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 Abstract     Our goal in this article is to characterize temporal patterns of violent civilian deaths 
in Iraq. These patterns are expected to evolve on time-scales ranging from years to minutes as 
a result of changes in the security environment on equally varied time-scales. To assess the impor-
tance of multiple time-scales in evolving security threats, we develop a self-exciting point pro cess 
model similar to that used in earthquake analysis. Here the rate of violent events is partitioned 
into a background rate and a foreground self-exciting component. Background rates are assumed 
to change on relatively long time-scales. Foreground self-excitation, in which events trigger an 
increase in the rate of violence, is assumed to be short-lived. We explore the model using data 
from Iraq Body Count on civilian deaths between 2003 and 2007. Our results indicate that self-
excitation makes up as much as 37 – 50 per cent of all violent events and that self-excitation lasts 
at most between two and six weeks, depending upon the district in question. Appropriate security 
responses may benefi t from taking these different time-scales of violence into consideration. 
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 Introduction 

 Security threats evolve on time-scales ranging from decades to minutes. At one extreme, 
populations, communities and the urban built environment experience turnover and reorgani-
zation on time-scales of years to decades ( Dugan, 1999 ;  Sampson, 2011 ). Individual atti-
tudes and cultural norms display inertia over similar time-scales ( Wuthnow, 2005 ;  Akers, 
2008 ). Security threats tracing their origins to long time-scales may emerge almost imper-
ceptibly. For example, radical ideologies may arise out of slowly worsening material condi-
tions over generations ( Berman, 2009 ;  Kilcullen, 2009 ). Gangs may become embedded 
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within the social fabric of a community since gang members also play important non-gang 
roles in their neighborhoods ( Sanchez-Jankowski, 1991 ;  McCauley and Moskalenko, 2008 ). 
Violent and property crime may become an ambient feature of a local neighborhood, gene-
rating and reinforcing persistent structural characteristics such as high concentrated dis-
advantage and low collective effi cacy ( Dugan, 1999 ;  Sampson  et al , 2002 ;  Hipp, 2010 ). 

 At the other extreme, motivated offenders move and mix within social and physical envi-
ronments changing on time-scales of minutes to days ( Cohen and Felson, 1979 ;  Brantingham 
and Brantingham, 1995 ). Situational security threats tracing their origins to these short time-
scales may emerge suddenly, with no prior warning. For example, heated arguments that 
escalate into violent attacks ( Luckenbill, 1977 ;  Felson and Steadman, 1983 ), car jackings 
of temporarily unoccupied vehicles ( Miethe and Sousa, 2010 ), or theft of property in busy 
public spaces ( Felson and Clarke, 1998 ) capitalize on fl eeting, situational opportunities that 
disappear as quickly as they appear. 

 Between these extremes, habitual, routine activities and the organization of collective 
action within a local community may change on intermediate time-scales of days to months 
( Sampson and Wooldredge, 1987 ;  Osgood  et al , 1996 ). Security threats emerging on inter-
mediated time-scales may evolve fast enough to be perceived as a growing problem, but not 
so fast as to illicit an immediate, concentrated response. For example, drug markets may 
grow slowly at fi rst and then ramp up in size quickly as the number of transactions passes 
some critical threshold ( Taniguchi  et al , 2009 ). Similarly, criminal social networks may 
grow relatively slowly, constrained both by the geography of how co-offenders are distri-
buted in space and the diffi culty in fi nding people to fi ll certain functional roles ( Malm  et al , 
2008 ). 

 Deciding which of these various time-scales is most important is extremely diffi cult. 
In some contexts, it is reasonable to argue that certain security threats will not disappear if 
the long-term  ‘ root causes ’  are not dealt with. Drug violence, for example, may be unlikely 
to abate unless the problems of demand are addressed ( Chabat, 2002 ). Similarly, active 
insurgencies may be expected to continue unless the long-standing grievances of population 
are rectifi ed ( Kilcullen, 2009 ). However, the strategic options for dealing with security 
threats emerging on such long time-scales are likely to themselves require planning and 
investment that last years to decades. The outcomes of such strategies may be particularly 
uncertain because of the time-scales involved. 

 Conversely, in other contexts, short-term situational factors may be most relevant 
to dealing with immediate security threats. Address the physical or social environmental 
characteristics that generate crime opportunities and you may eliminate crime. The risk that 
property is stolen from a public space, for example, may be mitigated by manipulating 
levels of actual or perceived surveillance and ownership ( Felson and Clarke, 1998 ;  Keizer 
 et al , 2008 ;  Wortley and McFarlane, 2011 ). Similarly, regulate the timing, locations and 
quantities of legal public alcohol consumption and one may greatly reduce the likelihood of 
non-domestic assaults ( Livingston, 2008 ). Security threats arising at these short time-scales 
may be tractable following situational crime prevention or problem-oriented policing 
stra tegies. However, such solutions are by defi nition local (situational) and may be vulner-
able to simple innovations by offenders or other hostile actors ( Cornish and Clarke, 1987 ). 
Indeed,  Brantingham  et al  (2005)  have suggested that situational crime prevention measures 
may have a  ‘ half-life ’  the duration of which is dependent upon how quickly offenders 
can adapt. 
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 While there are good theoretical and practical reasons to treat long, intermediate and 
short time-scale processes as conceptually separate, it is clear in reality that they all operate 
simultaneously. At a theoretical level, there are at least two possible ways to conceive of 
overlapping time-scales in relation to actual crime or other hostile events. First, consider 
a cluster of crimes in a particular spatial region occurring during a defi ned period of time. 
We might imagine that some fraction of the crimes in the cluster are exclusively the result 
of long-term processes, while others are exclusively the result of intermediate or short-term 
processes (see  Short  et al , 2009 ). Crimes may occur near one another in space and time 
despite having their origin in processes operating at different time-scales. For example, it is 
well-known that burglars differ greatly in their baseline offending rates; some burglars com-
mit at most one or two crimes per year, while others commit 50 or more per year ( Wright 
and Decker, 1994 ;  Canela-Cacho  et al , 1997 ). For a system with only two active burglars, 
only  ~ 4 per cent (2 / 52) of the crimes in a given year would be attributable to the occasional 
offender, while  ~ 96 per cent (50 / 52) would be linked to the prolifi c offender. The two crimes 
attributable to the occasional offender will be embedded in the spatio-temporal pattern 
of crimes committed by the prolifi c offender. Second, consider the alternative focusing 
only on a single crime. We might attribute some fraction of the cause of that one crime to 
a long-term process, while the remainder might be attributed to intermediate or short-term 
processes. The time-scales involved might be highly skewed towards long- or short-term 
processes, or they might be balanced among them. A given insurgent attack, for example, 
might be viewed simultaneously as the product of long-standing grievances between sectar-
ian groups, social network structures that supply insurgents with bomb making  materiel , 
and situational factors such as the spontaneous gathering of potential victims. At present, the 
relative contributions of these different time scales to such attacks are entirely speculative. 

 Regardless of the conceptualization one adopts, the appropriate security response may 
benefi t from taking into account processes operating on multiple time-scales. It is not 
imme diately clear how to do this, however. Here we propose an approach to modeling the 
dynamics of crime or hostile events on multiple time-scales based on self-exciting point 
processes commonly used in the study of earthquakes ( Ogata, 1988 ;  Zhuang  et al , 2002 ; 
 Mohler  et al , 2011 ). They are readily extended to deal with spatial dynamics as needed 
( Vere-Jones, 2009 ). The central idea in self-exciting point process models is that any cluster 
of discrete events can be divided into those that are background and those that are fore-
ground events, akin to the fi rst conceptualization of time-scales above. Background events 
are typically attributed to processes that either do not change (that is, they are stationary in 
time), or change only over relatively long time-scales, though they may vary signifi cantly 
through space. For example, it is often assumed that spontaneous earthquakes occur at 
a stationary rate determined by time-invariant structures in the fault system. Background 
earthquakes are by defi nition statistically independent of one another in space and time. 
Thus one background event neither increases nor decreases the chance of another back-
ground event occurring. The dynamics of background events are thus well-specifi ed by 
a Poisson process ( Ogata, 1988 ;  Vere-Jones, 2009 ). By contrast, foreground events are 
attributed to processes that show signifi cant local temporal (and spatial) dependencies. For 
example, major earthquakes generate aftershocks during a narrow window of time and 
nearby to the location of the initiating event. Foreground events are not only statistically 
dependent on prior background events, but in fact may be thought of as a byproduct of prior 
background events. The dynamics of foreground events are thus no longer described by 
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a simple Poisson process, but rather require models that capture the statistical dependence 
among some events. Following the terminology established in seismology, the resulting 
process is considered  ‘ self-exciting ’  and the associated models are called self-exciting point 
process models (see also  Holden, 1987 ). 

 Similar ideas have been proposed in relation to crime event patterning ( Brantingham 
and Brantingham, 1984 ;  Townsley  et al , 2003 ;  Johnson  et al , 2007 ;  Johnson, 2008 ). That 
background or ambient crime rates may be relatively stationary in time, but heterogeneous in 
space is well-documented in environmental criminology (see  Andresen  et al , 2009 ). Such dif-
ferences may represent persistent structural biases in social and economic access ( Morenoff  
et al , 2001 ), or stable variability in the distribution of crime opportunities independent of so-
cial inequality ( Farrell  et al , 2010 ). Foreground interdependencies among crimes, by contrast, 
have been recognized only relatively recently ( Hough  et al , 1983 ;  Trickett  et al , 1992 ). Inter-
dependencies among crimes may be understood in the context of rational choice and routine 
activity theory of crime ( Cohen and Felson, 1979 ;  Cornish and Clarke, 1986 ). In some 
instances, individuals committing an initial property or violent crime may return within days 
to the same or a nearby place to replicate the successes of the pre vious event. In other 
instances, an act of violence by any individual or group may incite reprisals and counter repris-
als, leading to a self-excited cycle of violence. In one case, it has been found that self-exciting 
foreground processes account for  ~ 13 per cent of burglaries, leaving  ~ 87 per cent linked to 
stationary background processes ( Mohler  et al , 2011 ). Here we pursue a similar analysis 
of violent events in an extreme security setting. Specifi cally, we ask: (1) whether temporal 
patterns of violent events in extreme security settings can be partitioned into background and 
foreground components; and (2) what models best describe long-term background and short-
term foreground processes. We evaluate these questions using data on violent civilian deaths 
at the height of the Iraqi confl ict between 2003 and 2007.  Townsley  et al  (2008)  established 
that short-term event dependencies lasting up to two weeks characterized insurgent IED 
attacks in Iraq over a similar time frame. Using data from  Iraq Body Count (2008) , we eva-
luate the temporal dynamics of violent civilian deaths from a wider array of causes including 
coalition and insurgent actions, garden-variety and organized crime, sectarian violence and 
so-called blood feuds. We expect foreground events driven by self-exciting processes to be far 
more important than background events because many of the normal institutional and socio-
cultural controls on behavior are severely impaired or completely absent. In such settings 
hostile actors may exploit vulnerable targets or seek retribution with few constraints. 

 This article is organized as follows. In the fi rst section, we introduce point process models 
as well as three modifi cations to standard self-exciting point processes to account for vari-
ations in the background rate. In the next section, we introduce data on civilian deaths in Iraq 
and the assumptions necessary to proceed with analysis. In the subsequent section, we analyze 
four different regions of Iraq comparing the effectiveness of each model in capturing the pro-
cess of violence. In the fi nal section, we discuss the implications of our fi ndings and possible 
directions for future work.   

 Statistical Point-Processes 

 A point process is a stochastic model commonly used to describe the occurrence of discrete 
events in time and / or space ( Schoenberg  et al , 2006 ). A convenient way to view a point 
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process is in terms of a list of times  t  1 ,    t  2 ,    … ,    t   n   at which hostile events 1,   2,    … ,    n  occur. In 
the case of an  orderly  point process, events cannot occur simultaneously and, thus, multiple 
events can be arranged into an unambiguous sequence. For example, if two insurgent 
attacks arise from an orderly point process then we should be able to say not only which 
event occurs before the other, but also how much time separates the two events. 

 A point process is characterized by its conditional intensity   �  ( t ), which represents 
the mean instantaneous rate at which events are expected to occur given the history of the 
process up to time  t  ( Ogata, 1988 ). For completeness we write    
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Δ

Δ
Δ0
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 where  Ht

  represents the history of events prior to time  t , and the expectation is in 
terms of the number of events  N [ t ,    t     +     �  t ) occurring between time  t  (inclusive) and  t     +     �  t  
(exclusive). 

 An important example of a point process is a Poisson process, which we introduce here 
as a useful benchmark for evaluating self-excitation since it represents complete random-
ness. In general, a point process is classifi ed as a Poisson process if events occurring at 
two different times are statistically independent of one another, meaning that an event at 
time  t  1  neither increases nor decreases the probability of an event occurring at any subse-
quent time. Independence also characterizes aggregates of events if the process is Poisson. 
For example, if [ t  1 ,    t  2 ) is an interval of time between  t  1  (inclusive) and  t  2  (exclusive) and 
 N [ t  1 ,    t  2 ) represents the number of events occurring between time  t  1  and  t  2 , then  N  is a Poisson 
process if the distribution of number of events in the interval follows a Poisson probability 
density function, and the events in  N [ t  1 ,    t  2 ) are statistically independent of events occurring 
in any subsequent interval  N [ t  3 ,    t  4 ). In other words, the collection of events occurring 
between times  t  1  and  t  2  neither increase nor decrease the likelihood of a collection of events 
occurring between times  t  3  and  t  4 . Finally, note that the conditional intensity   �  ( t ) of a 
Poisson process is deterministic, meaning that events are linked causally to the conditional 
intensity and only this conditional intensity. Most commonly, Poisson processes are treated 
as stationary (that is, non-changing in time), which means that   �  ( t ) is a positive constant real 
number. 

 A self-exciting point process stands in stark contrast to a Poisson process. A point 
process  N  is said to be self-exciting if any one event at time  t  1  increases the likelihood 
of an event occurring at time  t  2 , or if a collection of events in  N [ t  1 ,    t  2 ) increase the likeli-
hood of another collection of events occurring during a subsequent interval  N [ t  3 ,    t  4 ). 
In statistical terms, a self-exciting point process exhibits covariance between collections 
of events in time    

Cov N t t N t t[ , ), [ , )1 2 2 3 0[ ] >
  
 The covariance between collections of events for a Poisson process is Cov[ N [ t  1 ,    t  2 ),  N [ t  2 ,    t  3 )]    =    0. 
Note that a self-inhibiting process, where a collection of events in one time interval  
decreases  the likelihood of events in a subsequent time interval has Cov[ N [ t  1 ,    t  2 ),  N [ t  2 ,    t  3 )]    <    0 
(see  Holden, 1987 ). For more on point processes, see  Daley and Vere-Jones (2003, 2008) .   
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 The Hawkes Process Model 

 We investigate a specifi c class of point processes termed a Hawkes Process ( Hawkes, 1971 ), 
which simultaneously captures the idea that any given event, or collection events can be 
causally linked to a background Poisson process and foreground self-exciting process. The 
conditional intensity for a Hawkes process is ( Hawkes and Oakes, 1974 ) 

   

l m( ) ( )t k g t tk
t tk

= + −
<

∑0

    
 In equation (1),   �   represents the background rate of events, which in most applications is 
assumed to be constant in time ( Zhuang  et al , 2002 ). The parameter   �   by itself represents 
a stationary Poisson process. The second half of the sum describes self-excitation and has 
components  k  0  and  g . The parameter  k  0  refl ects how much excitation is generated by a 
collec tion of prior events, while  g  represents the density of prior events necessary to trigger 
excitation. In mechanistic terms, if self-excitation is triggered, then  k  0  is the amount by 
which the conditional intensity increases above its background rate. The expected number 
of events in any time interval will increase above the background rate if  k  0     >    0. However, 
when exactly these events are added is dependent upon the specifi c functional form of the 
triggering density  g  ( Hawkes, 1971 ;  Ogata, 1988 ). We use an exponential distribution for 
the triggering density  g , similar to that used by  Egesdal  et al  (2010) , giving the conditional 
intensity 
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 Here,  w  defi nes a rate of decay for the triggering density, controlling how quickly the over-
all rate   �  ( t ) returns to its baseline level   �  . In a sense,  w  defi nes how long self-excitation lasts 
following an event. If  w  is large, self-excitation will last only a short while and 
additional events will only be added above background shortly after the initial event. Con-
versely, if  w  is small, then self-excitation will last for a much longer period of time and 
events added above background over a protracted period. Such time-limited self-excitation 
is well documented in the criminological literature with typical durations lasting between 
two and six weeks ( Johnson, 2008 ;  Short  et al , 2009 ). 

 In behavioral terms,  k  0  might be thought of as the strength of the incentive to replicate 
a past success. For example, if an insurgent considered an attack on day  t  1  as particularly 
successful they might want to add two more attacks to their plans. Alternatively,  k  0  might 
represent the strength of the drive to seek retribution for a previous attack. For example, if 
an attack on day  t  1  was seen as particularly extreme, then the victims might decide to add 
two reprisals to their normal response to sectarian confl ict. Similarly, the inverse of  w  (that 
is,  w      −    1 ) may be thought of as the average time-window over which insurgents plan to add 
events. For example, two events may be added over the next two days (that is,  w    =     1 / 2    =    0.5), 
or the next 14 days (that is,  w     =    1 / 14    =    0.0714). We may think of the former as a concen-
trated, and the latter as a persistent self-exciting point process. 

 (1)  (1) 

 (2)  (2) 
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 Inspection of our data on violent death in Iraq indicates that a stationary Poisson back-
ground rate   �   is unrealistic ( Figure 1 ). An attempt to fi t the model in equation (2) would 
require that the upward trend in the data be driven exclusively by self-excitation, which on 
behavioral grounds seems unjustifi ed. As a consequence, we consider several alternative 
models for non-stationary background rate   �  , retaining in the exponential form of the trig-
gering density  g  used by  Egesdal  et al  (2010) . In other words, we model   �   as a background 
rate that changes as a result of long time-scale processes. The triggering density remains a 
short time-scale, foreground phenomenon superimposed on the long time-scale process. 

 Given the observed trend in the Iraqi data, the simplest choice for a non-stationary   �   is a 
step function that allows for the background rate to jump to different stationary levels at 
different points in time. We choose a step function parameterized by three values   �   1 ,   �   2  and 
  �   3 , representing three different background rates over separate intervals of time. Our base-
line model becomes: 

   

l m( ) ( ) ( )t t k westep
t t

w t t

k

k= +
<

− −∑0

    
 where    

m
m
m
m

step t

t t

t t t

t t T

( ) =
<
<
<

⎧
⎨
⎪

⎩
⎪

1 1

2 1 2

3 2

0for

for

for

�

�

�

  
 We choose the two points at which the background rate jumps,  t  1  and  t  2 , based on visual 

inspection of where the largest jumps in activity occur. Values of  t  1  and  t  2  are then held 

 (3)  (3) 

  Figure 1 :              A histogram of all events occurring in Iraq with time on the horizontal axis and number of events 
on the vertical axis. Over 1747 days, between 20 March 2003 and 31 December 2007, there are a total of 15   977 
events in 50 bins.  
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constant while fi tting the other model parameters. Appropriate jump times in the back-
ground rate could be determined via model fi tting along with other model parameters. How-
ever, as discussed below, this greatly adds to model complexity. Moreover, our interest 
is not specifi cally in whether different step functions with different infl ection points outper-
form one another, but rather whether a step function with self-excitation offers a better 
expla nation than the same step function without self-excitation. 

 We consider a second model with a stationary background rate up until time  t   c   at which 
point there is a linear increase in the background rate. The exact onset of this change depends 
on which city we are considering, but it typically begins between 400 and 1000 days into the 
data. In each case, we choose  t   c   based on visual inspection of the data, with the same justifi ca-
tions as offered above. The second model becomes: 
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 Finally, we propose a third model based on non-parametric estimation of   �  . We use vari-

able bandwidth kernel smoothing to construct a smoothed version of the data ( Silverman, 
1998 ;  Zhuang  et al , 2002 ;  Schoenberg, 2003 ). The method works by summing Gaussian 
normal distributions for each point in the data. The mean of each Gaussian curve is the recor-
ded day of the event. The standard deviation of the distribution is chosen depending on the 
local density of events. Thus, in regions of the time series where there are many events, 
the standard deviation of the local Gaussian curves will be small. In regions where there are 
fewer events, the standard deviation will be larger. Allowing the standard deviation to vary 
depending on density avoids potential problems of over smoothing in regions with many 
events, and under-smoothing in regions with few events. It has been shown that variable band-
width kernel smoothing is more robust where events do not approximate a uniform distribu-
tion in time ( Silverman, 1998 ). 

 Since we need the rate function   �  ( t ) to integrate to the total number of events, we introduce 
a third parameter  p  to allow for this. Our fi nal model becomes: 

   

l m( ) ( ) ( ) ( )t pn t p k wesm
t t

w t t

k

k= + −
<

− −∑1 0

    
 where   �    sm   is the smoothed background rate,  n  is the total number of events in the data 
set,  p  is the proportion of the process attributed to the smoothed background component, 
and (1    −     p ) is the proportion attributed to self-excitation. Note that the smoothed background 
rate unavoidably includes both true background events as well as any foreground events. 
In principle, it would be ideal to have some  a priori  information that would allow us to 
separate out background events and use only these for data smoothing. In practice, this is not 

 (4)  (4) 

 (5)  (5) 
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feasible because there is always inherent uncertainty about which events are truly back-
ground events. We simply assume therefore that the smoothed data are a close proxy of the 
true background rate. 

 To estimate parameters, we use maximum likelihood estimation (MLE) ( Fisher, 1922 ; 
 Rubin, 1972 ;  Ozaki, 1979 ). MLE seeks to determine, for a specifi ed probabilistic model, the 
set of model parameters that are most  likely  to have given rise to a set of known observa-
tions. MLE is conceptually the inverse of probabilistic modeling, which seeks to determine 
the most  probable  observations given a specifi ed model and defi ned parameter values. For 
example, probabilistic modeling would estimate the most  probable  number of heads to 
observe in 10 fl ips of an unfair coin, given the chance a head in one fl ip is  q    =     0.7. By con-
trast, MLE would seek the most  likely  value for  q  given that seven heads were observed in 
10 fl ips. The likelihood that it is a fair coin  q     =    0.5 is  L     =    0.117, but the  maximum  likelihood 
 L    =     0.2678 that it is an unfair coin with  q     =    0.7. For simple models with a small number of 
parameters, it is often possible to calculate the maximum likelihood explicitly ( Myung, 
2003 ). For more complex models, one must calculate maximum likelihood values numeri-
cally. In practice, this means that a set of test parameter values are chosen and the log likeli-
hood function is calculated. Small adjustments are made to the parameter values and the log 
likelihood function is recalculated. The process is repeated until the function maximum is 
found. For example, if we want to estimate parameters for the linear model in equation (4), 
we iterate over all possible values of   �    c  ,   �    s  ,  k  0  and  w , subject to the constraint that all four 
parameters are positive, until we fi nd highest point or peak of the log likelihood function. 
For completeness, the log likelihood function may be written as    

log L k w t t t t dtc s n
t i n

i

T

i

( , , , | ,., ) log( ( )) ( ) .
:

m m l l0 1
1

0
= −∑ ∫

� �

  
 MLE proves to be very effi cient at fi nding accurate parameter values even for highly 

non-linear functions ( Myung, 2003 ). 
 To compare different models, we use Akaike ’ s Information Criterion (AIC) ( Akaike, 1973, 

1974 ). For a given model, the AIC is equal to 2  �      −    2log( L ) where   �   is the number of free para-
meters in the model and  L  is the maximum value of the likelihood function. AIC rewards 
model parameterizations that are more likely, in the sense of maximum likelihood discussed 
above. However, AIC penalizes models with more parameters, under the assumption that 
simpler models are preferable to more complex models. Overall, smaller AIC values imply 
a better models ( Bozdogan, 1987 ). We note that the AIC is a relative scale used to compare 
different models, and is not a test for absolute goodness of fi t. 

 In  Egesdal  et al  (2010) , a self-exciting model for gang violence is compared to a stationary 
Poisson process with the background rate equal to the average number of events over the time 
interval in consideration. This is a reasonable starting assumption for gang retaliations given 
that many gang rivalries are relatively stable over time-scales of years, though individual 
membership may be highly fl uid ( Klein and Maxson, 2006 ). However, due to the secular trend 
apparent in the Iraq data, a stationary Poisson process is a very unlikely model for the back-
ground rate of violence. The appropriate comparison, therefore, is between the AIC values for 
each self-exciting model and those for the equivalent non-stationary Poisson model with 
self-excitation removed. In other words, we seek to evaluate the relative importance of long 
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time-scale background processes with the short time-scale processes included against 
long time-scale background processes absent the short time-scale foreground processes. To 
implement this comparison we use MLE to estimate parameters for each full model with self-
excitation, calculating the resulting AIC value. We then remove self-excitation by setting 
 k  0     =     w     =    0 and then re-estimate parameters for the background rate using MLE. This procedure 
puts the models on more even footing with respect to most likely parameterizations.   

 Data 

 Since Operation Iraqi Freedom began on 20 March 2003, nearly 100   000 Iraqi civilians have 
died of violent causes ( Hicks  et al , 2011 ). These deaths have occurred as a result of garden-
variety and organized crime, sectarian civil strife, local insurgent actions, and transnational 
terrorist attacks. Coalition forces and Iraqi security forces have also contributed to the total. 
We evaluate the dynamics of background and foreground processes underlying these deaths 
using data from Iraq Body Count, an organization seeking to record all civilian deaths in Iraq 
( Iraq Body Count, 2008 ). The number of fatalities linked to any event is not an estimate by 
the organization, but a count corroborated by at least two recognized news sources. In 
the data we consider, from 20 March 2003 to 31 December 2007, there are 15   977 unique 
violent events, corresponding to as many as 89   766 individual deaths. Each entry in the data 
contains a start date, end date, minimum number of deaths, maximum number of deaths, 
town and possibly a district of where the event occurs. 

 Several simplifying assumptions are necessary to make temporal analysis of the IBC data 
straightforward. First, we take events, not number of deaths, as the unit of analysis. For 
example, on 28 December 2007, 14 people were killed by a car bomb in Al-Tayaran Square 
in Baghdad. We consider this one event, not 14. 

 Second, we consider only the date of events, ignoring the type of event and any informa-
tion about suspected perpetrators. For example, we do not distinguish between IED attacks 
and gunfi re, nor do we ignore events in the data that are unrelated to IED attacks. This 
means that no events are discarded because they are seen as unrelated to our analysis. 

 Third, we only consider the start date and not the end date for events. Data entries for 
which the time of occurrence is a range of days refl ect uncertainty as to when the individuals 
actually died. For example, if a mass grave is discovered, there is uncertainty as to how and 
when the deaths occurred. The effect from this simplifi cation depends on the region in con-
sideration. Overall, 93.45 per cent of the events have the same start and end date. 

 Fourth, we group data by location according to the smallest known geographic region 
available. For some cities, like Baghdad, we have events down to each local district, but this 
is not true of most other cities in Iraq. 

 Finally, we assume that events recorded on the same day are statistically independent. 
Since we only have events recorded to the day, we cannot determine whether events occur-
ring on the same day are correlated with one another. Thus, when we compute the sum 
for   �  ( t ) in equation (2) we only consider events occurring on dates strictly before the day 
on which a focal event occurs. Technically this means the process is no longer a simple 
point process. However, we reason that we can analyze the data without allowing events 
occurring on the same day to effect one another. To evaluate the nature of this fi nal assump-
tion, we provide a histogram of the frequency of days with a given number of events 
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( Figure 2 ). Out of a possible 1748 days, there are 133 days with no events, while there are 
169 days with one event. This means there are 1446 days with more than one event. Few of 
these events presumably happened at exactly the same moment in time, which means that 
they are potentially self-exciting. Small attacks that are meant to draw in fi rst responders 
as victims for a larger, follow-on attack, for example, may represent an extremely fast self-
exciting process present in the data. However, we are unable to detect this or other pro cesses 
operating at time-scales shorter than one day.   

 Analysis and Results 

 We examine temporal patterns of violent deaths in four different Iraqi regions including 
Karkh, Najaf, Mosul and Fallujah. There is considerable uncertainty about the demographic 
and sectarian characteristics of each of these regions during the course of the confl ict. 
If Baghdad is a useful guide, there appears to have been a comprehensive internal reorgani-
zation of neighborhoods along sectarian lines between 2003 and 2009 ( Izady, 2011 ). Our 
choices of areas are therefore based on gross differences in the data alone. Karkh is a district 
at the heart of Baghdad and is chosen because it contains the largest number of events of 
any spatial region in Iraq. Najaf is a mid-sized city in central Iraq. It displays obvious tempo-
ral clustering, but far fewer events than other region we analyze. Mosul, in the North, and 
Fallujah, in the west, have intermediate numbers of events. 

 In each case, we must defi ne  a priori  several parameters necessary to implement 
point process models with non-stationary background rates. These parameters include: 
(1) the times  t  1  and  t  2  at which the step function changes; (2) the time  t   c   at which a linear 
increa sing background rate starts; and (3) for kernel smoothing, a minimum bandwidth 
 b  min  and nearest neighbor distance ( Silverman, 1998 ). Values for these parameters are 
given in  Table 1 .  

  Figure 2 :              A histogram of the number of events per day over all of Iraq between 20 March 2003 and 
31 December 2007. The most events occurring on a single day is 53. The mean number of events on a single 
day is 9.15.  
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 Karkh 

 The fi rst region we consider is Karkh, a district of Baghdad. Over the entire data set there 
are 2278 events spanning 1742 days.  Table 2  shows that AIC values for models with self-
excitation are universally smaller than those for models without self-excitation. For example, 
the AIC value for the model in equation (4) with a linear increase in the background rate 
beginn ing at  t   c   is 905.7, while for the same model with no self-excitation the AIC is 1624.7. 
Adding self-excitation results in a more complicated model, but this added complexity is off-
set by better model performance. The step function and the linear models with self-excitation 
perform almost identically. Both adequately capture the abrupt jump in the number of events 
around 1385 days into the data. However, the smoothed background rate models, with and 
without self-excitation, dramatically outperform all of the alternatives with AIC values of 
829.6 and 855.0, respectively. It is perhaps not surprising that a smoothed background rate 
model captures the complex trajectory of violent death in Karkh better than simpler models. 
But it is also clear that a foreground self-exciting process, superimposed on this complex 
background process, offers an even better model of the associated dynamics in spite of the 
greater model complexity. This superior performance is visually confi rmed in  Figure 3 . 

 Estimating the parameters for the smoothed background rate model with self-excitation, 
we get (1    −     p  ̂    ) k  ̂     0     =    0.364,  w ̂       =    0.064 and  p ̂         =    0.6368 ( Table 2 ). These parameter values have 
straightforward behavioral interpretations. First, like  k ̂      0  in the non-smoothed models, 
(1    −     p ̂    ) k ̂      0  in the smoothed model signifi es the average number of direct offspring events that 
are caused by a preceding event. The three non-smoothed models suggest that every 10 
events cause on average another nine offspring events. The smoothed background rate 
model with self-excitation implies on average about four offspring for every 10 preceding 
events. The lower magnitude of self-excitation in the smoothed background rate model 
is understandable given that a more complex background rate trajectory is allowed. Con-
versely, the simpler models must attribute more of the overall trend to short time-scale 
foreground processes ( Figure 3 ).   

 Second, we can interpret  w      −    1  as an average time over which we expect an excited event 
to happen following an initiating event. The three poorer performing models give  w ̂        −    1     =    19.01 
days. In other words, each initiating event is expected to produce one offspring on average 
within 19 days. The smoothed background rate model suggests a slightly shorter time 
window with  w ̂       −    1     =    15.08 days. Three initiating events occurring on the same day may be 

  Table 1 :      Fixed model parameters determined by visual inspection 

    City    t  1   
a     t  2   

a     t   c    
b     kth neighbor    c     b   min    

d   

   Karkh  661  1385  400  200  80 
   Najaf  661  1385  1050  50  30 
   Mosul  1050  1350  975  200  150 
   Fallujah  575  1025  400  80  30 

   a    Data series days at which step function jumps.   

   b    Data series day at which piecewise linear function starts to increase.   

   c    The  k th nearest neighbor used in kernel smoothing.   

   d    Minimum bandwidth used in kernel smoothing.   
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expected to generate one offspring within two weeks. In either case, the briefness of the time 
window for the production of self-excited offspring events could correspond to the amount 
of time a hostile actor needs to prepare for another attack. 

 Finally, since  �  0  
 T    �  ̂   ( t )d t  is equal to the number of events occurring in the time interval 

[0,    T  ], we have that  �  0  
 T    �  ̂   ( t )d t  is an estimate for the total number of background events in our 

data set and  �  0  
 T    �  ̂   ( t )    −      �  ̂   ( t )d t  is the number of events generated by foreground self-excitation. 

For the fi rst row of  Table 2 , where the background rate is stationary (that is,   �  ̂   ( t )    =    0.060), 
the number of background events is estimated at 137, which represents only 6 per cent of 
the total number of events. Self-excited events would therefore have to make up 94 per cent 
of the sample, or 2141 events. In addition to the large AIC value, this result illustrates 
the poor fi t of a stationary (simple Poisson) background rate model. For the smoothed back-
ground rate model, the estimated proportion of background events is simply  p ̂        =    0.6368 and 
therefore the number of events is  np ̂        =    1451 events (63.68 per cent), where  n    =     2278 is the 
total number of events in Karkh. Thus  n (1    −     p ̂    )    =    827 (36.32 per cent) events are inferred to 
be the product of self-excitation. 

  Figure 3 :              A histogram of all events in Karkh (left). The estimated fi t of the data for the smoothed background rate 
model   �  ̂   ( t ) (right). The smoothed background rate p   ̂   �  ̂     sm  ( t ) is plotted on the right as well for reference. To plot both of 
these on the same scale as the histogram, we multiply the estimates by  T  and then divide by the number of bins (30).  

       Table 2 :      Parameter estimates for every event in Karkh and comparisons of models with and without self-excitation 

    City     �  ̂      k ̂      0     ŵ       −    1    Hawkes AIC    NoSE AIC   a     Best fi t  

   Karkh (  �  )  0.060  0.959  19.23  906.0  3330.6  Hawkes 
   Karkh (  �    step  )  0.053, 0.143, 0.053  b    0.935  19.23  905.6  3331.1  Hawkes 
   Karkh (  �    l  )  0.0552, 0.0001  c    0.915  18.59  905.7  1624.7  Hawkes 
   Karkh (  �    sm  )  0.6368  d    0.364  e    15.08  829.6  855.0  Hawkes 

   a    Models without self-excitation, implemented by setting  k  0  and  w  to zero and re-estimating parameters for the 
background rate.   

   b    Step function parameter estimates   �  ̂    1  for 0    �     t     <     t  1 ,   �  ̂    2  for  t  1     �     t     <     t  2  and   �  ̂    3  for  t  2     �     t     <     T , respectively.   

   c    Piecewise linear   �  ̂     c   for 0    �     t     <     t   c   and   �  ̂     s  ( t     −     t   c  ) for  t   c      �     t     <     T .   

   d    Kernel smoothing parameter estimate   p ̂    .   

   e    Reported value is for (1    −     p )  k  0 , which is comparable to  k  0  in other models.   
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 We note the consistency of the estimates for  k  0  and  w      −    1  across the fi rst three models. The 
estimates stand in contrast to those for the smoothed background rate model, which has the low-
est AIC. This consistency is also not the case for other areas in Iraq. We expect that large sample 
size for Karkh is at least partially responsible for the consistency across models.   

 Najaf 

 The second region we consider is Najaf, a medium-sized city 180 miles south of Baghdad. 
A total of 149 events were recorded in Najaf spanning 1718 days  (Figure 4) . AIC values for 
each model, with and without self-excitation, occupy a much narrower range compared with 
Karkh ( Table 3 ). We attribute this clustering of AIC values to the small sample size. The 
AIC value of 949.8 for the linear model with self-excitation is marginally better than the 
other models. This stands in contrast to the results from the other districts analyzed where 
the smoothed background rate typically outperforms all other models. However, this is not 
necessarily surprising given the sparseness of the data. As a result, long time-scale, secular 
trends are not immediately apparent and one might expect models with stationary, or near-
stationary background rates to do reasonably well. In fact, we note that all of the various 
models are closer to one another in AIC values than in any other region ( Table 3 ). 

    Table 3 :      Parameter estimates for every event in Najaf and comparisons of models with and without self-excitation  a   

    City     �  ̂      k ̂      0    w ̂       −    1    Hawkes AIC    NoSE AIC    Best fi t  

   Najaf (  �  )  0.037  0.590  9.709  963.7  1028.4  Hawkes 
   Najaf (  �    step  )  0.032, 0.034, 0.078  0.521  8.772  958.2  1007.5  Hawkes 
   Najaf (  �    l  )  0.0286, 0.0001  0.497  8.354  949.8  1004.8  Hawkes 
   Najaf (  �    sm  )  0.5054  0.501  8.606  959.2  1004.9  Hawkes 

   a    Parameter details as in  Table 2 .   

  Figure 4 :              A histogram of all events in Najaf (left). The estimated fi t for   �  ̂   ( t ) with a linear background rate is 
plotted on the right (the jagged curve). The fi t for the data without self excitation is plotted on the right as well 
(the straight line).  
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 Following the same intuition developed in the previous example, we see for the linear 
model that  k ̂     0     =    0.497. Thus every 10 events produce on average fi ve offspring events ( Table 3 ). 
However, we expect to wait only approximately  w      −    1     =    8.35 days for an offspring event to occur. 
The timescale for self-excitation is about half as long as the timescale for Karkh. The estimated 
number of background events from the linear model is  �  0  

 T    �  ̂   ( t )d t     =    94, which is 63.1 per cent of 
all the events. An estimated 55 events (36.9 per cent) are therefore the results of self-excitation. 
Overall these proportions are very similar to that observed in Karkh, suggesting a common 
partitioning of violence into background and foreground process.   

 Mosul 

 The third region we consider is Mosul, the second largest city in Iraq. There are 1300 events 
in Mosul occurring over 1718 days. The smoothed background model with self-excitation 
performs better than all other models, yielding an AIC value of 2545.1 ( Table 4 ). The step 
function model ranks second.  Figure 5  shows what looks like a steady increase in events that 
does not drop off to the same degree as in other areas. One might expect such a pattern to be 
a perfect candidate for a linear background rate, yet it performs only marginally better than 
a model with a stationary background rate. 

 The smoothed background rate model estimates (1    −     p ̂     ) k ̂      0     =    0.3856 ( Table 4 ), meaning 
that on average every 10 events generate approximately four offspring events. Values for 

   Table 4 :      Parameter estimates for every event in Mosul and comparisons of models with and without self-excitation  a   

    City     �  ̂      k ̂      0    w ̂       −    1    Hawkes AIC    NoSE AIC    Best fi t  

   Mosul (  �  )  0.0533  1.0024  58.82  2570.5  3370.4  Hawkes 
   Mosul (  �    step  )  0.0969, 0.4169, 0.5639  0.7123  68.28  2558.4  2611.2  Hawkes 
   Mosul (  �    l  )  0.0950, 0.0008  0.7354  49.02  2570.4  2626.9  Hawkes 
   Mosul (  �    sm  )  0.6344  0.3856  41.08  2545.1  2551.8  Hawkes 

   a    Parameter specifi cations as in  Table 2 .   

  Figure 5 :              A histogram of the all events in Mosul (left). The estimated fi t of the data for the smoothed 
background rate model   �  ̂   ( t ) is plotted on the right. The smoothed background rate   �  ̂     sm  ( t ) is plotted on the right for 
reference.  



16 © 2011 Macmillan Publishers Ltd. 0955–1662 Security Journal 1–21

 Lewis  et al  

 w ̂       −    1  vary much more widely across models. The value of  w ̂       −    1  for the smoothed background 
model is 41.08 days, suggesting a much longer time-scale for self-excited events compared 
to Karkh and Najaf. Note that we estimate  w  not w −    1, which means that small differences 
in  w ̂   are amplifi ed when looking at  w ̂       −    1 . The estimate for the number of background events 
in the smoothed background model is  np ̂         =    657 events, which is 50.5 per cent of the total 
number of events, slightly less than in Karkh and Najaf. Accordingly,  n (1    −     p ̂     )    =    643 events 
(49.5 per cent) are attributable to self-excitation.   

 Fallujah 

 The last region we consider is Fallujah. There are 501 events in this region over 1748 days. 
Here too the smoothed background rate model with self-excitation yields the smallest 
AIC value of 1929.8 ( Table 5 ). The step function model outperforms the linear model, most 
likely due to the drop-off in events near the end of the data set. The close fi t of the smoothed 
background model is represented in  Figure 6 . 

 Similar to Karkh and Mosul, the smoothed background rate model estimates (1    −     p ̂    ) k ̂     0     =    0.402 
suggesting every 10 events produce approximately four offspring events on average. The 
value of  w ̂        −    1  from the smoothed background rate model has self-excitation occurring on a 

  Figure 6 :              A histogram of the all events in Fallujah (left). The estimated fi t of the data for the smoothed back-
ground rate model   �  ̂   ( t ) is plotted on the right. The smoothed background rata   �  ̂     sm  ( t ) is plotted on the right as well 
for reference.  

  Table 5 :      Parameter estimates for every event in Fallujah and comparisons of models with and without self-excitation  a   

    City     �  ̂      k ̂      0    w ̂       −    1    Hawkes AIC    NoSE AIC    Best fi t  

   Fallujah (  �  )  0.0394  0.8788  23.52  1952.0  2277.0  Hawkes 
   Fallujah (  �    step  )  0.0605, 0.0350, 0.1717  0.6739  19.85  1944.5  2011.5  Hawkes 
   Fallujah (  �    l  )  0.0447, 0.0002  0.7758  20.33  1949.8  2054.8  Hawkes 
   Fallujah (  �    sm  )  0.6020  0.4017  17.20  1929.8  1946.2  Hawkes 

   a    Parameter specifi cations as in  Table 2 .   
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time-scale of 17 days. The estimated number of background events is  np ̂        =    302 which is about 
60 per cent of all the events in Fallujah. The inferred number of self-excited events is 
 n (1    −     p ̂    )    =    199 (40 per cent).    

 Discussion and Conclusion 

 Self-excited point process models partition the rate of events occurring in time (and space) 
into background and foreground components. Background processes generate events 
that are statistically independent of one another, meaning that one background event neither 
increases nor decreases the likelihood of a subsequent event. The most well-known back-
ground point process is a simple Poisson process, which generates events at a stationary or 
constant rate in time. By contrast, foreground processes are viewed as generating events that 
are statistically dependent. If events at one time (and place) increase the likelihood of sub-
sequent events, then the process is said to be self-exciting. It is most common to assume that 
foreground processes operate over relative fast temporal and spatial scales, creating short-
term temporal correlations between events. Background processes are therefore reasonably 
seen as either stationary in time, or changing only over only long time-scales. 

 Most self-exciting point process models have treated background rates as stationary 
Poisson processes and superimpose a short-term self-exciting process ( Ogata, 1988 ;  Egesdal 
 et al , 2010 ). Such models may be appropriate where there is good reason to believe that the 
broad structural characteristics of the physical or social environment are relatively invariant. 
Where the environment is changing, even at relatively long time-scales, models that assume 
a stationary background rate may be inaccurate. Such is the case in the present study, where 
we have sought to model the time-course of civilian violent deaths over more than four years 
of the Iraqi confl ict. It seems unreasonable to assume that the background rate of civilian 
deaths remained constant between March 2003 and December 2007 because of the deep struc-
tural changes to the security environment that occurred over this time. Moreover, assuming 
a stationary background rate would also require that virtually all of the rise and fall in violence 
is a result of short-term self-exciting processes. For example, a stationary background 
rate model for Karkh, a district in Baghdad, would imply that only 105 of 2278 events (4.6 
per cent) are attributable background processes. The remaining 95.4 per cent of events would 
necessarily be attributed foreground self-exciting processes. While it is true that the relative 
proportion of foreground events in the Iraqi case seems unprecedented by comparison with 
garden-variety crime (see below), attributing all but 5 per cent to self-excitation seems unwar-
ranted. 

 The models presented here are unique in that they consider a special class of point-
processes where the background rate is non-stationary. We consider three models including: 
(1) a step function background rate; (2) a linear increasing background rate; and (3) a 
smoothed background rate. We also include a stationary background rate model for com-
parison. The models were fi t to observed violent events derived from Iraq Body Count using 
maximum likelihood estimation and models were compared using AIC. In no instance did 
a stationary background rate model outperform a model with a non-stationary background 
rate. Moreover, AIC values suggest that models which include a self-exciting component 
outperform the corresponding model where self-excitation has been removed. These 
results confi rm that both long and short time-scale processes are simultaneously important 
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components of the dynamics of violence in Iraq. Focusing on either background or foreground 
processes to the exclusion of the other neglects a substantial fraction of the causal dynamics. 
Indeed, for models favored by AIC, we fi nd that that background events make up between 
50 and 63 per cent of all observed violent events. Accordingly, self-excited events are esti-
mated to comprise 37 – 50 per cent of all events. By comparison, self-excitation accounts 
for approximately 13 per cent of events in a study of residential burglary in Los Angeles 
( Mohler  et al , 2011 ). Clearly, self-excitation drives a substantial proportion of the total 
violence in Iraq. 

 Our comparisons of different regions within Iraq suggest both commonalities and 
differences in the short time-scale, foreground dynamics of violence. In three of the four 
regions examined here, including Karkh, Mosul and Fallujah, for every 10 initiating events 
we expect four self-excited offspring events (that is,  k ̂      0     =    0.4017). In Najaf, every 10 initiat-
ing events are expected to generate approximately fi ve offspring events (that is,  k ̂      0     =    0.501). 
It is possible therefore that the number of daughter events generated by an initiating 
event is characteristic across all regions of Iraq. By contrast, there is considerable variabi lity 
in the time-scales over which self-excited events occur. Examining the models favored by 
AIC suggests that self-excited daughter events may happen on average within one week of 
an initiating event (Najaf), within approximately two weeks (Karkh, Fallujah), or within 
slightly more than one month (Mosul). Such regional differences may stem from unique 
situational characteristics in each area. For example, locations that see fewer daughter events 
per initiating event may suggest that local populations and institutions responded more ef-
fectively to short-term, immediate security threats by damping opportunities for follow-on 
violence. Similarly, self-exciting violence that seems to play out over short time windows 
may suggest better organization on the part of the perpetrators of violence. Given the lack 
of direct ethnographic scale evidence from the settings analyzed here, such observations are 
necessarily speculative. Nevertheless, the criminological literature leads us to believe there 
are also good generic behavioral reasons to suppose that the violence on-the-ground in 
Iraq was driven by a combination of background and foreground self-excited components 
( Jacobs and Wright, 2006   ;  Short  et al , 2008 ;  Townsley  et al , 2008 ;  Andresen  et al , 2009 ; 
 Mohler  et al , 2011 ). 

 Our results may hold implications for designing strategies to deal with security threats 
that evolve on multiple time-scales. At a coarse level, the fraction of events attributable to 
background and foreground processes may provide a rough gauge of the appropriate mix 
of strategies to aim at long and short time-scales, respectively. However, this says nothing 
about differences in the costs and logistical complexities of tackling security problems 
arising at different times. Addressing the causes of violence arising on long time-scales may 
be particularly challenging ( Kilcullen, 2009 ;  Bjelopera and Randol, 2010 ). Strategies to 
deal with short time-scale security problems may be more accessible and may yield more 
immediate results ( Clarke and Newman, 2006 ), both in terms of the volume of impact 
and the local spatio-temporal dynamics of violence. If our conclusion that 37 – 50 per cent 
of events in the IBC data is the result of foreground self-exciting processes, then security 
strategies that interrupt even a fraction of these events may have a large impact on the volume 
of violence. 

 Our analyses also indicate the time-scales at which security responses may be most 
effective. For example, the fastest self-excitation time-scale  w ̂       −    1  is observed in Najaf where 
foreground events occur on average within eight days of initiating events. To interrupt such 
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a process, one must be able to respond to the initiating events within eight days. In Mosul, 
one might have greater fl exibility to interrupt self-excitation given that such events occur on 
average within 41 days of initiating events. However, we can only speculate on the potential 
impact of getting inside these short-term temporal processes. One possible outcome is that 
the average number of daughters generated by any one initiating event  k  0  may decline. 

 Future work could include adding a conditional magnitude to the intensity function, where 
magnitude would be measured by the severity of the attack. This is routine in the use of models 
to study earthquake dependencies where large magnitude earthquakes are more likely to gener-
ate aftershocks than smaller magnitude earthquakes. A similar dynamic may characterize vio-
lent acts, where large magnitude attacks cause more combatants to  ‘ pile in ’ . To our knowledge, 
this has not been done with respect to criminal or other violent activity. It may be diffi cult 
to determine the magnitude of a violent attack, but in the present case the number of deaths 
occurring in each event may serve as a proxy for the magnitude. Another possible direction for 
the future work involves estimating the background intensity more accurately. Considering 
a semi-parametric or non-parametric estimation of the background rate, or possibly using other 
data sets like troop levels could prove effective. In earthquake research, different choices of the 
triggering function  g  in equation (1) have been analyzed and compared ( Ogata, 1998 ). Similar 
work could be done here to determine accuracy of triggering densities.     
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