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Linear stability of particle-laden thin films

Benjamin Cook?, Oleg Alexandrov??, and Andrea Bertozzi
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Abstract. Recent experiments [Zhou, Dupuy, Bertozzi, and Hosoi, Phys. Rev.
Lett., 94 (2005)] of particle-laden film flow on an incline demonstrate new be-
havior distinct from the well-known clear fluid case, including the formation of
a particle-rich ridge which can stabilize the advancing contact line with respect
to “fingering” perturbations. We consider a model similar to that of Zhou et al.
with the additional regularizing effect of shear-induced diffusion. A linear stability
analysis demonstrates that particle settling moderately reduces the growth rate
of unstable modes, while increasing the most unstable wavelength.
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Fig. 1. The coordinate system used in this work.

The transverse fingering instability of
a driven contact line has been an impor-
tant research topic since it was observed
by Huppert in 1982 [1], and has moti-
vated much experimental, computational,
and theoretical work [2–8]. While a similar
effect has been observed in granular flows
due to a different mechanism [9], the cor-
responding problem for particle-laden flu-
ids has been studied only recently. Exper-

iments by Zhou et al. [10] on such films have demonstrated an effect absent in liquid films:
the emergence of a region near the contact line with markedly greater particle concentration
and film thickness than the bulk values. This “particle-rich ridge”, due to settling of the denser
particles in the down-slope direction, appeared to somewhat suppress the fingering instability
in their experiments.

Zhou et al. also presented a lubrication model describing the ridge regime in terms of the film
thickness h and concentration φ. The purpose of this work is to determine the linear stability
properties of this model to compare with the corresponding liquid film [2], in order to evaluate
the influence of the particle-rich ridge on the fingering instability.

We work with the dimensionless equations from [11], which corrects the velocity averaging
in [10] and generalizes to two space dimensions. These equations,

ht +∇ · (hvav) = 0, (φh)t +∇ ·
(
φh

[
vav + (1− φ)vrel

])
= 0, (1)

involve the volume-averaged velocity of the two phases

vav =
h3

µ(φ)
∇∇2h−D(α)

[
h3

µ(φ)
∇(ρ(φ)h)− 5

8
h4

µ(φ)
∇(ρ(φ))

]
+
ρ(φ)
µ(φ)

h3x̂, (2)

and the settling velocity of particles relative to the liquid

vrel = Vsf(φ)w(h)x̂. (3)
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Fig. 2. The base state with φ0 = 0.3, b = 0.01, α = π/2, obtained by a numerical solution of (1)(a),
(4), (5) at times 0, 2000, 4000, and 6000. Dashed lines are smooth solutions of the full equations and
solid lines are shock solutions of the reduced system. The left plot displays film thickness, the right
concentration. The graphs have been shifted along the x axis to make them appear closer together.

The functions µ(φ) = (1 − φ/φm)−2, f(φ) = (1 − φ)5, w(h) = A(h/a)2
/√

1 + (A(h/a)2)2

with A = 1/18, and ρ(φ) = (1 + ∆φ) (representing effective viscosity, hindered settling, wall
effects, and density) and the parameters a = 0.1, ∆ = 1.7, Vs = (2/3)a2∆, φm = 0.67,
and α (representing the dimensionless particle radius, density difference, settling rate, packing
fraction, and inclination angle) are explained in [10] and [11], and the nondimensional scaling
and the modified capillary number D(α) = (3Ca)1/3 cotα are described in [5].

The system (1) is fourth-order, but the higher-order terms appear in (2) and not in (3), so
the relative velocity is not regularized, and numerical solutions of the system (1) display an
instability affecting φ though not h. A model derived in the appendix provides regularization in
the form of shear-induced diffusion, leaving the first equation in (1) unaltered and transforming
the second into

(φh)t +∇ ·
(
φh

[
vav + (1− φ)vrel

]
− 3

2
a2(3Ca)1/3D̂(φ)

h2ρ(φ)
µ(φ)

∇φ
)

= 0. (4)

The one-dimensional base state corresponding to a straight contact line is obtained by
solving the Riemann problem for equations (1)(a) and (4), defined by the initial data

h(x, y, t = 0) =
{

1 for x < 0
b for x > 0 , φ(x, y, t = 0) = φ0, (5)

where a precursor of thickness b is used. The precursor model requires an approximate value for
b, which depends on the microscopic physics. Since this parameter is often unknown a priori,
many authors present results for a range of b [2,4]; here we refer to [11] for such a study.

Figure 2 shows simulations of both the full system and the reduced system, obtained by
eliminating all terms with more than one spatial derivative. As in [10], the reduced system
solution differs primarily in the lack of a capillary ridge, and is useful because it consists simply
of two shock discontinuities propagating at different speeds. The well-defined region between
the shocks corresponds to the particle-rich ridge, and in [11] its thickness and concentration as
well as the shock speeds are determined from the Riemann data b and φ0. The fourth order
terms must be included to compute the transverse instability.

In the fourth-order clear fluid problem, the base state is a single regularized shock and
can be written as a traveling wave h(x, t) = h(x − Ut) for an appropriate choice of U [2,5],
simplifying the stability calculation. In contrast, a double shock solution cannot be represented
as a traveling wave. Following [12], we perturb the time-dependent base state

h̄(x, y, t) = h(x, t) + εg(x, t) cos qy, φ̄(x, y, t) = φ(x, t) + εψ(x, t) cos qy,
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Fig. 3. On the left, the perturbation g(t, x) at time T = 4000 for q = 1 (solid),
with φ0 = 0.3, b = 0.01, α = π/2. The dashed curve is h(x, t) shown to illustrate
the positions of the leading and trailing shocks. On the right is the decay of the
perturbation in time. After a transient during which the perturbation is largest
near the leading shock, the slower-decaying part at the trailing shock dominates.

and derive from (1)(a), (4) the following evolution equations for the perturbations g and ψ:

gt +
{
h3

[
a(φ)

(
g(3) − q2g′

)
+ a′(φ)h(3)ψ

]
+ 3a(φ)h2h(3)g

}
x

+ q2a(φ)h3
(
q2g − g′′

)
+

{
h2 [3b(φ)g + hb′(φ)ψ]

}
x

= 0 (6)

(φg + hψ)t +
{
h3

[
c(φ)

(
g(3) − q2g′

)
+ c′(φ)h(3)ψ

]
+ 3c(φ)h2h(3)g

}
x

+ q2c(φ)h3
(
q2g − g′′

)
+

{
h2 [3d(φ)g + hd′(φ)ψ]

}
x

+ Vs

{
f(φ)w(h)

[
φg + hψ

]
+ hφ

[
ψw(h)f ′(φ) + f(φ)gw′(h)

]}
x

− C
[
{p′(h)r(φ)φxg + p(h)r′(φ)φxψ + p(h)r(φ)ψx}x − q2p(h)r(φ)ψ

]
= 0. (7)

Here we denoted a(φ) = 1/µ(φ), b(φ) = ρ(φ)/µ(φ), c(φ) = φ/µ(φ), d(φ) = φρ(φ)/µ(φ), C =
3
2a

2(3Ca)1/3, p(h) = h2, r(φ) = D̂(φ)ρ(φ)/µ(φ). Also, for simplicity, we assume that the film
flows vertically so α = π/2 and D(α) = 0.
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Fig. 4. The growth rate β(q) for the film without
settiling (solid) and with settling (dash).

Sufficiently small perturbations will grow or
decay exponentially in time, i.e. as eβ(q)t, cor-
responding to the maximum eigenvalue of each
of the shocks in the composite wave. We mea-
sured the growth rate β(q) from numerical so-
lutions to (6)-(7) by examining the evolution of
the quantity maxx |g(t, x)| in time. An example
appears in figure 3.

The long time growth rates were used to in-
fer β(q), shown in figure 4, which like the pure
fluid displays a long wave instability. Also plot-
ted are the growth rates from calculations with
Vs set to zero, which by keeping φ constant de-
scribe a homogeneous fluid with the same vis-
cosity as the mixture. The effect of settling can
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be seen by comparing the growth rates from these two calculations, which shows a modest
reduction in the growth rate of unstable modes.

We conclude that particle settling and the resulting ridge has a moderate stabilizing effect,
slowing the growth rate of the fingering instability and pushing the most unstable mode to a
slightly longer wavelength. These effects were seen in the experiments of Zhou et al. [10], though
it is not clear that the modest reduction in the growth rate reported here is sufficient to explain
the observed effect on finger growth. We also report that the two-dimensional problem is unsta-
ble unless regularizing effects such as shear-induced diffusion are taken into account. Interesting
topics for future research include the role of moderate inclination angle, non-Newtonian effects
at high particle concentration, and the fully nonlinear dynamics of the model in two dimensions.

Appendix: Particle diffusion

Leighton and Acrivos [13] describe shear-induced diffusion as a concentration- and shear rate-
dependent diffusion of particles with diffusivity D = a2γ̇D̂(φ) for a suspension subject to
a shear rate γ̇. Experiments by Leighton [14] indicate that D̂(φ) ≈ 1

3φ
2
(
1 + 1

2e
8.8φ

)
. While

diffusion is strongest in the vertical (normal) direction, this effect is already incorporated in
the model.1 Here we consider the horizontal diffusion resulting from horizontal gradients of φ.
Using dimensional variables, this particle flux appears as an extra term in equation (1):

(φh)t +∇ ·
(
(vav + vrel)φh−

[
a2γ̇D̂(φ)

]
h∇φ

)
= 0. (8)

For simplicity we consider the average vertical contribution to the shear rate γ̇ = (1/h)
∫ h

0
|dvav/dz| dz.

In smooth regions this velocity is generally dominated by its first order term, giving an average
(dimensional) shear rate

γ̇ ≈ 3
2
(g sinα)

ρ(φ)
µ(φ)

h. (9)

Substituting (9) into (8) and reverting to dimensionless variables then yields equation (4).
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1 In [10] and [11] it is assumed that φ is independent of z due to the strength of this diffusion. This
assumption is relaxed in [15].


