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Given discrete event data, we wish to produce a probability density that can model the relative probability of events occurring
in a spatial region. Common methods of density estimation, such as Kernel Density Estimation, do not incorporate geographical
information. Using these methods could result in nonnegligible portions of the support of the density in unrealistic geographic
locations. For example, crime density estimation models that do not take geographic information into account may predict events
in unlikely places such as oceans, mountains, and so forth. We propose a set of Maximum Penalized Likelihood Estimation methods
based on Total Variation and H1 Sobolev norm regularizers in conjunction with a priori high resolution spatial data to obtain more
geographically accurate density estimates. We apply this method to a residential burglary data set of the San Fernando Valley using
geographic features obtained from satellite images of the region and housing density information.

1. Introduction

High resolution and hyperspectral satellite images, city and
county boundary maps, census data, and other types of
geographical data provide much information about a given
region. It is desirable to integrate this knowledge into models
defining geographically dependent data. Given spatial event
data, we will be constructing a probability density that
estimates the probability that an event will occur in a
region. Often, it is unreasonable for events to occur in
certain regions, and we would like our model to reflect
this restriction. For example, residential burglaries and other
types of crimes are unlikely to occur in oceans, mountains,
and other regions. Such areas can be determined using
aerial images or other external spatial data, and we denote
these improbable locations as the invalid region. Ideally, the
support of our density should be contained in the valid
region.

Geographic profiling, a related topic, is a technique used
to create a probability density from a set of crimes by a
single individual to predict where the individual is likely to

live or work [1]. Some law enforcement agencies currently
use software that makes predictions in unrealistic geographic
locations. Methods that incorporate geographic information
have recently been proposed and are an active area of research
[2, 3].

A common method for creating a probability density is
to use Kernel Density Estimation [4, 5], which approximates
the true density by a sum of kernel functions. A popular
choice for the kernel is the Gaussian distribution which is
smooth, spatially symmetric and has noncompact support.
Other probability density estimation methods include the
taut string, logspline, and the Total Variation Maximum
Penalized Likelihood Estimation models [6–10]. However,
none of these methods utilize information from external
spatial data. Consequently, the density estimate typically
has some nonzero probability of events occurring in the
invalid region. Figure 1 demonstrates these problems with
the current methods and how the methods we will propose
in this paper resolve them. Located in the middle of the
image are two disks where events cannot occur, depicted in
Figure 1(a). We selected randomly from the region outside
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the disks using a predefined probabilistic density, that is,
provided in Figure 1(b). The 4,000 events chosen are shown
in Figure 1(c). With a variance of σ = 2.5, we see in
Figure 1(d) that the Kernel Density Estimation predicts that
events may occur in our invalid region.

In this paper we propose a novel set of models that
restrict the support of the density estimate to the valid
region and ensure realistic behavior. The models use Max-
imum Penalized Likelihood Estimation [11, 12], which is a
variational approach. The density estimate is calculated as
the minimizer of some predefined energy functional. The
novelty of our approach is in the way we define the energy
functional with explicit dependence on the valid region
such that the density estimate obeys our assumptions of
its support. The results from our methods for this simple
example are illustrated in Figures 1(f), 1(g), and 1(h).

The paper is structured in the following way. In Section 2
Maximum Penalized Likelihood Methods are introduced. In
Sections 3 and 4 we present our set of models which we
name the Modified Total Variation MPLE model and the
Weighted H1 Sobolev MPLE model, respectively. In Section 5
we discuss the implementation and numerical schemes that
we use to solve for the solutions of the models. We provide
examples for validation of the models and an example with
actual residential burglary data in Section 6. In this Section,
we also compare our results to the Kernel Density Estimation
model and other Total Variation MPLE methods. Finally, we
discuss our conclusions and future work in Section 7.

2. Maximum Penalized Likelihood Estimation

Assuming that u(x) is the desired probability density for x ∈
R2, and the known location of events occur at x1, x2, . . . , xn,
then Maximum Penalized Likelihood Estimation (MPLE)
models are given by

û(x) = argmin∫
Ω udx=1, 0≤u



P(u)− µ

n∑

i=1

log(u(xi))



. (1)

Here, P(u) is a penalty functional, which is generally
designed to produce a smooth density map. The parameter µ
determines how strongly weighted the maximum likelihood
term is, compared to the penalty functional:

A range of penalty functionals has been proposed,
including P(u) =

∫
Ω |∇

√
u|2dx [11, 12] and P(u) =∫

Ω |∇3(log(u))|2 dx [4, 11]. More recently, variants of the
Total Variation (TV) functional [13], P(u) =

∫
Ω |∇u|dx,

have been proposed for MPLE [8–10]. These methods do not
explicitly incorporate the information that can be obtained
from the external spatial data, although some note the
need to allow for various domains. Even though the TV
functional will maintain sharp gradients, the boundaries
of the constant regions do not necessarily agree with the
boundaries within the image. This method also performs
poorly when the data is too sparse, as the density is smoothed
to have equal probability almost everywhere. Figure 1(e)
demonstrates this, in addition to how this method predicts
events in the invalid region with nonnegligible estimates.

The methods we propose use a penalty functional that
depends on the valid region determined from the geo-
graphical images or other external spatial data. Figure 1
demonstrates how these models will improve on the current
methods.

3. The Modified Total Variation MPLE Model

The first model we propose is an extension of the Maximum
Penalized Likelihood Estimation method given by Mohler
et al. [10]

û(x) = argmin∫
Ω udx=1, 0≤u





∫

Ω
|∇u|dx − µ

n∑

i=1

log(u(xi))



. (2)

Once we have determined a valid region, we wish to align
the level curves of the density function u with the boundary
of the valid region. The Total Variation functional is well
known to allow discontinuities in its minimizing solution
[13]. By aligning the level curves of the density function with
the boundary, we encourage a discontinuity to occur there to
keep the density from smoothing into the invalid region.

Since ∇u/|∇u| gives the unit normal vectors to the level
curves of u, we would like

∇(1D)
|∇(1D)| =

∇u
|∇u| , (3)

where (1D) is the characteristic function of the valid region
D. The region D is obtained from external spatial data,
such as aerial images. To avoid division by zero, we use
θ := ∇(1D)/|∇(1D)|ε, where |∇v|ε =

√
v2
x + v2

y + ε2. To
align the density function and the boundary one would want
to minimize |∇u| − θ · ∇u. Integrating this and applying
integration by parts, we obtain the term

∫
Ω |∇u|+ u∇ · θ dx.

We propose the following Modified Total Variation penalty
functional, where we adopt the more general form of the
above functional:

û(x) = argmin∫
Ω udx=1, 0≤u





∫

Ω
|∇u|dx

+λ
∫

Ω
u∇ · θ dx − µ

n∑

i=1

log(u(xi))



.

(4)

The parameter λ allows us to vary the strength of the
alignment term. Two pan-sharpening methods, P + XS and
Variational Wavelet Pan-sharpening [14, 15], both include
a similar term in their energy functional to align the level
curves of the optimal image with the level curves of the high
resolution pan-chromatic image.

4. The Weighted H1 Sobolev MPLE Model

A Maximum Penalized Likelihood Estimation method with
penalty functional

∫
Ω(1/2)|∇u|2dx, the H1 Sobolev norm,

gives results equivalent to those obtained using Kernel
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(a) Valid region (b) True density (c) 4,000 events
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Figure 1: This is a motivating example that demonstrates the problem with existing methods and how our methods will improve density
estimates. (a) and (b) give the valid region to be considered and the true density for the example. Figure (c) gives the 4000 events sampled
from the true density. (d) and (e) show two of the current methods used. (f), (g), and (h) show how our methods will produce better
estimates. The color scale represents the relative probability of an event occurring in a given pixel. The images are 80 pixels by 80 pixels.

Density Estimation [11]. We enforce the H1 regularizer term
away from the boundary of the invalid region. This results in
the model

û(x) = argmin∫
Ω udx=1, 0≤u





1
2

∫

Ω\∂D
|∇u|2dx − µ

n∑

i=1

log(u(xi))



.

(5)

This new term is essentially the smoothness term from
the Mumford-Shah model [16]. We approximate the H1

term by introducing the Ambrosio-Tortorelli approximating
function zε(x) [17], where zε → (1− δ(∂D)) in the sense of
distributions. More precisely, we use a continuous function
which has the property

zε(x) =
{

1 if d(x, ∂D) > ε,
0 if x ∈ ∂D.

(6)

Thus, the minimization problem becomes

û(x) = argmin∫
Ω udx=1, 0≤u





1
2

∫

Ω
z2
ε|∇u|2dx − µ

n∑

i=1

log(u(xi))



. (7)

The weighting away from the edges is used to control the
diffusion into the invalid region. This method of weighting
away from the edges can also be used with the Total Variation
functional in our first model, and we will refer to this as our
Weighted TV MPLE model.

5. Implementation

5.1. The Constraints. In the implementation for the Modified
Total Variation MPLE method and Weighted H1 MPLE
method, we must enforce the constraints 0 ≤ u(x) and∫
Ω u(x)dx = 1 to ensure that u(x) is a probability density

estimate. The u ≥ 0 constraint will be satisfied in our
numerical solution by solving quadratic equations that have
at least one nonnegative root.

We enforce the second constraint by first adding it to the
energy functional as an L2 penalty term. For the H1 method,
this change results in the new minimization problem

ûH(x) = argmin
u





1
2

∫

Ω
z2
ε|∇u|2dx − µ

n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx− 1

)2
}

,

(8)

where we have denoted ûH(x) as the solution of the H1

model. The constraint is then enforced by applying Bregman
iteration [18]. Using this method, we formulate our problem
as

(uH , bH) = argmin
u,b





1
2

∫

Ω
z2
ε|∇u|2dx − µ

n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx + b − 1

)2
}

,

(9)
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where b is introduced as the Bregman variable of the sum
to unity constraint. We solve this problem using alternating
minimization, updating the u and the b iterates as

(H1)





u(k+1) = argmin
u





1
2

∫

Ω
z2
ε|∇u|2dx − µ

n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx + b(k) − 1

)2
}

,

b(k+1) = b(k) +
∫

Ω
u(k+1)dx − 1,

(10)

with b(0) = 0. Similarly for the modified TV method, we solve
the alternating minimization problem

(TV)





u(k+1) = argmin
u

{∫

Ω
|∇u|dx + λ

∫

Ω
u∇ · θ dx

−µ
n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx + b(k) − 1

)2
}

,

b(k+1) = b(k) +
∫

Ω
u(k+1)dx − 1

(11)

with b(0) = 0.

5.2. Weighted H1 MPLE Implementation. For the Weighted
H1 MPLE model, the Euler-Lagrange equation for the u
minimization is given by

(H1)

−∇
(
z2
ε∇u

)
− µ

u(x)

n∑

i=1

δ(x − xi) + γ
(∫

Ω
u(x)dx + b(k) − 1

)
= 0.

(12)

We solve this using a Gauss-Seidel method with central
differences for the∇z2 and∇u. Once we have discretized the
partial differential equation, solving this equation simplifies
solving the quadratic

(
4z2 + γ

)
u2
i, j − αi, jui, j − µwi, j = 0 (13)

for the positive root, where

αi, j = z2
i, j

(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1

)

+

(
z2
i+1, j − z2

i−1, j

2

)(ui+1, j − ui−1, j

2

)

+

(
z2
i, j+1 − z2

i, j−1

2

)(ui, j+1 − ui, j−1

2

)

+ γ


1− b(k) −

∑

(i′, j′) /= (i, j)

ui′, j′


,

(14)

and where wi, j is the given number of sampled events that
occurred at the location (i, j). We chose our parameters µ and
γ so that the Gauss-Seidel solver will converge. In particular,
we have µ = O((NM)−2) and γ = O(µ(NM)), where the
image is N ×M.

5.3. Modified TV MPLE Implementation. There are many
approaches for handling the minimization of the Total
Variation penalty functional. A fast and simple method for
doing this is to use the Split Bregman technique (see [10, 19]
for an in depth discussion, see also [20]). In this approach,
we substitute the variable d for∇u in the TV norm and then
enforce the equality d = ∇u using Bregman iteration. To
apply Bregman iteration, we introduce the variable g as the
Bregman vector of the d = ∇u constraint. This results in a
minimization problem in which we minimize both d and u.

Beginning the iteration with g(0) = 0, the minimization
is written as

(
u(k+1), d(k+1)

)
= argmin

u,d



‖d‖1 + λ

∫

Ω
u∇ · θ dx

− µ
n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx + b(k) − 1

)2

+
α
2

∥∥∥d−∇u− g(k)
∥∥∥

2

2



,

g(k) = g(k−1) +∇u(k) − d(k).
(15)

Alternating the minimization of u(k+1) and d(k+1), we obtain
our final formulation for the TV model as

(TV)





u(k+1) = argmin
u



λ
∫

Ω
u∇ · θ dx − µ

n∑

i=1

log(u(xi))

+
γ
2

(∫

Ω
u(x)dx + b(k) − 1

)2

+
α
2

∥∥∥d(k) −∇u− g(k)
∥∥∥

2

2



,

d(k+1)
j = shrink

((
∇u(k+1)

)
j
− d(k)

j ,
1
α

)
,

g(k+1) = g(k) +∇u(k+1) − d(k+1),

b(k+1) = b(k) +
∫

Ω
u(k+1)dx − 1.

(16)

The shrink function is given by

shrink
(
z,η
)
= max

{
|z|− η, 0

}( z
|z|

)
. (17)

Solving for d(k+1) and g(k+1) we use forward difference
discretizations, namely

∇u(k+1) =
(
ui+1, j − ui, j ,ui, j+1 − ui, j

)T
. (18)
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The Euler-Lagrange equations for the variable u(k+1) is

− µ
u(x)

n∑

i=1

δ(x − xi) + λdiv θ − α
(
∆u + div gk − div dk

)

+ γ
(∫

Ω
ux + bk1 − 1

)
= 0.

(19)

Discretizing this simplifies solving for the positive root of
(
4α + γ

)
u2
i, j − βi, jui, j − µwi, j = 0, (20)

where

βi, j = α
(
ui+1, j + ui−1, j + ui, j+1 + ui, j−1

)
− λ div θ

− α
(
dkx,i, j − dkx,i−1, j + dky,i, j − dky,i, j−1

)

+ α
(
gkx,i, j − gkx,i−1, j + gky,i, j − gky,i, j−1

)

+ γ


1− b(k) −

∑

(i′, j′) /= (i, j)

ui′, j′


.

(21)

We solved for u(k+1) with a Gauss-Seidel solver. Heuristically,
we found that using the relationships α = 2µN2M2 and γ =
2µNM were sufficient for the solver to converge and provide
good results. We also set λ to have values between 1.0 and
1.2. The parameter µ is the last remaining free paramter. This
parameter can be chosen using V-cross validation or other
techniques, such as the sparsity l1 information criterion [8].

6. Results

In this Section, we demonstrate the strengths of our models
by providing several examples. We first show how our
methods compare to existing methods for a dense data set.
We then show that our methods perform well for sparse data
sets. Next, we explore an example with an aerial image and
randomly selected events to show how these methods could
be applied to geographic event data. Finally, we calculate
probability density estimates for residential burglaries using
our models.

6.1. Model Validation Example. To validate the use of our
methods, we took a predefined probability map with sharp
gradients that is shown in Figure 2(a). The chosen valid
region and the 8,000 selected events are displayed in Figures
2(b) and 2(c), respectively. We performed density estimates
with the Gaussian Kernel Density Estimate and the Total
Variation MPLE method. The variance used for the Kernel
Density Estimation is σ = 2. The results are provided in
Figures 2(d) and 2(e). The density estimates obtained from
our Modified TV MPLE method and Weighted H1 MPLE
method are shown in Figures 2(f) and 2(g), respectively. We
also included our Weighted TV MPLE in Figure 2(h).

Our methods maintain the boundary of the invalid
region and appear close to the true solution. In addition, they
keep the sharp gradient in the density estimate. The L2 errors
for these methods are located in Table 1.

Table 1: This is the L2 error comparison of the five methods shown
in Figure 2. Our proposed methods performed better than both the
Kernel Density Estimation method and the TV MPLE method.

8,000 Events

Kernel density estimate 8.1079e − 6
TV MPLE 6.6155e − 6
Modified TV MPLE 4.1213e − 6
Weighted H1 MPLE 3.8775e− 6
Weighted TV MPLE 4.3195e − 6

Table 2: This is the L2 error comparison of the five methods for
both the introductory example shown in Figure 1 and the sparse
example shown in Figure 3. Our proposed methods performed
better than both the Kernel Density Estimation method and the TV
MPLE method.

40 Events 4,000 Events

Kernel density estimate 2.3060e − 5 7.3937e − 6
TV MPLE 2.5347e − 5 7.7628e − 6
Modified TV MPLE 1.4345e − 5 5.7996e− 7
Weighted H1 MPLE 3.8449e− 6 2.1823e − 6
Weighted TV MPLE 1.5982e − 5 3.6179e − 6

Table 3: This is the L2 error comparison of the three methods for
the Orange County Coastline example shown in Figures 7, 8, and
9. Our proposed methods performed better than the Kernel density
estimation method.

200 Events 2,000 Events 20,000 Events

Kernel density estimate 7.0338e − 7 2.8847e − 7 1.5825e − 7
Modified TV MPLE 3.0796e− 7 2.6594e − 7 8.9353e − 8
Weighted H1 MPLE 5.4658e − 7 1.5988e− 7 5.8038e− 8

6.2. Sparse Data Example. Crimes and other types of events
may be quite sparse in a given geographical region. Conse-
quently, it becomes difficult to determine the probability that
an event will occur in the area. It is challenging for density
estimation methods that do not incorporate the spatial
information to distinguish between invalid regions and areas
that have not had any crimes but are still likely to have events.
Using the same predefined probability density from Section 1
in Figure 1(b), we demonstrate how our methods maintain
these invalid regions for sparse data. The 40 events selected
are shown in Figure 3(b). The density estimates for current
methods and our methods are given in Figure 3. We used a
variance σ = 15 for the Gaussian Kernel Density Estimate.

For this sparse problem, our Weighted H1 MPLE and
Modified TV MPLE methods maintain the boundary of the
invalid region and appear close to the true solution. Table 2
contains the L2 errors for both this example of 40 events and
the example of 4,000 events from the introduction. Notice
that our Modified TV and Weighted H1 MPLE methods
performed the best for both examples. The Weighted H1

MPLE was exceptionally better for the sparse data set. The
Weighted TV MPLE method does not perform as well for
sparse data sets and fails to keep the boundary of the valid
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Figure 2: This is a model-validating example with dense data set of 8000 events. The piecewise-constant true density is given in (a), and the
valid region is provided in (b). The sampled events are shown in (c). (d) and (e) show the two current density estimation methods, Kernel
Density Estimation and TV MPLE. (f), (g), and (h) show the density estimates from our methods. The color scale represents the relative
probability of an event occurring in a given pixel. The images are 80 pixels by 80 pixels.

(a) True density (b) 40 Events (c) Kernel density estimation
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(d) TV MPLE method

(e) Our modified TV MPLE
method

(f) Our weighted H1 MPLE
method
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(g) Our weighted TV MPLE method

Figure 3: This is a sparse example with 40 events. The true density is given in (a), and it is the same density from the example in the
introduction. The sampled events are shown in (b). (c) and (d) show the two current density estimation methods, Kernel Density Estimation
and TV MPLE. (e), (f), and (g) show the density estimates from our methods. The color scale represents the relative probability of an event
occurring in a given pixel. The images are 80 pixels by 80 pixels.
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(a) Google earth image of orange county
coastline

(b) Orange county coastline denoised image (c) Orange county coastline smoothed im-
age

Figure 4: This shows how we obtained our valid region for the Orange County Coastline example. Figure (a) is the initial aerial image of
the region to be considered. The region of interest is about 15.2 km by 10 km. Figure (b) is the denoised version of the initial image. We took
this denoised image and smoothed away from regions of large discontinuities to obtain figure (c).

(a) Orange county coastline valid region
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(b) OC coastline density map

Figure 5: After thresholding the intensity values of Figure 4(c), we obtain the valid region for the Orange County Coastline. This valid region
is shown in (a). We then constructed a probability density shown in figure (b). The color scale represents the relative probability of an event
occurring per square kilometer.

(a) OC coastline 200 events (b) OC coastline 2,000 events (c) OC coastline 20,000 events

Figure 6: From the probability density in Figure 5, we sampled 200, 2,000, and 20,000 events. These events are given in (a), (b), and (c),
respectively.

(a) OC coastline kernel density estimate 200
samples with σ = 35

(b) OC coastline kernel density estimate
2,000 samples with σ = 18

(c) OC coastline kernel density estimate
20,000 samples with σ = 6.25

Figure 7: These images are the Gaussian Kernel Density estimates for 200, 2,000, and 20,000 sampled events of the Orange County Coastline
example. The color scale for these images is located in Figure 5.
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(a) OC coastline modified TV MPLE 200
samples

(b) OC coastline modified TV MPLE 2,000
samples

(c) OC coastline modified TV MPLE 20,000
samples

Figure 8: These images are the Modified TV MPLE estimates for 200, 2,000, and 20,000 sampled events of the Orange County Coastline
example. The color scale for these images is located in Figure 5.

(a) OC coastline weighted H1 MPL estimate
200 samples

(b) OC coastline weighted H1 MPL estimate
2,000 samples

(c) OC coastline weighted H1 MPL estimate
20,000 samples

Figure 9: These images are the Weighted H1 MPLE estimates for 200, 2,000, and 20,000 sampled events of the Orange County Coastline
example. The color scale for these images are located in Figure 5.

region. Since the rest of the examples contains sparse data
sets, we will omit the Weighted TV MPLE method from the
remaining sections.

6.3. Orange County Coastline Example. To test the models
with external spatial data, we obtained from Google Earth
a region of the Orange County coastline with clear invalid
regions (see Figure 4(a)). For the purposes of this example,
it was determined to be impossible for events to occur in
the ocean, rivers, or large parks located in the middle of
the region. One may use various segmentation methods for
selecting the valid region. For this example, we only have
data from the true color aerial image, not multispectral
data. To obtain the valid and invalid regions, we removed
the “texture” (i.e., fine detailed features) using a Total
Variation-based denoising algorithm [13]. The resulting
image, shown in Figure 4(b), still contains detailed regions
obtained from large features, such as large buildings. We
wish to remove these and maintain prominent regional
boundaries. Therefore, we smooth away from regions of large
discontinuities. This is shown in Figure 4(c). Since oceans,
rivers, parks, and other such areas have generally lower
intensity values than other regions, we threshold to find the
boundary between the valid and invalid regions. The final
valid region is displayed in Figure 5(a).

From the valid region, we constructed a toy density map
to represent the probability density for the example and to
generate data. It is depicted in Figure 5(b). Regions with
colors farther to the right on the color scale are more likely

to have events. Sampling from this constructed density, we
took distinct data sets of 200, 2,000, and 20,000 selected
events given in Figure 6. For each set of events, we included
three probability density estimations for comparison. We
first give the Gaussian Kernel Density Estimate followed by
our Modified Total Variation MPLE model and our Weighted
H1 MPLE model. We provide all images together to allow for
visual comparisons of the methods.

Summing up Gaussian distributions gives a smooth
density estimate. Figure 7 contains the density estimates
obtained using the Kernel Density Estimation model. The
standard deviations σ of the Gaussians are given with each
image. In all of these images, a nonzero density is estimated
in the invalid region.

Taking the same set of events as the Kernel density
estimation, the images in Figure 8 were obtained using our
first model, the Modified Total Variation MPLE method with
the boundary edge aligning term. The parameter for λ must
be sufficiently large in the TV method in order to prevent the
diffusion of the density into the invalid region. In doing so,
the boundary of the valid region may attain density values
too large in comparison to the rest of the image when the
size of the image is very large. To remedy this, we may take
the resulting image from the algorithm and set the boundary
of the valid region to zero and rescale the image to have a
sum of one. The invalid region in this case sometimes has
a very small nonzero estimate. For visualization purposes
we have set this to zero. However, we note that the method
has the strength that density does not diffuse through small
Sections of the invalid region back into the valid region on
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(a) Google earth image of San Fernando Valley region (b) San Fernando Valley residential burglary residen-
tial burglaries

(c) San Fernando Valley residential burglary housing
density

(d) San Fernando Valley residential burglary valid
region

Figure 10: These figures are for the San Fernando Valley residential burglary data. In (a), we have the aerial image of the region we are
considering, which is about 16 km by 18 km. Figure (b) shows the residential burglaries of the region. Figure (c) gives the housing density
for the San Fernando Valley. We show the valid region we obtained from the housing density in figure (d).

the opposite side. Events on one side of an object, such as
a lake or river, should not necessarily predict events on the
other side.

The next set of images in Figure 9 estimate the density
using the same sets of event data but with our Weighted H1

MPLE model. Notice the difference for the invalid regions
with our models and the Kernel Density Estimation model.
This method does very well for the sparse data sets of 200 and
2,000 events.

6.3.1. Model Comparisons. The density estimates obtained
from using our methods have a clear improvement in

maintaining the boundary of the valid region. To determine
how our models did in comparison to one another and to the
Kernel Density Estimate, we calculated the L2 errors located
in Table 3. Our models consistently outperform the Kernel
Density Estimation model. The Weighted H1 MPLE method
performs the best for the 2,000 and 20,000 events and visually
appears closer to the true solution for the 200 events than
the other methods. Qualitatively, we have noticed that with
sparse data, the TV penalty functional gives results which are
near constant. Thus, it gives a good L2 error for the Orange
County Coastline example, which has piecewise-constant
true density, but gives a worse result for the sparse data
example of Figure 3, where the true density has a nonzero
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(a) San Fernando Valley residential burglary kernel
density estimation
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(b) San Fernando Valley residential burglary TV MPLE density estimation

(c) San Fernando Valley residential burglary modified
TV MPLE density estimation
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(d) San Fernando Valley residential burglary weighted H1 MPLE density
estimation

Figure 11: These images are the density estimates for the San Fernando Valley residential burglary data. (a) and (b) show the results of the
current methods Kernel Density Estimation and TV MPLE, respectively. The results from our Modified TV MPLE method and our Weighted
H1 MPLE method are shown in figures (c) and (d), respectively. The color scale represents the number of residential burglaries per year per
square kilometer.

gradient. Even though the Modified TV MPLE method has a
lower L2 error in the Orange County Coastline example, the
density estimation fails to give a good indication of regions
of high and low likelihood.

6.4. Residential Burglary Example. The following example
uses actual residential burglary information from the San
Fernando Valley in Los Angeles. Figure 10 is the area of
interest and the locations of 4,487 burglaries that occurred
in the region during 2004 and 2005. The aerial image was
obtained using Google earth. We assume that residential

burglaries cannot occur in large parks, lakes, mountainous
areas without houses, airports, and industrial areas. Using
census or other types of data, housing density information
for a given region can be calculated. Figure 10(c) is the
housing density for our region of interest. The housing
density provides us with the exact locations of where
residential burglaries may occur. However, our methods
prohibit the density estimates from spreading through the
boundaries of the valid region. If we were to use this image
directly as the valid region, then crimes on one side of a
street will not have an effect on the opposite side of the road.
Therefore, we fill in small holes and streets in the housing
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density image and use the image located in Figure 10(d) as
our valid region.

Using our Weighted H1 MPLE and Modified TV MPLE
models, the Gaussian Kernel Density Estimate with variance
σ = 21, and the TV MPLE method, we obtained the density
estimations shown in Figure 11.

7. Conclusions and Future Work

In this paper we have studied the problem of determining
a more geographically accurate probability density estimate.
We demonstrate the importance of this problem by showing
how common density estimation techniques, such as Kernel
Density Estimation, fail to restrict the support of the density
in a set of realistic examples.

To handle this problem, we proposed a set of meth-
ods, based on Total Variation and H1-regularized MPLE
models, that demonstrates great improvements in accurately
enforcing the support of the density estimate when the valid
region has been provided a priori. Unlike the TV-regularized
methods, our H1 model has the advantage that it performs
well for very sparse data sets.

The effectiveness of the methods is shown in a set
of examples in which burglary probability densities are
approximated from a set of crime events. Regions in which
burglaries are impossible, such as oceans, mountains, and
parks, are determined using aerial images or other external
spatial data. These regions are then used to define an invalid
region in which the density should be zero. Therefore,
our methods are used to build geographically accurate
probability maps.

It is interesting to note that there appears to be a
relationship in the ratio between the number of samples and
the size of the grid. In fact, each model has shown very
different behavior in this respect. The TV-based methods
appear to be very sensitive to large changes in this ratio,
whereas the H1 method seems to be robust to these same
changes. We are uncertain about why this phenomenon
exists, and this would make an interesting future research
topic.

There are many directions in which we can build on
the results of this paper. We would like to devise better
methods for determining the valid region, possibly evolving
the edge set of the valid region using Γ-convergence [17].
Since this technique can be used for many types of event data,
including residential burglaries, we would also like to apply
this method to Iraq Body Count Data. Finally, we would
like to handle possible errors in the data, such as incorrect
positioning of events that place them in the invalid region,
by considering a probabilistic model of their position.
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“A variational model for P + XS image fusion,” International
Journal of Computer Vision, vol. 69, no. 1, pp. 43–58, 2006.

[16] D. Mumford and J. Shah, “Optimal approximations by piece-
wise smooth functions and associated variational problems,”
Communications on Pure and Applied Mathematics, vol. 42, no.
5, pp. 577–685, 1989.

[17] L. Ambrosio and V. M. Tortorelli, “Approximation of func-
tional depending on jumps by elliptic functional via Γ- con-
vergence,” Communications on Pure and Applied Mathematics,
vol. 43, no. 8, pp. 999–1036, 1990.

[18] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An
iterative regularization method for total variation-based image
restoration,” Multiscale Modeling and Simulation, vol. 4, no. 2,
pp. 460–489, 2005.



12 EURASIP Journal on Advances in Signal Processing

[19] T. Goldstein and S. Osher, “Split bregman method for L1
regularized problems,” SIAM Journal on Imaging Sciences, vol.
2, pp. 323–343, 2009.

[20] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating
minimization algorithm for total variation image reconstruc-
tion,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–
272, 2008.


