 5.1. Inpainting problem. The isophote vectors are shown.

Lemma 5.4. Let Ω have a C2,α boundary and let u be an H2 weak solution of
the PDE

−Δ
(
Δu−W ′(u)

)
+ λ(x)(f − u) = 0,

where

λ(x) =

{
0 if x ∈ D,
λ0 if x ∈ Ω \D.

Then u ∈ C2,α(Ω).
Proof. By assumption, we have that λ(x)(f−u) ∈ L2(Ω). Thus Δ(Δu−W ′(u)) ∈

L2(Ω) as well. This means that Δu −W ′(u) ∈ H2(Ω) [15]. Since u(x, t) is bounded
in H2(Ω) by assumption, it has an a priori pointwise bound, which then implies a
pointwise bound on W ′(u). Sobolev embedding implies that u ∈ Cα(Ω) and thus
W ′(u) ∈ Cα(Ω) for all 0 ≤ α < 1. This implies that Δu ∈ Cα(Ω), and thus by elliptic
regularity [17], u ∈ C2,α(Ω).

Remark. The assumptions on smoothness of the boundary are necessary to invoke
the theory of elliptic regularity. In practice for many imaging applications, Ω is
a square with periodic or reflective boundary conditions. In either of those cases,
the domain can be viewed as a manifold without boundary, and thus the lemma is
applicable. The details of the boundary would be important only for problems where
the inpainting region includes some of the boundary of the image domain.

As part of the proof, we first prove the continuity of ∇u and then show that this
leads to matching of the isophote directions in regions where ∇f is large enough. This
is sufficient to show continuity of the direction of edges, since they necessarily imply
that ∇f is large. We now show that in regions where the image intensity changes,
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the isophote direction of f matches that of u on ∂D. This is the main theorem for
this section.

Theorem 5.5. Let Ω satisfy the same conditions as in Lemma 5.4. Assume that
the inpainting region has a piecewise smooth boundary. Consider isophote directions
of f in any region where |∇f | > δ0. The difference of the isophote vectors, at a
smooth part of the boundary of the inpainting region ∂(D), between the steady state
solution to the modified Cahn–Hilliard equation u(x), and the known image f(x), can
be made arbitrarily small by choosing λ0 large enough.

Proof. Define g(x) = (u−f)(x). First, we would like to show that ∇g(x) becomes
small pointwise on ∂(Ω \D) as λ0 becomes large. From (5.12) we have that∫

Ω

(Δg)2 dx ≤ C1,∫
Ω\D

|g(x)|2 dx ≤ C2

λ0
.

(5.13)

The bounds from (5.13) combined with Sobolev interpolation imply that the H1−μ(Ω\
D) norm of ∇g is small as λ0 → ∞ for 0 < μ < 1

2 . The restriction map to ∂D (see [16,

page 225]) implies that ∇g is small in H1/2−μ(∂D). Since L2(∂D) ⊂ H1/2−μ(∂D)
for 0 < μ < 1/2, we have that the L2 norm of ∇g is small on ∂D. Continuity of ∇g
implies a pointwise bound on ∇g on the boundary; in particular we have a constant
η(λ) → 0 as λ → ∞ such that |∇g||∂D ≤ η. Now we show that this pointwise bound
for ∇g implies a bound for the direction of the isophotes.

Let ∇⊥u
|∇⊥u| = �τu (this is the isophote vector). We want to show that |�τu − �τf |

becomes small on ∂(Ω \D) as λ0 takes increasingly large values. Recall that we are
interested only in those portions of ∂(D) where ∇⊥f > δ0, with δ0 small. Some
straightforward algebra shows that

(5.14)
∣∣∣�τu − �τf

∣∣∣ ≤ 2|∇g|
δ0

.

Since ∇g is small for large λ0, we have the desired result. The case where ∇⊥f ≤ δ0
is not interesting, for in these regions the image is nearly constant and thus does not
produce any significant edges. This completes the proof of Theorem 5.5.

6. Matching of isophotes for binary images: Continuity of the edge
direction. The previous analysis considered the modified Cahn–Hilliard equation
(3.1) with ε = 1. In real applications involving binary images, we take ε small as it
defines a diffuse interface thickness. Our previous estimates are for smooth functions
f , and in order to apply these ideas, we regularize a binary f at the same scale as
the diffuse interface thickness ε. We state this problem as follows: consider a binary
image function f taking values 0 and 1. Assume a smooth boundary between regions
where f = 0 and f = 1. Using a mollifier, construct fε = Jεf(x). A simple way to do
this is to solve the heat equation on Ω, with Neumann boundary conditions and initial
condition f , until time t = ε2. This gives a smooth approximation of f in which the
edges of the images are smoothed over a scale of length ε.

We now solve the inpainting problem by evolving the time dependent equation

(6.1) ut = −Δ

(
εΔu− 1

ε
W ′(u)

)
+ λ(x)(fε − u),
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where

λ(x) =

{
0 if x ∈ D,
λ0 if x ∈ Ω \D.

Global existence of a weak solution of the above problem follows from the argu-
ments in section 4. We now consider the steady state problem

(6.2) −Δ

(
εΔu− 1

ε
W ′(u)

)
+ λ(x)(fε − u) = 0,

where

λ(x) =

{
0 if x ∈ D,
λ0 if x ∈ Ω \D,

and follow the arguments of the preceding section to show that for sufficiently large
λ0, the steady state solution above has edges matching those of the original image
f . To do this, we show that for a fixed ε, λ can be chosen large enough so that the
isophote directions are nearly parallel on the boundary of D.

We consider the analogous estimates to (5.4) for the case ε �= 1. Take the inner
produce of the steady state equation with (u− f). We obtain
(6.3)

ε

∫
Ω

(Δu)2 dx +

∫
Ω\D

λ0(f − u)2 =
1

ε

∫
Ω

W ′(u)Δu dx +

∫
Ω

(
εΔu− 1

ε
W ′(u)

)
Δf dx.

This in turn leads to the estimate

ε

∫
Ω

(
Δu

)2

dx + λ0

∫
Ω\D

(f − u)2 dx(6.4)

= (I) + (II)

≤
(
ε +

1

ε

)
δ

∫
Ω

(
Δu

)2

dx +
1

ε
C(δ)

∫
Ω

u2 dx + C

(
1

δ
, ε +

1

ε

)

− 1

ε
(C − δ)

∫
Ω

u4 dx− 1

ε
C

(∫
Ω

u2 dx

)2

.

Now letting δ become very small, as ε is fixed, we have that
(6.5)

ε

∫
Ω

(
Δu

)2

dx+λ0

∫
Ω\D

(f−u)2 dx ≤ −1

ε
C

(∫
Ω

u2 dx

)2

+
1

ε
C

∫
Ω

u2 dx+C

(
ε +

1

ε

)
.

Once again, the right-hand side of the inequality is a parabola that opens downward.
Thus

(6.6) ε

∫
Ω

(
Δu

)2

dx + λ0

∫
Ω\D

(f − u)2 dx ≤ C

(
ε +

1

ε

)
,

from which we obtain the bounds∫
Ω

(
Δu

)2

dx ≤ C

((
ε +

1

ε

)
1

ε

)
,(6.7)

∫
Ω\D

(f − u)2 dx ≤
C(ε + 1

ε )

λ0
.
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This shows the full relationship between λ0 and ε. It is important to notice that the
constants C( 1

ε2 ) and C(ε+ 1
ε ) become very large as ε becomes small. Thus, for small

ε, λ0 must be chosen very large to guarantee continuity of edges using these estimates.
Using the results of section 5.2, we have that ∇(u−fε)(x) → 0 on ∂D as λ0 → ∞.

Consider now the part of ∂D where |∇fε| > δ0. Since the original f is binary, this
region corresponds to a narrow band around the edges of the original f . Following
the ideas in section 5.2, we see that the isophote vectors |�τu−�τJεf | → 0 in this narrow
band which defines the diffuse interface between regions where f = 0 and f = 1.
Putting this all together, we consider an original f taking values 0 and 1 with smooth
boundary between the two phases. Assume that ε is small enough so that τfε is almost
parallel to the edge direction of the original binary f in the region where |∇fε| > δ0.
The solution u of the steady state diffuse interface problem will have edges that line
up with those of fε and thus with the original binary f , provided that λ0 is large
enough (depending on our choice of ε).

In the above discussion, we implicitly assume a “separation of scales” in the
solution u. If we assume f is a binary image with order one features and curvature of
edges, then the regularized fε is guaranteed to have a separation of scales, meaning
that it consists of regions separated by diffuse interfaces where there is steep variation
(on a spatial scale of order ε) normal to the diffuse interface and very mild variation
tangent to the interface direction. If the solution uε has the same separation of scales
as the regularized data fε, then the result will be a matching of edges between the
data and the solution for large λ. Note that the estimates derived above require λ to
possibly be very large, depending badly on ε. In our analysis here we do not prove
that a separation of scales occurs for the solution u in the inpainting region; however,
the computational results of the following sections illustrate this to be the case. Such
a result is beyond the scope of this paper but would be interesting to examine in
its own right. The original asymptotic analysis for separation of scales for the plain
Cahn–Hilliard equation was carried out by Pego [28]. The analysis is local and thus
should hold in the interior of the inpainting region where the fidelity term is zero.
Our simulations are observed to follow the same scaling as the original Cahn–Hilliard
equation in the inpainting region. In section 8, we present numerical results that
illustrate that separation of scales for u, and thus continuation of edge direction, does
occur for this model. See, in particular, Figures 8.2–8.4.

In addition to having two spatial scales, the original Cahn–Hilliard asymptotics
shows separation of time scales. There is a short time scale on which phase separation
occurs and a longer time scale (related to ε) on which the diffuse interface boundary
moves. These same time scales are present in our modified equation. In the analysis
above we consider the steady state problem. In the numerical examples, λ is chosen
large enough so that the “fidelity time scale” is short compared to the other time scales
in the problem associated with the regular Cahn–Hilliard dynamics. The time scale
associated with the motion of the interface must be addressed when designing fast
algorithms for binary inpainting. In section 8 we make use of this separation of time
scales to design a two-step algorithm in which reconnection of shapes is first performed
with a large ε, thereby decreasing the time scale of reconnection. Then we suddenly
decrease ε to sharpen the interface, which also happens on a short time scale, as this
dynamics is associated with phase separation rather than interface motion. The need
for a two-step method is further explained by the stripe reconnection examples in the
following section. There we compute bifurcation diagrams for steady states associated
with a single stripe reconnection. For a large gap width, the connected stripe solution
is a separate branch from the branch of solutions that contains the stable solution for
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large ε. We explain this in more detail in the following section.

7. Bifurcations of the modified Cahn–Hilliard equation. A natural ques-
tion to ask is whether the steady state solution is unique. Here we show by numerical
examples that multiple solutions exist and can be understood through a bifurcation
analysis. We conducted tests of the modified Cahn–Hilliard equation

(7.1) ut = − Δ

(
2εΔu− 1

ε
W ′(u)

)
+ λ0(f − u)χΩ\D

on a simple stripe geometry. The numerical scheme used is based on convexity splitting
and is discussed in detail in [6, 37]. We note that while the theory presented in this
manuscript assumes Neumann boundary conditions, the computations here are done
with periodic boundary conditions. However, one can think of Neumann boundary
conditions as a restriction to the periodic problem with symmetry, simply by reflecting
across domain edges in a square domain. Figure 7.1 shows an example where the
inpainting domain D is the grey region in frame (a). Different initial conditions for
the dynamic problem (7.1) yield different steady state solutions as shown in frames
(b) and (c). In both examples we take the same initial condition u0 = f in Ω \ D
and u0 = 0 in D. However, in the case of (b) we start with a large ε = 0.8, run the
solution to steady state, and use this as a new initial condition for a smaller value of
ε. In the case (c) we perform a single simulation with fixed ε small (0.01), starting
from u0 given above. We cannot take ε much smaller without having to increase the
resolution of the grid. In practice, the Cahn–Hilliard dynamics is reasonably well
captured with a few grid points resolving the diffuse interface scale ε [19, 37]. A much
coarser grid can result in numerical pinning of the interface.

(a) (b) (c)

Fig. 7.1. (a) Grey portion denotes the inpainting region D, while the black and white portion
denote that background image f . (b) Steady state solution of (7.1) showing a completed stripe.
(c) Steady state solution of (7.1) showing a broken stripe. In both cases ε = 0.01. In all cases we
choose a square of 128 × 128 grid points, with the inpainting region having a gap of width 40 grid
points. The grid spacing is Δx = 0.01.

The bifurcation diagrams in Figure 7.2 show how the steady states, for the modi-
fied Cahn–Hilliard equation, change in response to changes in the value of ε (see (7.1).
We consider the stripe problem as above for different gap widths of 30, 45, and 80.
We choose an amplitude for the bifurcation diagrams of the value of the steady state
solution at the center of the inpainting domain D. This is a useful measure in that
a completed stripe will have an amplitude close to one, whereas a broken stripe will
have an amplitude close to zero. Intermediate values are observed for steady states
in which the diffuse interface scale ε is comparable to the feature size in the problem.

Note that in all figures, only stable steady states are shown, as we use the time
dependent PDE to obtain the steady states. These figures suggest the presence of an
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(a) (b)

(c)

Fig. 7.2. Bifurcation diagrams for (a) gap of 30, (b) gap of 45, (c) gap of 80. The y-axis
shows the steady state height of the midpoint of the stripe, while the x-axis is the epsilon value.
The steady states are shown visually in thumbnails, with an arrow pointing to their positions on the
respective bifurcation diagrams. Only stable steady states are shown.

incomplete pitchfork bifurcation. A diagram for this type of bifurcation (see [34] for
a more complete discussion) is shown in Figure 7.3 in which stable branches appear
as solid lines and unstable branches appear as dotted lines. Frame (b) shows the
classical complete pitchfork bifurcation. Changes in parameters, including, but not
limited to, symmetry breaking, can cause a section of the pitchfork to break off into
a stable/unstable pair of solutions, as shown in frames (a) and (c). It is interesting
to compare the diagram in Figure 7.3 with the numerically obtained diagrams in
Figure 7.2. In frame (a) there is an unbroken stable branch connecting the single
large ε solution to the connected stripe solution for small ε. In contrast, in frames (b)
and (c), the unbroken stable branch connects the single large ε solution to the broken
stripe solution for small ε. In these cases the connected stripe solution appears as
an isolated branch. We conjecture that the isolated branch flips over to an unstable
branch of steady state solutions in all three cases. In frame (a) it is the broken stripe
solution that forms an isolated branch.
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(a) (b) (c)

Fig. 7.3. Bifurcation diagrams relating to the phenomena shown in Figure 7.2. (a) An incom-
plete pitchfork bifurcation. (b) A symmetric pitchfork bifurcation. (c) Another incomplete pitchfork
bifurcation.

The bifurcation diagrams above suggest that different approaches will be neces-
sary to obtain the completed stripe solution, depending on the gap width. For the
small gap case, one can simply compute the steady state at large ε and continuously
shrink ε, following the stable branch, to the desired small ε. However, this approach
will clearly not work for the larger gap widths. Instead, we find that a two-scale ap-
proach empirically works well to obtain the continued stripe solution. We choose, at
the outset, a value of ε on the order of the maximum gap size. For example, choosing
ε = .8 as a starting value, we find a unique steady state solution for a very diffuse
scale. Instead of continuously lowering ε, we abruptly change to the desired small
scale value and find empirically that the continued stripe solution emerges from the
dynamics. In summary, our algorithm for finding the completed stripe solutions is as
follows:

1. Choose an initial value of ε nearly equal to the numerical maximum gap
spacing (above ε = .8 was used). Set Δt = 1, with Δx = Δy = .01. The
image size is taken to be 128 × 128 grid points, each of size Δx.

2. Run the modified Cahn–Hilliard equation to near steady state (300 iterations)
for this value of ε.

3. At 300 iterations, multiply the near steady state solution u(x, y) by a factor
more than 1 so that max[u(x, y)] = 1.0.

4. Still at 300 iterations, switch ε to a value of .01 (approximately the numerical
grid spacing value Δx).

In practice, to obtain the steady state requires less than 30 seconds on a Pentium 4
processor. Figure 7.4 shows an example of such a calculation.

(a) (b) (c)

Fig. 7.4. Disconnected stripe with a gap of 20 at (a) t = 0, (b) t = 299, after steady state had
been reached for ε = .8, (c) t = 500 (produced by switching to ε = .01 at t = 300).
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8. Numerical examples. In a previous paper (see [6]) introducing this method,
we showed some numerical examples that illustrate the performance of a convexity
splitting scheme for this problem, as compared to other recent PDE-based inpainting
methods. Here we provide some examples illustrating the role of ε and λ0. The
modified Cahn–Hilliard equation was tested against a variety of elementary inpainting
geometries as well as several more complex cases. Below and on the next pages, we
repeat some examples from the previous paper and present a new example showing
binary inpainting of text.

(a) (b) (c)

Fig. 8.1. (a) Initial data (inpainting region in grey). (b) Intermediate state at t = 50. (c) Steady
state at t = 700. (Gap distance is 30 grid points and image domain is 128 × 128.)

8.1. Inpainting of a double stripe. In Figure 8.1, we see the two-step process
at work to inpaint two stripes. The grey region in Figure 8.1(a) denotes the inpainting
region. We begin running the modified Cahn–Hilliard equation with a large value of
ε (= .8), and at t = 50 we come close to a steady state, shown in Figure 8.1(b). We
then switch to a small value of ε (= .01), using the result from Figure 8.1(b) as initial
data. The final result at t = 700 is shown in Figure 8.1(c). In this test, Δt = 1,
λ = 50,000, C1 = 300, and C2 = 150,000.

8.2. Inpainting of a cross. In Figure 8.2(a), the grey region denotes the “gap”
or region to be inpainted. As with the stripes, the modified Cahn–Hilliard equation is
run to steady state for a large value of ε (= .8), resulting in Figure 8.2(b) at t = 300.
This data is then used as initial data for the modified Cahn–Hilliard equation with ε
(= .01) set to a small value. The final result is a completed cross at t = 1000. The
parameters are Δt = 1, λ = 100,000, C1 = 300, and C2 = 3λ.

8.3. Inpainting of a sine wave. Figure 8.3 shows how the modified Cahn–
Hilliard equation may be applied to the inpainting of simple road-like structures. In
Figure 8.3(a), an incomplete sine wave is shown. In Figure 8.3(b), the sine wave is
artificially “fattened” by expanding each white point’s area radially by a factor of 3.
This is done in order to give the modified Cahn–Hilliard equation sufficient boundary
conditions to do effective inpainting.

In Figure 8.3(c), the grey area represents the inpainting region. The remaining
white and black portions of the image are thus outside the inpainting region and essen-
tially held fixed in place by the fidelity term of the modified Cahn–Hilliard equation
(7.1). The two-step method was then used to inpaint the sine wave. Figure 8.3(d)
shows the finished result.
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(a) (b) (c)

Fig. 8.2. (a) Initial data of cross (inpainting region in grey). (b) Intermediate state at t = 300.
(c) Steady state at t = 1000. (Image domain is 128× 128, stripe width is 20 grid points, and initial
gap distance is 50 grid points.)

(a) (b)

(c) (d)

Fig. 8.3. Inpainting a sine wave. (Image domain is 128 × 128.)

The initial value of ε was taken to be .8, and then at t = 200 this was switched to a
value of ε = .01. The final inpainting result was taken at t = 4000 (which corresponds
to a time of 24 seconds real processing time). The parameters were set as Δt = 1,
C1 = 300, λ = 100,000, and C2 = 3λ.

8.4. Inpainting of obscured text. Figure 8.4 shows how the modified Cahn–
Hilliard equation can be used to recover obscured text. Figure 8.4(a) shows the
text obscured by lines. This is a common problem for optical character recognition
algorithms, with regard to text written on lined paper. Figure 8.4(b) shows the result
after processing by the modified Cahn–Hilliard equation.

The parameters were set as Δt = 1, λ = 100,000,000, C1 = 10,000, C2 = 3λ,
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(a) (b)

Fig. 8.4. Recovering obscured text. (Image domain is 256 × 256.)

ε = .008, and they were kept constant during this particular test. The test was
completed at time t = 800, which corresponds to 2 minutes of processing time.

9. Conclusions. This paper considers the method for binary inpainting recently
introduced by the authors in [6]. This work introduces a relatively simple fourth order
PDE for this task, rather than a more complex gradient flow to minimize a curvature
functional. This simpler model, based on the Cahn–Hilliard model, has many of the
desirable properties of earlier models, in particular the ability to match color and
direction of edges, without requiring the computational complexity of those methods.
In this manuscript we prove that for the proposed Cahn–Hilliard model, steady state
solutions do indeed inherit the observed boundary conditions in the large fidelity limit.

Empirically, we find that one can perform inpainting across larger regions by
considering a two-step method. The inpainting is done first with a larger ε, which
results in topological reconnection of shapes with edges smeared by diffusion. The
second step then uses the results of the first step and continues with a much smaller
value of ε in order to sharpen the edge after reconnection.

In practice such a two-stage process can result in inpainting of a stripe across a
region that is over ten times the width of the stripe, without any a priori knowledge
of the location of the stripe. This two-step method is an empirically observed phe-
nomenon which we understand more fully by considering the problem of bifurcations
due to the presence of multiple stable steady state solutions to the same inpainting
problem. Through a numerical search, we present evidence that the dynamical prob-
lem undergoes an incomplete pitchfork bifurcation, from a single stable steady state
solution at large ε to two coexisting stable steady states at small ε, taking the form of
a broken stripe with rounded ends, and a completed stripe. One of these two solutions
is connected to the large ε by a continuous branch in the bifurcation diagram. For
large gap widths, it is the broken stripe, thereby requiring a somewhat more complex
process to find the basin of attraction of the completed stripe. Fortunately this is not
so difficult using the two-step process described above.

We complete the paper by showing some computational examples. This scheme
was shown in [6] to outperform in speed other variationally derived inpainting methods
by a significant amount (typically an order of magnitude or more). Thus it would
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be interesting to consider methods related to this one for more complex inpainting
problems such as greyscale, color, and nonlocal filling in.

Finally, we mention that while this manuscript focuses on PDE-based methods
for filling in, there are many other approaches in the literature. Perhaps the closest
to what is considered here are those based on spline continuation of the edges [32, 33].

REFERENCES

[1] N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn–Hilliard equation to
the Hele-Shaw model, Arch. Rational Mech. Anal., 128 (1994), pp. 165–205.

[2] L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by
elliptic functionals via gamma convergence, Comm. Pure Appl. Math. 43 (1990), pp. 999–
1036.

[3] P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn–Hilliard equation,
SIAM J. Appl. Math., 53 (1993), pp. 990–1008.

[4] M. Bertalmio, A. Bertozzi, and G. Sapiro, Navier-Stokes, fluid dynamics, and image and
video inpainting, in Proceedings of the IEEE Computer Vision and Pattern Recognition,
Vol. 1, 2001, pp. 355–362.

[5] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Siggraph
2000, Computer Graphics Proceedings, K. Akeley, ed., ACM Press/Addison–Wesley, New
York, 2000, pp. 417–424.

[6] A. Bertozzi, S. Esedoglu, and A. Gillette, Inpainting of binary images using the Cahn–
Hilliard equation, IEEE Trans. Image Process., 16 (2007), pp. 285–291.

[7] C. Braverman, Photoshop Retouching Handbook, IDG Books Worldwide, Foster City, CA,
1998.

[8] T. F. Chan, S. H. Kang, and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM
J. Appl. Math., 63 (2002), pp. 564–592.

[9] T. F. Chan and J. Shen, Mathematical models of local nontexture inpaintings, SIAM J. Appl.
Math., 62 (2002), pp. 1019–1043.

[10] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations
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