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Abstract— This paper explores a stochastic approach for
controlling swarms of independent robots toward a target
distribution in a bounded domain. The robot swarm has no
central controller, and individual robots lack both communi-
cation and localization capabilities. Robots can only measure
a scalar field (e.g. concentration of a chemical) from the
environment and from this deduce the desired local swarm
density. Based on this value, each robot follows a simple control
law that causes the swarm as a whole to diffuse toward the
target distribution. Using a new holonomic drive robot, we
present the first confirmation of this control law with physical
experiment. Despite deviations from assumptions underpinning
the theory, the swarm achieves the theorized convergence to
the target distribution in both simulation and experiment. In
fact, simulated and experimental performance agree with one
another and with our hypothesis that the error from the target
distribution is inversely proportional to the square root of the
number of robots. This is evidence that the algorithm is both
practical and easily scalable to large swarms.

I. INTRODUCTION

In order to reduce the cost and complexity of a robotic
swarm, individual robots may lack capabilities often assumed
to be essential for robot control. We are interested in the con-
trol of swarms without a central controller, robot localization
information, or communication capabilities. That is, each
robot must act independently with only locally measurable
information, yet it still must contribute to the group effort.

For instance, consider the proposal of [1] to pollinate crops
using a swarm of robotic bees. Even the most advanced
insect-sized flying robots are severely weight constrained [2],
imposing a tradeoff between the addition of communication
or localization modules and even more essential capabilities,
such as energy storage capacity. If the density of robots
required to pollinate the field is proportional to the density
of flowers, and if the local density of flowers can be mea-
sured with an inexpensive, lightweight sensor (e.g. airborne
chemical or color sensor), the swarm can achieve the desired
density using the simple law described in [3] without need
for a central controller, radio communication, or GPS.

This paper presents the first experimental validation of this
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control law1 and assessment of whether the law is robust
to differences between the assumptions of the theory and
practical scenarios. Our paper is also the first to demonstrate
experimentally that the distribution of the robotic swarm
converges to the desired distribution as 1√

N
, where N is the

number of robots. While it is known that a pure random walk
control yields 1√

N
convergence of a swarm to the uniform

distribution (e.g. [5]), this rate of convergence has not yet
been shown for any stochastic control law that directs the
swarm toward a specific non-uniform distribution.

This paper is organized as follows. Section II summarizes
the mathematical background for the control law. Section III
details our simulation methods, introduces the error metric
used to assess our results, and presents the results for two
target swarm density distributions. Section IV describes the
testbed we used, the design of our robot, the design of the
experiments, and results for the same two target distributions.
Section V compares simulated and experimental results to
one another and to our hypothesized convergence rate, and
we conclude and discuss future work in Section VI.

II. THEORY

We begin with the result of [3]: assuming that the desired
density of a swarm is proportional to a measurable feature
of the robot’s environment (i.e. “a scalar field”), the swarm
will tend toward the desired density if each robot follows a
random walk with speed inversely correlated to the square
root of the scalar field at the robot’s instantaneous position.

More precisely, the individual robots are to move accord-
ing to:

dX(t) = D(X(t))dW + dψ(t) (1)

where X(t) ∈ R2 is the stochastic process of the robot’s
position in domain Ω ⊂ R2 at time t, D is a function
R2 → R representing the control law that scales the robot’s
velocity determined by the standard Wiener process W (t),
and ψ(t) is a function2 that reflects the robot specularly from
its boundary ∂Ω. Our specific choice of control law is given
by

D(x) =
1√
F (x)

(2)

where F is a scalar field on the domain representing the
target distribution, and x ∈ R2 is the robot’s position. This
unique choice of control law D causes the density of the

1 [4] also applies a stochastic swarm control law to physical robots, but it
is not concerned with achieving a specific non-uniform swarm distribution.

2This function cannot be expressed explicitly; see [6].
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swarm to be linearly proportional to the scalar field F for a
large number of robots N and time t. That is, it is proven
in [3] that if ρ(x, t) is the probability density function of a
random process X(t) satisfying Equation 1, then

lim
t→∞

‖ρ(·, t)− ρΩ(·)‖1 = 0 (3)

where ρΩ(x) = F (x)/||F (·)||1 is the target density distribu-
tion and the L1 norm of a function f(x) is defined as

||f(·)||1 =

∫
R2

|f(x)|dx.

In the case of crop pollination, the scalar field might be the
concentration of a chemical emitted by the crop, or simply
the intensity of a color that distinguishes the crop from its
surroundings. Such a scalar field corresponds to a target
swarm distribution with a high concentration of robotic bees
over the crop area, and low swarm density elsewhere.

Intuitively, where the scalar field F and thus the desired
density of robots is high, the robots will tend to move
slowly, or linger. Where the scalar field F and thus the
desired density of robots is low, the robots will tend to
move quickly, or evacuate. Thus the diffusive behavior of
the Wiener process is guided by the simple control law D
to achieve the swarm goal.

III. SIMULATION

To provide a performance benchmark for experiment, we
simulate the model of Equations 1 and 2 for two target swarm
densities represented by the scalar fields of Figure 1.

A. Method

We begin by introducing real-world complexities in the
simulation that are not accounted for in the theory of Section
II. First, due to the finite clock rate of the microprocessor
and, more importantly, the inertia of the robot, Brownian
motion must be approximated as a discrete-time continuous-
space random walk. Thus for simulation, the differential
Equation 1 for each robot takes the form of a difference
equation

xj+1 = xj +
√

2∆tD(xj)Zj (4)

where xj = x(tj), ∆t = tj+1 − tj is the (constant)
duration of each time step, and Zj is a vector of independent,
normally distributed random variables with zero mean and
unit variance. Note that it will be useful to rewrite Equation
4 as

xj+1 = xj + vj∆tẐj (5)

where vj is the speed of the robot during the time step, and
Ẑj = Zj

|Zj | is a unit vector in the direction of Zj .
In addition to discrete-time operation, real robots have a

finite maximum speed vmax, and thus

vj = min
(√

2∆t−
1
2D(xj)Zj , vmax

)
, (6)

where Zj =
∣∣Zj∣∣ is the magnitude of Zj .

Finally, a real robot with only a local scalar sensor cannot
easily determine the orientation of the boundary relative

(a) The Ring Pattern. The in-
ner radius is r1 = 11.4in; outer
radius is r2 = 20.6in.

(b) The Rows Pattern. Each
row has a width of d = 6.87in.

Fig. 1: The Scalar Fields. Each pattern above specifies a
scalar field

F (x) =

{
36 if x ∈ Ω ∩ Γ,
1 if x ∈ Ω \ Γ,

used in simulation and experiment, where:
• Ω = {x : x1 ∈ [0, w], x2 ∈ [0, h]},
• (ring) Γ = {x : r2

1 < (x1 − w
2 )2 + (x2 − h

2 )2 < r2
2},

• (rows) Γ = {x : x1 ∈ [d, 2d] ∪ [3d, 4d] ∪ [5d, 6d]}.
with (x1, x2) Cartesian coordinates of x, w = 48in and h =
70in. In short, the goal of the controller is to achieve a swarm
density 36× higher in dark regions than in light regions.

to its current velocity, and thus cannot reflect specularly.
Instead, when the robot senses contact with the boundary,
it simply reverses direction for the duration of the time step.
Therefore, if xj+1 calculated according to Equation 5 is
found to be outside the boundary, we calculate a coefficient
α = ∆ta−∆tb

∆ta+∆tb
, where ∆ta is the duration until the robot

would reach the boundary at its present speed, and ∆tb =
∆t−∆ta is the remainder of the time step. Then

vj = αmin
(√

2∆t−
1
2D(xj)Zj , vmax

)
. (7)

Note that although [5] explains the disadvantages of bound-
ary control laws other than specular reflection, it does not
consider the boundary control law presented here. Simulation
for a uniform desired distribution within a circular boundary
suggests that our law does not cause distortion near the
edges, as some other boundary control laws do.

The simulation is performed in MATLAB using only stan-
dard arithmetic and control flow statements, as the difference
equations are inherently explicit. vmax = 17.5in/s is chosen to
reflect the maximum speed of the physical robot described
in Section IV. Because the maximum achievable speed of
the physical robot depends on the direction of movement,
vmax is really the minimum, over all movement directions,
of the maximum achievable speed. The time step ∆t =
0.5s is chosen to be relatively small to avoid error due to
time discretization, but large enough to permit the robot to
accelerate to each new velocity well within the time step.
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B. Error Metric

As the simulation is defined in terms of a finite number
of individual robots rather than robot density, it is not
immediately obvious how to define a metric for how well the
robot swarm matches the target distribution. A naı̈ve method
would involve discretizing the simulation space into bins,
calculating the number of robots in each bin, and comparing
these to the desired values calculated from the target distri-
bution. This is not a good error metric, however, because
the choice of bin size is arbitrary. Furthermore, the metric
approaches zero (no error) as the bin size approaches the
entire space, and the metric approaches unity (or complete
error) as the bin size is reduced to zero. A more useful error
metric follows from replacing the position of the robot, a
single point, with a distribution representing how well it
performs its task in space. In particular, we center a Gaussian
function at the ith robot’s position xi(t) at time t,

Gδi (x, t) =
1

2πδ2
exp

(
−|x− xi(t)|2

2δ2

)
, (8)

where δ represents the radius of the region in which the robot
effectively performs its task. We combine the Gaussians for
each robot into a single function and normalize the result3

ρδN (x, t) =
1

N

N∑
i=1

Gδi (x, t), (9)

where N is the number of robots. This ‘Gaussian blob
function’ gives a continuous representation of how well the
robots cover the space at a given time. We calculate an error
metric by comparing the Gaussian blob function to the target
density distribution using the L1 norm,

eδN (t) =

∫
Ω

∣∣ρδN (x, t)− ρΩ(x)
∣∣ dx. (10)

The metric makes conceptual sense as in most applications
an individual robot will not fulfill its task only at a single
point but rather over some area, and the robot’s ability to
perform its task diminishes further from the robot’s center.
The parameter δ is meaningful because it describes the
robot’s effective task space.

The upper bound for this error metric is 2. This is
approached for any number of robots N only when δ is
small, all robots are located in some region where the target
density is zero, and no robots are located where the target
density is nonzero. The lower bound for this error metric
is zero. However, for a general target distribution, this can
only be approached when δ is small and N is large4. More
precisely, we hypothesize that ∀ε > 0

lim
t→∞

lim
δ→0

lim
N→∞

P (eδN (t) < ε) = 1. (11)

That is, eδN (t) converges in probability to 0 as t → ∞,
δ → 0, and N →∞.

3We assume δ is small enough relative to Ω such that the integral of each
Gaussian over Ω is nearly 1.

4Of course, this can also be achieved if the desired distribution can be
represented exactly as the sum of N Gaussians with the given δ.

Of course, for finite t and N and nonzero δ, the value
of the error will be somewhere between 0 and 2. We can
consider three components of the error separately. The error
due to t arises because the control law needs time to guide the
robots from their initial distribution to steady state. The error
due to δ can be likened to the difficulty in painting a detailed
image with a large paintbrush. Finally, the error due to N
can also be called the ‘sampling error’: by the Central Limit
Law, for a fixed x and t,

√
N
(
ρδN (x, t)− ρ(x)

)
converges

in distribution to the standard normal distribution N (0, 1).
Hence we conjecture that the sampling error will vary
linearly with 1√

N
, which is common for similar scenarios

in the literature (e.g. [5], [7]). We will assess whether our
experimental results confirm this in Section V.

When calculating eδN (t), the values of N and t are given
but δ must be chosen. Robotic bees for pollination would
likely have very short manipulator arms, or none at all, and
so the size of their task space would not be much greater
than that of their bodies. Hence, we choose δ = 2in, the
approximate radius of our holonomic drive robot.

The level of this error metric that corresponds with ac-
ceptable performance also depends on the particular task, but
we seek to interpret the values of the error metric achieved
by a swarm of N robots in a task-independent way. Two
approaches are to compare the value of the error metric
achieved by the robot swarm to:

• the probability density function of error metric values
that follows from random sampling of the robot posi-
tions from the desired distribution and

• the global extrema, over all possible robot configura-
tions, for the error metric.

The approximate probability density function of error
metric values for the ring distribution is shown in Figure
2. However, finding the global extrema may not be feasible
for an arbitrary number of robots N and desired distribution,
so we use instead the highest and lowest values of the error
metric we have found by thoughtful trial and error.

C. Results

Figure 3 shows sample configurations and density dis-
tributions, as measured by the Gaussian blob function ρδN ,
achieved in simulation of N = 200 robots for both of the
target distributions of Figure 1.

Despite deviations from theoretical assumptions, the
swarm of robots still tends toward a distribution proportional
to the scalar field. For the target distribution as the ring
pattern, the minimum error value achieved in simulation,
eδN = 0.4295, lies at 7.2% of the range between the mini-
mum error value 0.3089 and maximum error value 1.9956
achieved by manual placement. For the target distribution
as the row pattern, the error value eδN = 0.5366 is within
12.5% of the minimum error value 0.3549, considering the
maximum error value of 1.8115. More detailed analysis of
the convergence to the desired distribution and comparison
of results to Figure 2 will be provided in Section V.
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Fig. 2: Probability density function of the error metric
for robot configurations randomly sampled from the
ring distribution. This curve was generated by randomly
sampling N = 200 robot positions from the ring distribution,
calculating the value of the error metric with δ = 2in, and
repeating 100000 times. The MATLAB routine ksdensity
was used to approximate the continuous probability density
function from the resulting histogram. Lines for the 25th,
50th, and 75th percentiles are labeled Q1, Q2, and Q3,
respectively. In Section V, we will compare the values of the
error metric achieved by the control algorithm to this proba-
bility density function to assess whether the performance is
acceptable.

IV. EXPERIMENT

To test the robustness of the control law in a real world
scenario, we designed and built a new holonomic drive robot
(i.e. one that can translate in any direction independent of its
orientation, [8]), programmed it to follow the control laws
used in the simulation, and performed many trials with one
robot to reveal the behavior of a swarm of many robots. In
our spatial coverage scenario, it is possible to experimentally
measure swarm behavior using only a single robot because
the control law requires no interaction among robots, and the
assumption that there are no collisions is mostly valid in the
case of small robots in a relatively large domain (e.g. robotic
bees pollinating a field).

A. Methods

1) Testbed: Large format prints of the scalar field patterns
of Figure 1 were placed on the floor of the testbed. The print
is protected by a thin, transparent sheet of plastic. The plastic
is secured to the floor at the edges with thick strips of red
tape, which also mark the boundary of the testbed.

2) Robot: The chassis of the robot consists of three
Parallax High Speed Continuous Rotation Servos (Product
ID 900-00025) arranged at equal angles and sandwiched
between 3in diameter, 0.125in thick acrylic discs. Each
servo drives a 58mm Nexus Robot omni-wheel (RB-Nex-
57), which rolls like a typical wheel but also slides freely

(a) Robot positions at t = 601.5s for ring distribution with
N = 200 robots (left) and at t = 361.5s for row distribution
with N = 200 robots (right).

(b) Gaussian blob function ρδ=2in
N=200(t = 601.5s) for ring

distribution (left) and ρδ=2in
N=200(t = 361.5s) for row distribution

(right).

Fig. 3: Sample simulation results for both target distri-
butions. The times t are those at which the error metric eδN
is minimal over a simulation 800s long. The robot positions
and Gaussian blob function, with δ = 2in and N = 200
robots, show that the control law guides robots toward the
target distribution.

relative to the floor along the axis of rotation. The servos
are controlled via 8-bit pulse width modulation (PWM)
by an Arduino Micro (Atmel ATmega32u4 with additional
components, developed by Adafruit Industries and Arduino)
programmable microcontroller. A 9V lithium-ion recharge-
able battery powers the Arduino directly and is regulated
to 6V by a 1.25V-35V 3A Adjustable Step-Down Voltage
Regulator (RB-See-365) to power the servos. An additional
acrylic disc supported by three 1/4in diameter PTFE rods is
used to attach an identification tag. For easy assembly and
disassembly, all electronic components are attached to the
robot chassis using self-locking mushroom head fastener tape
and all structural components are bonded with hot melt glue.
A hand-soldered perfboard, connected to components using
ribbon cable and 0.1in breakaway headers, distributes signals
and power. The complete robot, minus the identification tag,
is shown in Figure 4.

The scalar field and boundary are sensed by a digital
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(a) View from above (b) View from bottom

Fig. 4: The Kiwi-drive Robot. For clarity of other compo-
nents, identification tag visible in Figure 5 is not shown.

RGB color sensor (TCS34725) fixed to the underside of the
chassis, which illuminates the scalar field print with white
LEDs and measures the red, green, and blue components of
the reflected light. The robot distinguishes the scalar field
from the boundary by color: black represents a high value
of the scalar field, white represents a low value of the scalar
field, and red represents the boundary.

3) Data Collection: Two overhead cameras record the
motion of the robot. We process the video with OpenCV [9]
in Python to track the position of the centroid of the robot
through time. We found the position measured by computer
vision tracking to be within 2cm of ground measurement for
a variety of robot positions throughout the space.

4) Experiment Design: We placed the robot in the speci-
fied initial position on top of the scalar field print, started
recording data with the overhead cameras, and initiated
the control algorithm on the robot. After 180s5, the video
recording stops automatically, and we manually turned the
robot off. This process was repeated 200 times for each of
the scalar field patterns.

B. Results

In addition to bounded speed and the modified boundary
control law, another deviation between the physical robot
and theoretical assumptions is imperfect control of velocity
due to limited control signal (PWM) precision, nonlinear
response of the motors with respect to control signal, wheel
slipping, and robot inertia. In spite of this, the ensemble
of robot final positions in physical experiment achieves the
target distribution, and results of physical experiment match
those of simulation very closely.

Figure 5 depicts the convergence of the ‘swarm’ to the
desired distribution through time-lapse images. Figure 6
shows sample configurations and density distributions, as
measured by the Gaussian blob function of Equation 9,
achieved in physical experiment with N = 199 robot runs6

5This was chosen to be 20% longer than the 150s required for steady
state to be achieved in early simulations for the ring pattern. Unfortunately,
this was before the maximum speed of the robot was accurately measured,
so experiments only capture transient behavior.

6Data from one of the robot runs was found to be invalid after experi-
mentation was complete.

(a) t ≈ 0 s (b) t ≈ 25 s

(c) t ≈ 80 s (d) t ≈ 170 s

Fig. 5: Sample robot configurations for ring target dis-
tribution. As results were obtained by running one robot
200 times rather than 200 robots once, each frame above
was produced by sampling a random subset of 50 runs and
superposing images taken by the overhead cameras during
those runs. The robot, as seen in Figure 4, is obscured by an
identification tag, visible as a solid black rectangle within a
white rectangle. The thin line outlining the identification tag
was generated in post-processing, and the circular ‘shadow’
around each robot is an artifact of the (selective) superposi-
tion of multiple images.

for the ring pattern and N = 200 robot runs for the row
pattern. For the target distribution as the ring pattern, the
minimum error value achieved in experiment, eδN = 0.4816,
lies at 10.2% of the range between the minimum error value
0.3089 and maximum error value 1.9956 achieved by manual
placement. For the target distribution as the row pattern, the
error value eδN = 0.6477 is within 20.1% of the minimum
error value 0.3549, considering the maximum error value of
1.8115. These error numbers are higher in experiments than
simulation because the experiment did not run for as long
as the simulation and did not have a chance to settle into
a steady state. Nonetheless, it is clear that the control law
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(a) Robot positions at t = 175.5s for ring distribution with
N = 199 robots (left) and at t = 160.5s for row distribution
with N = 200 robots (right). The exceptionally careful reader
will note that there are only 198 robot markers on the row
distribution plot on the right, not 200. This is because in two
trials, the robot was slightly outside the boundary (and in the
process of ‘bouncing’ back in) when the robot positions were
recorded.

(b) Gaussian blob function ρδ=2in
N=199(t = 175.5s) for ring

distribution (left) and ρδ=2in
N=200(t = 160.5s) for row distribution

(right).

Fig. 6: Sample results from physical experiment for both
target distributions. The times t are those at which the error
metric eδN is minimized. The robot positions and Gaussian
blob function show that the control law guides the robots
toward the target distribution. However, the experiments did
not run long enough to achieve steady state. This is partic-
ularly apparent for the row distribution as the concentration
in the top right, where all robots began, remains higher than
elsewhere.

tended to produce the desired distribution, and we will show
in the following section that experiment agreed remarkably
well with simulation with respect to the transient behavior.

V. DISCUSSION

A. Time Convergence

Figure 7 shows the value of the error metric through time
for both simulation and physical experiment with the target
distribution as the ring pattern. Note that maximum robot
speed is the only constant measured from the physical robot

Fig. 7: Error metric eδN over time for both simulation and
physical experiment with the target distribution as the
ring pattern. Lines for the minimum and maximum error
achieved by trial and error (as described in Section III-B),
labeled emin and emax, and for the 25th and 75th percentile
errors from Figure 2, labeled Q1 and Q3, are included for
comparison.

that is used as an input to the simulation; no other con-
stants are used to tune the simulation to match experiments.
Nonetheless, the time rate of convergence between the two
appear indistinguishable within the stochastic nature of the
control law.

As physical experiment ends at tf = 180s but agrees
remarkably well with simulation until then, the ‘steady state’
behavior is studied only in simulation. Note that the error
values mostly lie between the lines labeled Q1 and Q3,
that is, the 25th and 75th percentile error values when
robot configurations are randomly sampled from the target
distribution (originally presented in Figure 2). This suggests
that the steady state coverage of this control law is as good
as can be expected, given its stochastic nature.

B. N -Convergence

To test the convergence of the error metric as the number
of robots increases, we calculated the error metric for subsets
of the trials performed with the ring distribution, specifically
eδ=2in
n (t) for five values of n (10, 20, 40, 80, and 190).

Rather than selecting a single value for t, we used the
average of eδ=2in

n (t) over the last 60 seconds. Also, rather
than selecting a single subset of size n from our N robot
trials (199 for experiment, 200 for simulation), we calculated
the error statistic for b 199

n c disjoint subsets and averaged
the results. Figure 8 shows that in simulation this averaged
error metric ēδ=2in

n drops linearly with respect to 1√
n

as
expected; the coefficient of determination for the best fit line
is 0.99. Results from physical experiment agree, although
because steady state was not achieved in experiment, the
error metric values are always slightly higher for experiment
than simulation.
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Fig. 8: Relationship between the error metric ēδn and
number of robots n (δ = 2in, ring pattern). Note that the
error tends toward a nonzero value as n increases. This is
primarily due to the nonzero δ, as discussed in Section III-B.
Nonetheless, the decrease is quite linear with respect to 1√

n
,

as expected.

Combined with the time-convergence results, this gives
confidence that the control law is correctly implemented
in both simulation and experiment, and furthermore, that
despite conditions of the theory not being met, the control
law itself scales to large numbers of robots and is robust
enough to work effectively under real-world conditions.

C. Future Work

We have assumed that the robots are small relative to
the environment or that collisions between robots are in-
consequential and would not affect the net behavior of the
swarm, given its stochastic nature. However, we would like
to consider the case in which collisions must be avoided to
prevent damage to the robots. If each robot were equipped
with a rangefinder to sense the relative location of other
robots, the addition of suitable repulsive “forces” between
all nearby robots would prevent collision while preserving
the diffusive nature of the swarm. However, we have found
in preliminary simulation that this can slow convergence
to the desired distribution and increase the steady state
error, especially in regions where high density is desired,
so additional work is necessary.

The simulation and experiment have relied on the robots
having a holonomic drive system, that is, the robot can
translate in any direction independent of orientation. Ap-
plication of the control algorithm to non-holonomic robots,
such as those that steer like tanks or cars, may be relatively
straightforward: the average velocity of the robot during a
time step is calculated as for the holonomic robot, but a
path to the destination defined by the average velocity must
be planned. We have performed simulation and preliminary
physical experiments with a tank-drive robot that simply
rotates toward the destination before following a straight-
line path to it, but additional work is required to confirm
that this is the most efficient approach.

While this control law might be sufficient to drive robot
bees close to target flowers, robots would need to switch
to a different control law, such as that of [10], to land on
flowers and perform pollination work. Future work includes
implementing robot behavioral switches between “active”
(flying) and “passive” (pollinating) states.

Note that theory regarding convergence of the control law
is valid even when the desired distribution is not binary.
In preliminary simulations with a smoothly varying scalar
field, the algorithm still seems robust. The controller is also
valid when the robot cannot sense a scalar field from its
environment directly, but instead knows its own location and
thus the corresponding value of a pre-assigned scalar field.
For example, the strategy could be used for public safety
operations in which robots patrol with density proportional
to a known or expected threat. These possibilities should be
tested in future experiments.

VI. CONCLUSION

We have presented experimental validation of simple,
decentralized, stochastic control law that guides a swarm
of entirely independent robots toward a desired distribution.
Despite significant discrepancies between the experimental
platform and the theoretical assumptions upon which the
controller is based, the swarm achieves the desired distribu-
tion in practice at time rates comparable to simulation. The
experimental results even show that the asymptotic error of
the swarm is proportional to 1√

N
, where N is the number

of robots, as hypothesized. This performance and robustness
suggest that the control law would be an effective choice for
distributing large swarms of inexpensive robots with limited
sensing and no communication or localization abilities.
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