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A MODEL FOR PARTICLE LADEN FLOW IN A SPIRAL CONCENTRATOR
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Summary We apply recent results for gravity driven slurries to the model of a spiral concentrator in the case of a monodisperse particle
slurry. We use a thin film approximation to derive an equilibrium profile for the particle concentration and fluid thickness. Our results
explain observations seen in laboratory experiments and commercial products.

INTRODUCTION

Spiral concentrators are used in the mining industry to separate particles of different size or density. The existing mod-
eling literature considers the flow as a background fluid carrying non-neutrally buoyant particles. However recent work
on modeling of slurries on inclines shows that at relativelymodest volume fractions of particles, the presence of the par-
ticles affects the flow and, moreover, interparticle interactions such as hindered settling and shear-induced migration can
quantitatively explain the dynamics of the separation of particle mixtures under gravity. We incorporate this physicsinto
a model for particle segregation in a spiral concentrator.
We consider a mixture of heavy particles and a viscous liquidflowing down a helical channel of radiusA and pitch2πP ,
with a rectangular cross section, as shown Figure 1(a). The particle and liquid mass densities obeyρp > ρℓ and the liquid
bulk viscosity isµℓ. The volume fraction of particles is denoted byφ. Individual particles as well as the liquid phase are
incompressible. All lengths have been scaled by the half width of the channel, so that the channel has width2. The slope
of the channel istanα = P/A = τ/ǫ, whereǫ = A/(A2 + P 2) andτ = P/(A2 + P 2) are the helix curvature and
torsion, respectively. For a spiral concentrator,ǫ ∼ 0.5 andτ ∼ 0.1, so that we assumeτ ≪ 1 and, for the coordinate
system adopted,ǫ < 1. Furthermore the flow is, typically, of small depth relativeto the channel width, characterised by
the dimensionless parameterδ ≪ 1.
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Figure 1. (a) A helical channel of rectangular cross section. (b) Particle concentrations in the scaled̃z direction (̃z = z/h) for various
total concentrations,φ0, at the inclination angle,α = 25o. There is a uniqueφc, denoted by the horizontal line, such that the particles
are uniformly distributed iñz and the net flux iny is zero. (c) Streamlines in a helical channel of rectangularcross section for parameters
α = 25o, ǫ = 0.5, τ = 0.1, δ = 0.1, Q = 0.2, Qp = 0.0015. The domain is separated into two regions aty = yc: the particle-heavy
region−1 ≤ y < yc (φ(y, z) = φc), and the clear fluid regionyc < y ≤ 1 (φ = 0). We note that the transverse flow shown here is
secondary to the dominant downstream flow; however, it playsan important role in particle separation.

EQUILIBRIUM THIN-FILM MODEL

We seek a steady-state solution that is independent of distance along the channel, reducing the problem to a two-
dimensional domain. We simplify the Navier-Stokes and particle transport equations by a perturbation expansion in
terms of the torsionτ andδ. Let x be the direction of the primary flow down the channel andy andz be the axes in the
channel cross section, withz being directed upwards. In this(x, y, z) coordinate system the (dimensionless) velocity is
(u, v, w) andp is pressure. To leading order inτ andδ the model is
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where we have setδR/F 2 = 1, andR = ρUa/µℓ andF = U/
√
ga are the Reynolds and Froude numbers, respectively;

K = 2ǫR2 is the Dean number. The viscosityµ and densityρ of the fluid-particle mixture depend on the particle volume
fractionφ as follows:
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.

The constantφmax is the maximum possible volume fraction of particles. Boundary conditions areu = v = w = 0
on the channel wallz = 0 and, on the free surfacez = h(y): ∂u/∂z = 0, ∂v/∂z = 0, p = 0, andw = v(dh/dy).
In the particle-transport equation (1d) we have fluxes due togravitational sedimentation and shear-induced migrationas
in [1, 2, 3]. In particular, shear-induced migration includes the effects of particle collisions and gradient in the effective
suspension viscosity,µ(φ), and it plays an essential role in describing key propertiesof the suspension flow [1]. Neglect
of Brownian motion is justified by a large Péclet number. For further details on the derivation of the flow model see [6, 7]
and for the particle transport model see [1, 2].

RESULTS

Equations (1b) and (1d) are solved simultaneously at each horizontal positiony for a given inclination angleα and total
volume fraction of particlesφ0(y) =

∫ h

0
φ(z, y)dz. For each value ofy, (1d) may be written in terms of a new variable

z̃ = z/h(y), such that a solution may be found over0 ≤ z̃ ≤ 1 that is independent ofh(y). The particle transport problem
in this form is exactly the inclined plane problem of [3, 5], and Figure 1(b) shows examples ofφ(z̃) for different values
of φ0(y). Note that there is a specific value ofφ0(y) such that the particle concentration is constant (i.e.φ = φc) in thez̃
direction. The steady state solution for the particle laden flow requires zero net flux in they direction, both for fluid and

for total fluid-particle mixture:
∫ h(y)

0
v(y, z)dz = 0,

∫ h(y)

0
v(y, z)φ(y, z)dz = 0, respectively. Givenv(y, z) satisfying

the first of these conditions, the only possibleφ(y, z) from the full set of curves (Figure 1(b)) to satisfy the second is the
constant case,φ = φc. If φ is monotone decreasing inz (lower portion of Figure 1(b)), then the net flux iny is negative
(towards the center of the spiral). Likewise ifφ is monotone increasing inz (upper portion of Figure 1b), the net flux is
positive (away from the center of the spiral). Based on this simple argument, we assume a form of steady state solution
where the cross-sectional domain is divided into two distinct regions at a critical positiony = yc: region A,−1 ≤ y < yc,
where the particle concentration is constant everywhere, (φ(y, z) = φc), and region B,yc < y ≤ 1 of clear fluid (φ = 0).
For given total fluxQ (fluid and particles), flux of particlesQp and channel angleα, and requiring the free surface height
at yc to be continuous, we are able to solve for the positionyc, free surfaceh(y), and the flow; the resultant streamlines
are shown in Figure 1(c). The clear separation of particle-laden and clear fluid, in the case of a monodisperse slurry flow,
has been observed in our own preliminary laboratory experiments and in commercial applications [8].

CONCLUSIONS

In summary we propose an equilibrium solution to the particle flow problem in a helical channel, in which the particles all
collect near the center of the spiral, consistent with observations of heavy particles in spiral concentrator geometry. In the
future, we will model particles of different densities to study the separation of a polydisperse slurry. This will allowus to
identify the parameter regime that optimizes the separation in the helical channel, which will be important in the mining
and various industry applications.
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