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Abstract. We exploit the recurrence of structures at different locations, orien-
tations and scales in an image to perform denoising. While previous methods
based on “nonlocal filtering” identify corresponding patches only up to transla-
tions, we consider more general similarity transformations. Due to the additional
computational burden, we break the problem down into two steps: First, we ex-
tract similarity invariant descriptors at each pixel location; second, we search for
similar patches by matching descriptors. The descriptors used are inspired by
scale-invariant feature transform (SIFT), whereas the similarity search is solved
via the minimization of a cost function adapted from local denoising methods.
Our method compares favorably with existing denoising algorithms as tested on
several datasets.

1 Introduction

Image “denoising” refers to a series of inference tasks whereby the effects of various
nuisance factors in the image formation process are removed or mitigated. Like all
inference tasks, denoising hinges on an underlying model – implicit or explicit – where
nuisance factors are processes that affect the data, but whose inference is not directly of
interest. The generic term “noise” then refers loosely to all unmodeled phenomena, so
illumination could be treated as noise in one application, or signal in another.

In Computer Vision we are used to more explicit models of the underlying scene,
and even simple ones such as “cartoon models” [1, 2], occlusion “layers” [3], multi-
resolution and scale-space processes [4] have had ramifications in image processing.
However, one could argue that the image formation process is unduly complex, and
modeling it explicitly just to remove noise or increase the resolution is overkill. This
philosophy is at the core of so-called “exemplar-based methods,” [5]: Instead of explic-
itly modeling the image-formation process, one can just “sample” its effects and manip-
ulate the samples to yield the desired inference result. In the simpler forward problem,
that of image synthesis, this philosophy has yielded so-called “procedural methods” in
computer graphics, that have been rather successful especially in synthesizing complex
textures (see [6] and references therein).

The basic model underlying nonlocal denoising [7] is that an image is generated by
patches that are translated in different locations of the image, downsampled, and cor-
rupted by additive noise. To perform denoising, then, one can search for all patches sim-
ilar to the given one up to translation, then transform them, and then perform standard
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image processing operations. This model can be generalized, whereby the transforma-
tion undergone by patches is not just a translation, but any homeomorphic transforma-
tion of the image domain. The more complex the transformation, the more powerful the
model, the more costly the inference process is. Which begs the question of what is the
right trade off between modeling power (fidelity) and computational costs (complex-
ity)3.

We have therefore conducted empirical studies of various procedural, or exemplar-
based, models and their effects on image denoising, and have converged to a similarity
model as the desirable tradeoff. Furthermore, projective transformations can be approx-
imated locally by similarity transformations, for which efficient detectors and descrip-
tors are available [8]. In this manuscript we propose a denoising algorithm that operates
on patches with scale and rigid invariance, hence extending recent results on nonlocal
image filtering.

In our method, we consider equivalent all patches that are similarity transformations
of a given pattern. This generates equivalence classes of patches, and one can define a
metric and probabilistic structure on the equivalence classes, so that patches can be
compared. This can be done as part of the matching process (by “searching” the equiv-
alence class for all possible transformations of a given patch) or by defining “canonical
representatives” of the equivalence class. This way, one can generate a “descriptor” for
every equivalence class, and then endow the space of descriptors with a distance, with-
out solving an optimization or search problem at every step. We choose this second
option, where we compute – at each pixel – a similarity-invariant descriptor, similar to
the scale-invariant feature transform (SIFT) [8].

In the next section we start from the general formulation of nonlocal filtering, then
extend it to the similarity model. We then briefly review SIFT, and how it relates to our
goals, and finally propose our algorithm in Sect. 3. We then present empirical results in
support of our approach.

1.1 Related Work

A variety of methods are available for image denoising, such as PDE-based methods
[9–11], wavelet-based approaches [12, 13] and statistical filters [14, 15]. Among all
these methods, the most related one to ours is the nonlocal means filter [7]. It recently
emerged as a generalization of the Yaroslavsky filter [16], but also taps on “exemplar-
based” methods in texture synthesis [17] and super-resolution [5], as well as on “proce-
dural methods” in computer graphics [6, 18]. Buades et al. transposed the idea to image
denoising. Its advantage is to exploit similar patches in the same image, without an ex-
plicit model of the image formation process. The approach is taken one step further in
[19], where similarity is computed hierarchically and efficiently. Another accelerating
method is proposed by Mahmoudi and Sapiro [20] via eliminating unrelated neighbor-
hoods from the weighted average. There are several other methods based on the idea
of nonlocal means filter [7]. For example, Kervrann, et al. [21] improve it by using an
adaptive window size; [22, 23] formalize a variational nonlocal framework motivated

3 As George E.P. Box said, “all models are wrong, some are useful,” hence this question cannot
be settled by means of analysis.
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from graph theory [24]; Chatterjee, et al. [25] generalize nonlocal means to high-order
kernel regression. Nonetheless, all the methods interpret the concept of “similarity”
only up to translation, while we extend it to a more general similarity transformation,
i.e., scaling and rotation.

2 Nonlocal Similarity Image Filtering

In the next subsection we review the method proposed by Buades et al., then SIFT, and
then propose our approach to image denoising and super-resolution.

2.1 Nonlocal Means Filtering

The key idea of the nonlocal means filter is that a given noisy image f : Ω ⊂ R2 7→ R
is filtered by

u(x) =
∫

wf (x,y)f(y)dy , (1)

where u : Ω 7→ R is the denoised image and wf : Ω×Ω 7→ R+ is a normalized weight
function written as

wf (x,y) .=
e−

d2
f (x,y)

h2∫
e−

d2
f (x,y)

h2 dy
, for d2

f (x,y) .= ‖fx − fy‖2Gσ
(2)

is the L2-norm of the difference of fx (i.e., f centered in x) and fy (i.e., f centered
in y), weighted against a Gaussian window Gσ with standard deviation σ. The map
df (x,y) measures how similar two patches of f centered in x and y are. If two patches
are similar, then the corresponding weight wf (x,y) will be high. Vice versa, if the
patches are dissimilar, the weight wf (x,y) will be small (but positive). While the pa-
rameter σ defines the dimension of the patch where we measure the similarity of two
patches, the parameter h regulates how strict or relaxed we are in considering patches
similar. The final result of the nonlocal means filter is that several (similar) patches are
used to reconstruct another one.

Notice that the similarity of patches in df is defined up to translation. In other
words, we can only match patches that are simply in different locations, but other-
wise unchanged – with the same orientation and scale. This motivates us to consider
the larger class of similarity measures that discounts scale and rotation changes, i.e., a
similarity-invariant measure. In theory, defining this measure is just a matter of intro-
ducing two more integrals in df and an inverse similarity-transformation in eq. (1) to
align the patches being averaged. In practice, however, because this similarity has to
be computed multiple times for each patch, this introduces considerable computational
burden that makes the ensuing algorithm all but impractical. One way to address this
problem is to find a function that estimates a rotation and a scale at each patch with
respect to a common reference system, so that each patch can be transformed into a
“canonical” patch. Once this is done, one can apply the original nonlocal means filter.
In the next section we will describe one such function.
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2.2 Scale-Invariant Feature Descriptors

The idea of determining when two regions are similar up to a similarity transformation
has been widely explored in the past to solve several tasks including object recognition,
structure from motion, wide-baseline matching, and motion tracking [26, 8, 27–29]. In
this paper, however, we will exploit the same idea of matching similarity-invariant re-
gions for the purpose of image denoising.

One of the most successful methodologies to match regions up to a similarity trans-
formation is the Scale Invariant Feature Transform (SIFT) [8]. The main steps in com-
puting SIFT are

– Scale-space extrema detection: Scale is identified at each point by searching for
extrema in the scale-space of the image via a difference-of-Gaussian convolution.

– Keypoint localization: Keypoints are selected based on the stability of fitting a 3-D
quadratic function (obtained via Taylor expansion of the scale-space of the image).

– Orientation assignment: A rotation with respect to a canonical reference frame is
computed based on local image gradients.

– Keypoint descriptor: A vector composed of local image gradients is built, so that it
is not sensitive to similarity transformations and, to some extent, changes in illumi-
nation.

More details on how each step is implemented in practice can be found in [8].
Notice that there is a fundamental difference in how SIFT is commonly used and

how it is employed in our algorithm. In our case the Keypoint localization step is not
implemented as we are interested in computing a SIFT descriptor and in obtaining some
consistent estimate of scale and orientation at each pixel. From now on, therefore, we
will define our SIFT filter to estimate scale and orientation as ρ(x) : Ω 7→ [0,∞) and
θ(x) : Ω 7→ [0, π] respectively.

3 Nonlocal Similarity-Invariant Filtering

In this section we define our nonlocal similarity mean filter, which is a combination of
nonlocal mean filtering and SIFT. The nonlocal means can be regarded as one step of a
fixed point iteration to solve the optimality conditions of the following functional [30]

J(u) .=
∫

(u(x)− u(y))2 wf (x,y)dxdy . (3)

where wf is defined in eq. (2). We reformulate the weight function to be similarity-
invariant,

wf (x,y) = e−||P (x)−P (y)||2/h2
, (4)

where P (x) is the canonical form of the patch center at x and h is a parameter as in the
Non-local means.

In Figure 1, we illustrate step-by-step how we align the patch to its canonical form:
for each pixel x,

1. Take a patch with size ∼ 10ρ(x) around the pixel;
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2. Rotate this patch with the angle θ(x);
3. Extract the middle part with size ∼ 7ρ(x) for the boundary problem after rotating;
4. Down-sample to a uniform size (the smallest size among all patches) and save as

P (x).

In this way we can extract more meaningful patches than in previous nonlocal means
methods, as shown in Figure 2. Since we assume additive Gaussian white noise, noise is
invariant to rotation and scaling if the image is considered to be a continuous function.
When aligning the patches, there are interpolation errors, but they are negligible two-
pixels away from the center, if bilinear interpolation is used. We mitigate scale errors by
using only patches that are larger, and therefore at higher resolution, than the reference
patch.

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

5 10 15 20 25 30

5

10

15

20

25

30

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

2 4 6 8 10 12 14

2

4

6

8

10

12

14

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Fig. 1. Procedure to align patches. Three patches are selected to illustrate the alignment, as shown
in the first row. From top to bottom: (1) noisy patches whose size corresponds to the scale of its
center; (2) rotate the patch with the angle assigned by SIFT; (3) crop the black boundary due to
the rotation; (4) down-sample to a uniform size patch 7× 7.
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Fig. 2. Fifteen most similar patches to the target one (red square on the left) are selected (middle)
and aligned via similarity (right). On the right, the pose of the patch corresponds to the scale and
orientation of its center as obtained by SIFT.

3.1 Denoising

We add a convex fidelity term to the nonlocal functional J in (3), yielding a denoising
model

û = arg min
u

J(u) +
λ

2

∫
(f(x)− u(x))2 dx . (5)

To minimize the energy (5), we apply the gradient descent flow:

ut(x) = −
∫

(u(x)− u(y))w(x,y)dy + λ(f(x)− u(x)) . (6)

Notice that the above equation is linear in u(x), so an implicit time difference scheme
is applied in order to make the iterations more stable.

un+1(x)− un(x)
dt

= −
∫

(un+1(x)− un(y))w(x,y)dy + λ(f(x)− un+1(x)) .(7)

We can also extend this model to color image denoising in which the input image
f := (fR, fG, fB) is a three-channel signal. In a similar way, we can compute the
weight wf (x,y) using high-dimensional patches so that the weight is the same for all
color channels. We express the total energy as follows,

û = arg min
u

∑
j=R,G,B

∫ (
uj(x)− uj(y)

)2
wf (x,y)dxdy+

λ

2

∫ (
f j(x)− uj(x)

)2
dx .

(8)
Notice that we can perform color image denoising by treating the three color channels
independently.

4 Experiments

We compare the performance of our method to that of the PDE-based method [11],
the wavelet-based method [12] and the original nonlocal means [7]. Other denoising
methods are examined and compared in [7].
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We present the nonlocal similarity filtering on two synthetic images which are cor-
rupted by additive Gaussian noise with standard deviation σ = 20 (Fig. 3) and σ = 40
(Fig. 4) respectively. For each method, the residual image f − u is shown. Both the
PDE-based method [11] and the wavelet based method [12] fail to preserve structures
as they are left in the residual image. The traditional nonlocal method fails to denoise
the central part in Fig 3 since these regions in the residual image are almost flat.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3. Experiment with Gaussian noise: σ = 20. Top: (a) original image, (b) PDE-based [11],
(c) Wavelet-based [12], (d) nonlocal means and (e) NL similarity. Bottom: (f) noisy input f , (g)-
(j) show the residual of each method (b)-(e) respectively. The flat regions in (h) show that the
central part has not been denoised.

An example of color image denoising is presented in Fig. 5. In computing the
weight, the L2 distance between 3-D patches (RGB) is used. As for denoising, we treat
the three color bands independently. The results are presented in Fig. 5, which shows
that our approach works better for stripes, while it is comparable to the original method
for the stars.

We compare the quantitative evaluation of various denoising methods. Table 1 lists
the root mean square (RMS) error of each method:

RMS(u) =

√∫
Ω

(I(x)− u(x))2dx/|Ω| , (9)

where I is the original image and u is the reconstruction of the method, both of which
are defined on the image domain Ω.

5 Conclusions

We extended the nonlocal means filtering by a more general similarity measurement. In
particular, we applied SIFT to estimate a rotation and a scale at each patch so that it can
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4. Experiment with Gaussian noise: σ = 40. Top: (a) original image, (b) PDE-based [11],
(c) Wavelet-based [12], (d) nonlocal means and (e) NL similarity. Bottom: (f) noisy input f , (g)-
(j) residual of each method (b)-(e) respectively. The flat regions in (h) show that the serifs of the
A characters have not been captured.

(a) (c) (e)

(b) (d) (f)

Fig. 5. Color image denoising with Gaussian noise with σ = 30. From left to right, top to bottom:
(a) original image, (b) noisy input f , (c) nonlocal means u1, (d) nonlocal Similarity u2, (e) NL
method noise f − u1 and (f) NL similarity method noise f − u2. The stripes tend to be restored
better in (f) than in (e).

Table 1. Root mean square error for the input images and different denoising methods.

RMS Input PDE-based [11] wavelet-based[12] NL means[7] NL similarity
testpat 20.00 14.65 12.56 9.80 6.74
letter 40.00 20.05 13.57 12.42 11.66

flag (color) 30.00 N/A N/A 10.43 9.11



9

be transformed to a canonical form. Then we construct the weight based on the canoni-
cal form so that we could exploit more similar patches to help denoising. Experiments
demonstrate that the proposed nonlocal similarity filtering outperforms the previous
methods especially when applied to the restoration of patterns that are replicated with
different scale and/or rotation.
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