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Abstract. We consider the asymptotic behavior of radially symmetric solu-

tions of the aggregation equation ut = ∇ · (u∇K ∗ u) in Rn, for homogeneous
potentials K(x) = |x|γ , γ > 0. For γ > 2, the aggregation happens in infi-

nite time and exhibits a concentration of mass along a collapsing δ-ring. We

develop an asymptotic theory for the approach to this singular solution. For
γ < 2, the solution blows up in finite time and we present careful numerics

of second type similarity solutions for all γ in this range, including additional

asymptotic behaviors in the limits γ → 0+ and γ → 2−.

1. Introduction. This paper is devoted to the asymptotic behavior of radially
symmetric blowup solutions to the aggregation equation

ut = ∇ · (u∇K ∗ u) in Rn, (1)

where u is the mass density and K ∗ u is the convolution of u with some kernel K.
This equation arises in a number of models in physics and biology. In the Keller-

Segel model [23] of chemotaxis in bacteria, the kernel associated with the convection
of the bacteria density is the Newtonian potential K(x) ∼ |x|2−n. In the community
of granular flow [3, 32], the kernel K(x) = |x|3/3 is used in the kinetic equation
for the velocity distribution function u of the granular medium. Recently, the
attractive-repulsive kernel

K(x) = FLe−|x|/L − e−|x|

is used extensively to model animal swarming behavior [14, 16, 27, 29], where F and
L are parameters controlling the strength and characteristic length of the attraction.

Besides these kernels from different physical and biological settings, the mathe-
matical theory of this equation with various general kernels as well with diffusion
effects has also been studied thoroughly in the past few years [9, 10, 11, 26, 30, 31].
The special case in one dimension with degenerate diffusion is investigated by
Burger, Capasso, and Morale [10], and Burger and Di Francesco [10]. The in-
viscid case in one dimension is studied in [9, 18, 19], mainly for kernels of the form
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K(x) = −e−|x|. The corresponding theory in higher dimensions is studied by Lau-
rent [24] and Bertozzi and Laurent [7] in classical Sobolev spaces, and by Bertozzi
and Brandman [4] in L∞ spaces. Local vs. global well-posedness for this problem is
shown to be distinguished by a sharp condition on the kernel [5], namely an Osgood
condition involving unboundedness of

∫
1/K ′(r)dr near the origin. For power-law

kernels K(x) = |x|γ , this translates into γ = 2 being the critical power distinguish-
ing finite time vs. infinite time blowup. Earlier work [21] by the authors focuses
on the special case γ = 1, showing numerical evidence of second-kind self-similar
blowup in all dimensions. This blowup solution remains in some Lp spaces at the
blowup time, which motivated the work [8] to study its well-posedness in general Lp

spaces. The aggregation equation (1) can also be regarded as the continuum limit
of the discrete system [5, 9, 10, 18, 19, 28] for L particles located at {x1, x2, · · · , xL}
with mass {m1,m2, · · · ,mL}, whose governing ODEs are

d

dt
xi(t) = −

∑
j 6=i

mj∇K(xj − xi), i = 1, 2, · · · , L. (2)

This particle system (2) converges to the continuous equation (1) under different
conditions [9, 10, 28], and the notion is weak measure-valued solutions is introduced
inẽqrefmartin08. The complete theory of these weak measure-valued solutions is
developed in [13], based on the underlying gradient flow structure in the space of
probability measures [1] and other techniques from optimal transport [33], unifying
the treatment of the discrete particle system and its continuous limit.

Inspired by the blowup profiles studied in this paper, new theoretical work [6]
shows the existence of measure solutions for more singular kernels in the case of
radially symmetric data and proves existence of monotone decreasing measure solu-
tions for power law kernels with 2−n ≤ γ < 2, including the case of the Newtonian
potential, providing some directions to continue the solutions after blowup.

Of particular interest in this equation is the blowup of smooth or bounded solu-
tions to (1). In one dimension, the same equation with K(x) = |x|γ/γ, i.e.

∂u(v, t)

∂t
=

∂

∂v

[
u(v, t)

∫
R
|v − w|γ−2(v − w)u(w, t)dw

]
,

is well studied as one of the kinetic models in granular flow [32, 3], where u(v, t) is
the velocity distribution function of the granular medium. The long time asymptotic
behavior of the solution is studied first for the special case γ = 3 in [12] and for
general case γ > 1 in [25].

In this paper, we study various asymptotics of the blowup solutions for the ho-
mogeneous kernel K(x) = |x|γ in higher dimensions. The choice of this kernel is for
convenience of analysis and similar behaviors are expected for general kernels with
leading order |x|γ near the origin. For the special case γ = 2, thanks to conservation
of mass and center of mass, the exact solution can be computed explicitly as

u(x, t) = e2nMtu0(eMtx),

where u0(x) is the initial condition at time t = 0 and M =
∫
u(x)dx is the total

mass.
When γ ∈ (2,∞), the solutions exist for any smooth initial data and the only

possible blowup is at infinite time [5]. The long time behavior of this blowup process
is investigated by introducing a similarity transform, followed by a detailed analysis
of the transformed equation in similarity variables in Section 2. When γ ∈ (0, 2),
the solutions exist only on finite time intervals [5]. The dynamics of these blowup
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solutions for the special case γ = 1 is studied by the authors in [21]. What is
interesting about these self-similar blowup solutions is their anomalous scaling. We
show in this paper that the same behavior occurs for all γ ∈ (0, 2) in Section 3.
We also consider the asymptotic behavior of the solution for γ → 0+ and γ → 2−.
Some conclusions and open problems are presented on Section 4.

2. Long time Asymptotics for γ > 2. The blowup mechanism of the solutions
to (1) is ultimately related to the underlying system of ODEs [4] for individual
particles. For compactly supported or fast decaying initial data, this mechanism is
determined by the singularity of the kernel near the origin, or equivalently the speed
of the collapse of the particle system (2). For the homogeneous kernel K(x) = |x|γ ,
the larger γ, the slower the speed when two particles collide. This blowup/non-
blowup behavior is analyzed rigorously by a generalization of the Osgood condition
for ODEs in [5]. In particular, when γ > 2 the solution blows up only at infinite
time. In this section we first examine the long time limit of the solutions after a
similarity transformation. Then we consider the special case of a radially symmetric
solution for more detailed asymptotics of the infinite time blowup.

2.1. Convergence of general solutions. In this subsection, we will study the
long time asymptotics of the solutions to (1). A convenient way to do this is via
the similarity variables:

y = xtβ , τ = ln t, U = t−αu (3)

or u(x, t) = tαU(xtβ , τ). The new function U satisfies the equation

Uτ = ∇ · [U(∇K ∗ U − βy)] (4)

provided that

α =
n

γ − 2
, β =

1

γ − 2
. (5)

These exponents α and β are determined uniquely by the condition of no explicit
dependence of (4) in τ and the conservation of mass for U . Such scaling is appro-
priate for infinite time singularity when γ > 2 but not for finite time singularity
when γ < 2 as considered later. We note that both the original equation (1) and
the transformed equation (4) converse mass, and center of mass (assumed to be at
the origin).

The long time behavior of the solution U can be deduced from the associated
Lyapunov function, or the energy

E(U) =
1

2

∫
Rn

∫
Rn
K(y − z)U(y)U(z)dydz − β

2

∫
Rn
|y|2U(y)dy. (6)

In fact, the dynamics (4) can be regarded as a gradient flow of this energy in the
space of probability measures [33, 1], i.e.

∂U

∂τ
= −div

[
U

(
δE

δU

)]
(7)

and
d

dτ
E(U) = −

∫
Rn
U(y)|∇K ∗ U(y)− βy|2dy ≤ 0, (8)

where δE
δU is the Fréchet derivative of the energy E with respect to U .
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To include all the limiting solutions of U , possibly Dirac-delta functions, in the
solution space, we introduce the space of measures with center of mass at the origin,

M =

{
µ is a non-negative Radon measure on Rn, µ(Rn) = M,

∫
Rn
ydµ = 0

}
,

and the space of measures with bounded γ-th order moment,

Pγ(Rn) =

{
µ ∈M :

∫
Rn
|y|γdµ <∞

}
.

By abuse of notation, we write U(x)dx instead of dµ in the following. For any
initial condition U(·, 0) ∈ Pγ(Rn) , we can show that the γ-th order and thus the
second order moments are bounded uniformly when τ goes to infinity. In fact,∫

|y|2U(x)dx =
1

2M

∫
(|y|2 + |z|2 − 2y · z)U(y)U(z)dydz

=
1

2M

∫∫
|y − z|2U(y)U(z)dydz

Using the Hölder’s inequality∫∫
|y − z|2U(y)U(z)dydz ≤

(∫∫
|y − z|γU(y)U(z)dydz

)2/γ

M2−4/γ ,

we have

E(U) =
1

2

∫∫
|y − z|γU(y)U(z)dydz − β

4M

∫∫
|y − z|2U(y)U(z)dydz

≥ M2−γ

2

(∫∫
|x− y|2U(x)U(y)dxdy

)γ/2
− β

4M

∫∫
|x− y|2U(x)U(y)dxdy

Since γ > 2, E(U) is bounded below on Pγ(Rn) and the second moments (similarly
the γ-th order moments) of U are bounded above. Consequently, the boundness
of these moments implies the tightness and therefore the weak compactness of the
sequence of solutions U(τ) in Pγ(Rn). This proves the following theorem:

Theorem 2.1. Let U(τ) be the solution to the equation (4) in Pγ(Rn). Then along
a subsequence {τk}, the functions {U(τk)} have a limit in Pγ(Rn) when τk goes to
infinity, which is denoted as U∞.

We remark that the above argument does not work for the case γ < 2, in which
E is not bounded below. In fact, as first shown numerically in [21] and generalized
later in this paper, the self-similar solutions are of the second kind and it is not
possible to introduce any exact similarity variables as (3).

Since E(U) is bounded below, from the dissipation inequality (8), any limiting
measure U∞ must satisfy the equilibrium condition∫

Rn
U∞(y)|∇K ∗ U∞(y)− βy|2dy = 0. (9)

In other words, U∞ should be concentrated on the set where ∇K ∗ U∞(y) − βy
vanishes. In the community of granular flow, for a given U∞, the corresponding
self-similar solution u(x, t) = tαU∞(xtβ) is called a homogeneous cooling state [12];
it is expected to play the same role as the Maxwellian distribution for the Boltzmann
equation in rarefied gas dynamics.

However, because the energy E(U) is not convex, the limit U∞ above can be
local minimizers or even saddle points. In general, the convergence of the solution
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U to its limit U∞ is so weak, there is no more information about U∞ besides the
characterizing equality (9).

2.2. Convergence for radially symmetric solutions. To get more quantitative
properties about these limiting solutions U∞, we consider only the radially symmet-
ric ones U∞(y) = U∞(r) with r = |y| in the rest of this section. Denote the radial
characteristic velocity, in similarity variables as

V (r) = βr − d

dr
K ∗ U∞. (10)

Since U∞ is a non-negative measure, d3

dr3V (r) < 0 on (0,∞) and d2

dr2V (0) = 0.

Therefore d2

dr2V (r) is concave and V (r) has at most one zero r0 on (0,∞), besides
the obvious zero at the origin. In other words, from the equilibrium condition
(9), U∞(r) can only be supported at the origin and at r0. If the fraction of mass
concentrated at the origin is ν and the rest on the sphere of radius r0,ν is 1 − ν,
then the limiting solution can be represented as

U∞,ν(x) = νMδ(x) +
(1− ν)M

nωnr
n−1
0,ν

δ(|x| − r0,ν), (11)

where ωn is the volume of the unit sphere in dimension n. Here the radius r0,ν of
the mass concentrating sphere can be solved from the equation V (r0,ν) = 0, i.e.,

r0,ν =

(
1

γM

β

ν + (1− ν)2γ−1B(n+γ−12 , n−12 )/B(n−12 , n−12 )

)1/(γ−2)

, (12)

where B is the Beta function. The corresponding energy is

E(U∞,ν) = −
(1− ν)βMr20,ν

2γ
. (13)

We note that the limiting solutions U∞,ν for ν > 0 are unstable. Since the
corresponding radial characteristic velocity V (r) is positive near the origin, any
perturbation of mass from the origin will expand outward to the mass-concentrating
sphere instead of moving inward. Therefore, the amount of mass νM concentrated
at the origin is exactly that from the initial condition. Moreover, from the explicit
expression (13), U∞,0 is the global minimizer of the energy (6) in the set of all
radially symmetric measures while those U∞,ν with ν 6= 0 are only saddle points of
the energy. For generic radially symmetric initial data without any concentration of
mass at the origin, the solution U converges to the global minimizer U∞,0 (denoted
as U∞ for simplicity). For this reason, we consider the asymptotic behavior of the
solutions to U∞ in the remaining sections and the generalization to the convergence
to U∞,ν , where ν > 0 requires only minor modification.

2.3. Asymptotic convergence to the δ-ring for radially symmetric solu-
tions. For smooth initial data u0(x) decaying fast enough, the solution u(x, t) stays
smooth but converges to a δ-ring with vanishing radius when t goes to infinity, while
the corresponding solution U(y, τ) in similarity variables converges to a δ-ring with
fixed radius, as shown in Figure 1 for γ = 4 in dimension three. The equations (1)
and (4) are solved numerically by the method of characteristics. For example, the
characteristic equations of the radial variables in (1) are

dr

dt
= − ∂

∂r
K ∗ u, du

dt
= u∆rK ∗ u, (14)
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where ∆r = 1
rn−1

∂
∂r r

n−1 ∂
∂r is the Laplacian. The detailed numerical scheme is

discussed in the next section for the case γ ∈ (0, 2), where we have to rely on
numerics to guide the analysis because of the anomalous similarity solutions.
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Figure 1. (a) Radially symmetric solution u for the original equa-
tion (1) and (b) the corresponding similiarity variable U for (4) at
different time for γ = 4 in dimension three. The solution u con-
verges to a δ-ring with vanishing radius while U converges to a
δ-ring with radius r0 ≈ 0.325.

These figures reveal some non-trivial behavior of the convergence of the solution
U towards the δ-ring. This brings the question of the large time, intermediate
asymptotics of U . The key observation to derive the refined asymptotics is the fact
that the first and second derivatives of the convolution K ∗ U converge to their
limiting values much faster, as shown in Figure 2. In other words, for large τ ,
the characteristic speed dr/dτ and the rate of increase of the solution U along the
characteristics become essentially steady. Therefore, the leading order large time
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asymptotics for U is governed by the linear first order equation

Uτ = ∇ · [U(∇K ∗ U∞ − βy)] , (15)

in which the convolution K ∗ U is replaced by the effective one K ∗ U∞. With the
radius r0 of the limiting δ-ring computed from (12) with ν = 0,

r0 =

(
β

2γ−1γM

B(n−12 , n−12 )

B(n+γ−12 , n−12 )

)1/(γ−2)

,

the system of ODEs for the characteristic variables r and U of (15) becomes

dr

dτ
= βr − Mγ∫ π

0
sinn−2 θdθ

∫ π

0

(r − r0 cos θ)(r2 + r20 − 2rr0 cos θ)γ/2−1 sinn−2 θdθ,

dU

dτ
=

(
Mγ(n+ γ − 2)∫ π

0
sinn−2 θdθ

∫ π

0

(r2 + r20 − 2rr0 cos θ)γ/2−1 sinn−2 θdθ − nβ

)
U.

For r < r0 near the origin, the above characteristic equations can be approxi-
mated as

dr

dτ
≈ A0r,

dU

dτ
≈ (−B0 + C0r

2)U, (16)

where

A0 = β

(
1− γ − 1

2γ−2
B(n−12 , n−12 )

B(n+γ−12 , n−12 )

)
, B0 = β

(
n− n+ γ − 2

2γ−2
B(n−12 , n−12 )

B(n+γ−12 , n−12 )

)
,

C0 = M(n+ γ − 2)γ(γ − 2)(γ − 3)rγ−40 .

This local approximation leads to the asymptotic solution of the form

U(r, τ) ∼ e−B0τ+
C0
2A0

r2 , (17)

where the prefactor determined by the initial condition is transient and is therefore
omitted. The time decay U(0, τ) ∼ e−B0τ at the origin and the spatial variation

of U(r, τ) ∼ U(0, τ)eC0r
2/3 near the origin are confirmed numerically in Figure 3.

Away from the origin the match in the spatial variation can be improved if higher
order terms in r are included in (16).

For r close to r0, the characteristic equations can be approximated as

dr

dτ
≈ −A1(r − r0),

dU

dτ
≈ (B1 − C1(r − r0))U, (18)

where

A1 = B1 = (γ − 2)β, C1 =
(n+ γ − 2)γ(γ − 2)β

2r0
.

This leads to the asymptotic solution of the form

U(r, τ) ∼ eB1τ−C1e
A1τ (r−r0)/A1 . (19)

However, here the prefactor depends strongly on the decay rate of the initial con-
dition, making it useful only at r = r0; the increase rate O(eB1τ ) of U at this point
is verified numerically in Figure 4.

In summary, for generic radially symmetric and smooth initial data, the approach
of the solution U to the the limit U∞ is therefore characterized by the asymptotic
scaling (17) and (19). However, these asymptotic forms do not tell us anything
about the convergence rate in probability metrics like the Wasserstein distances [1].
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Figure 2. (a) The characteristic velocity dr/dτ and (b) the rate
of change 1

U
dU
dτ for γ = 4 in dimension three. There are two equi-

librium points for the characteristic velocity: the one at the origin
is unstable; the one at r0 ≈ 0.325 is stable.

The convergence in these weaker spaces is in general much more difficult, even for
solutions governed by the linearized equation (15).

3. Finite time blowup for 0 < γ < 2. For γ ∈ (0, 2), because of the relatively
strong attraction between particles close enough, smooth solutions blow up in finite
time [5]. If T is the blowup time, we can introduce the following similarity variables
y and τ ,

y = x(T − t)−β , τ = − ln(T − t) (20)

and define U(y, τ) such that

u(x, t) = (T − t)−αU(x(T − t)−β , τ), (21)
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Figure 3. (a) The decay of U at the origin for γ = 4 in dimension
three. (b) The spatial variation of U near the origin for the same
dynamics at τ = 0.8.

where α and β are unknown constants. Substituting (21) into (1), the resulting
equation for U has no explicit dependence on τ only if

α = (n+ γ − 2)β + 1, (22)

with the evolution equation

Uτ = ∇ · (U∇K ∗ U)− αU − βy · ∇U. (23)

If finite mass is concentrated in the core of the blowup profile,

α = nβ (24)
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Figure 4. The increase of U at r0 for γ = 4 in dimension three at
τ = 8.0.

must hold for the mass conservation of both u and U . This relation, together with
(22), gives the exponents

α =
n

2− γ
, β =

1

2− γ
, (25)

characterizing self-similar solutions of the first kind. Any exact self-similar solu-
tions of this form satisfy the steady state equation (23). However, it is shown in [5]
that there are no such exact smooth self-similar solutions in odd dimensions for the
special case γ = 1 and in [15] that the only radially symmetric ones are weak mea-
sures concentrated at the origin and at most one δ-ring. In fact, for generic radially
symmetric, smooth initial data, the solution does not converge to the self-similar
solutions of the first kind discussed above. In one dimension, the equation with
the case γ = 1 can be transformed into Burgers equation. It is shown in [17] that
β = 1.5 instead of β = 1 as from (25) and the corresponding self-similar solutions
are of the second kind. It was also recently shown [6] that the multidimensional
problem with Newtonian potential K(x) = |x|2−n can be transformed to Burgers
equation in the case of radial symmetry. The change of variables gives β = 3/2n,
using the same exact solution of Burgers equation that describes a generic singu-
larity. For more general power-law kernels K(x) = |x|γ , we must solve the problem
numerically, and this is done in general dimensions for γ = 1 by the authors in [21].
The numerics shows a clear second kind similarity solution. The main point of this
section is to show that this behavior holds for all γ ∈ (0, 2).

3.1. Numerical method and numerical results. The numerical method is a
slight generalization of that in [21] and is reviewed next for completeness. The
equation (1) is solved by the method of characteristics, respecting the underlying
transport structure of the dynamics. In radial coordinates, the original equation
(1) can be written as

ut =
∂u

∂r

∂

∂r
K ∗ u+ u∆rK ∗ u, (26)
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where ∆r = ∂rr + n−1
r ∂r is the Laplacian in the radial variable r. Therefore, the

system of ODEs for the characteristics is

dr

dt
= − ∂

∂r
K ∗ u, du

dt
= u∆rK ∗ u. (27)

More precisely,

∂

∂r
K ∗ u = γcn

∫ ∞
0

u(r′)r′n−1
∫ π

0

(r − r′ cos θ)I(r, r′)q−2 sinn−2 θdθdr′,

∆rK ∗ u = (n+ γ − 2)γcn

∫ ∞
0

u(r′)r′n−1
∫ π

0

I(r, r′)q−2 sinn−2 θdθdr′,

where
I(r, r′) = (r2 + r′2 − 2rr′ cos θ)1/2

and cn = (n− 1)ωn−1.
The integral in the angular variable θ can be precomputed as a function of r, r′

and the ratio r′/r as a consequence of the homogeneity of the kernel. More precisely,
we precompute the following integrals∫ π

0

(r − r′ cos θ)I(r, r′)q−2 sinn−2 θdθ

=

{
rγ−1

∫ π
0

(1− ρ cos θ)(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ, if ρ = r′/r ≤ 1,

(r′)γ−1
∫ π
0

(ρ− cos θ)(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ, if ρ = r/r′ ≤ 1,

and∫ π

0

I(r, r′)q−2 sinn−2 θdθ = max(r, r′)γ−2
∫ π

0

(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ,

where ρ = min(r, r′)/max(r, r′) ∈ [0, 1]. With the auxiliary functions

I1(ρ) =

∫ π

0

(1− ρ cos θ)(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ,

I2(ρ) =

∫ π

0

(ρ− cos θ)(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ,

I3(ρ) =

∫ π

0

(1 + ρ2 − 2ρ cos θ)γ/2−1 sinn−2 θdθ,

the complexity is reduced to O(N2) per time step to evaluate the integrals in the
characteristic ODEs (27) using trapezoidal rule, where N is the number of spa-
tial grid points in the radial coordinate r. Once the characteristic speeds in (27)
are found, the system (26) is evolved using the classical fourth-order Runge-Kutta
method. The anomalous exponent β and the self-similar profile U can be obtained
by post-processing of the solution or using numerical renormalization method as
in [21].

We have shown sample results in the previous section for γ > 2 and focus on
the exponents β and the profiles for γ ∈ (0, 2) in the rest for second kind similarity
solutions. The blowup profiles for γ = 1 in different dimensions and for different γ
in dimension three are shown in Figure 5-6, respectively. The profiles are ordered
in the far field but not near the origin, and are qualitatively the same for other
fixed γ or fixed dimensions. The anomalous exponents for different γ in different
dimensions are shown in Figure 7. These exponents have a strong dependence on
the power γ but a very weak dependence on the dimension n. Though there is no
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explicit formula for these exponents, the asymptotic behavior of β is evident when
γ is close to zero or two, both of which are analyzed next after some properties of
these self-similar profiles are reviewed.
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Figure 5. Blowup profiles in the similarity variables U and r, in
different space dimensions for γ = 1.

3.2. Properties of the self-similar profile U . The self-similar profile U , if it
exists, must satisfy the steady state of (23),

AU ≡ ∇ · (U∇K ∗ U)− αU − βy · ∇U = 0. (28)

A few properties of U are immediately available. First there is actually a family of
solutions: if U is a solution of (28), so is Uλ(y) = λn+γ−2U(λy) for any λ > 0. As
a result, all the profiles U shown in Figure 5-6 and analyzed below are normalized
by the condition U(0) = 1. Moreover, this family of solutions gives arise to an
eigenpair for the linearized operator L at U defined as

LW ≡ ∇ · (U∇K ∗W ) +∇ · (W∇K ∗ U)− αW − βy · ∇W. (29)

In fact, from the invariance of the solution Uλ,

0 =
d

dλ
AUλ

∣∣∣∣
λ=1

= L d

dλ
Uλ

∣∣∣∣
λ=1

= L [(n+ γ − 2)U + y · ∇U ] . (30)
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Figure 6. Blowup profiles in the similarity variables U and r, in
dimension three for different γ.

This implies that e1(y) = (n+γ−2)U+y ·∇U is an eigenfunction of L corresponding
to the eigenvalue zero. From this eigenpair and the steady state equation (28), we
can get the second eigenpair:

L [αU + βy · ∇U ] = L(U) = αU + βy · ∇U, (31)

or e2(y) = αU + βy · ∇U is the eigenfunction of L corresponding to eigenvalue one.
This second eigenpair is related to the time translation of the solution u(x, t) =
(T − t)−αU(x(T − t)−β). More precisely, if the time t is translated to t+ ε or

T − t− ε = (T − t)(1− εeτ ),

then

uε(x, t) = (T − t− ε)−αU(x(T − t− ε)−β)

= (T − t)−α(1− εeτ )−αU(x(T − t)−β(1− εeτ )−β)

= u(x, t) + ε(T − t)−α−1e2(x(T − t)−β) +O(ε2).

Even though this eigenvalue is positive, the blowup profile is stable; any perturba-
tion in this mode results only in a translation in the blowup time. However, this
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Figure 7. The anomalous exponents β in different dimensions for
γ ∈ (0, 2). The exponents have a very weak dependence on the
dimension, but a strong dependence on γ.

mode does prevent any direct computation of the profile U from (23), unless the
dynamics is restricted to the space orthogonal to e2.
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Figure 8. The solution near the blowup time for γ = 1 in dimen-
sion three, which collapses into the envelope |x|−α/β .

Another important property is the algebraic decay rate of U in the far field. All
the solutions u are observed to collapse into one envelope (Figure 8). This, together
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with the ansatz (21), implies that U(y) ∼ |y|−α/β = |y|2−n−γ−1/β as |y| goes to
infinity. This decay rate provides another validation for the numerical results and
an extra self-consistent condition for the perturbation expansion below as γ goes to
2−.

3.3. The asymptotics when ε = γ → 0. In general, the exponent β in the
second-kind self-similar solution is governed by a nonlinear eigenvalue problem [2]
and there is no explicit formula as in the first-kind counterpart. However, for the
special case of K(x) = |x| in odd dimension, the exponents are calculated in [22, 20]
by transforming the steady state equation (28) into a system of ODEs, followed a
shooting method to match the boundary conditions of these two. Furthermore,
it is evident from Figure 7 that the exponent β has an asymptotic limit when γ
approaches 0+ and 2−, which is the subject of this and the next subsection.

When ε = γ is close to 0, we first rescale the solution Uε(y) to Wε(y) =
Uε(ε

1/(n+ε−2)y), since it is Wε instead of Uε that has a well-defined limit. This
rescaling keeps the exponents αε and βε invariant, since the governing equation for
Wε is the same as for Uε except with the rescaled kernel K̃ε(x) = |x|ε/ε, i.e.,

∇ · (Wε∇K̃ε ∗Wε) = αεWε + βεy · ∇Wε. (32)

The numerically computed β in Figure 7 suggests the following asymptotic ex-
pansions for the exponents

βε = 1 + C1ε+ C2ε
2 + · · · , (33a)

αε = (n− 2 + ε)βε + 1 = n− 1 + ((n− 2)C1 + 1)ε+ · · · , (33b)

and for the profile

Wε = W0 + εW1 + ε2W2 + · · · . (34)

Upon substituting them into (32), the resulting leading order O(1) equation is

∇ · (W0∇K̃0 ∗W0) = (n− 1)W0 + y · ∇W0, K̃0(x) = ln |x| (35)

with the boundary conditions

W0(0) = 1, ∇W0(y)|y=0 = 0, W0(y) ∼ |y|1−n as |y| → ∞. (36)

Compared with the steady equation (28) for general γ (or ε), the integral-differential
equation (35) for the limiting profile contains no unknown parameters. To get the
first order correction for β, we introduce the linearized operator L0 at W0

L0(V ) ≡ ∇ · (V∇K̃0 ∗W0) +∇ · (W0∇K̃0 ∗ V )− (n− 1)V − y · ∇V, (37)

and its formal adjoint operator

L∗0(V ) ≡ −∇V · ∇K̃0 ∗W0 +∇ ·
∫
Rn
K̃0(y − z)W0(z)∇V (z)dz + V + y · ∇V.

It is obvious that we obtain from the steady state equation (35) that

L0(W0) = (n− 1)W0 + y · ∇W0 (38)

and from the explicit eigenpair (30) that

L0 [(n− 2)W0 + y · ∇W0] = 0. (39)
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The O(ε) equation from (32) is

L0(W1) = ((n− 2)C1 + 1)W0 + C1y · ∇W0 −∇ ·
[
W0

(
y

|y|2
ln |y|

)
∗W0

]
= C1L0(W0)− C1W0 −∇ ·

[
W0

(
y

|y|2
ln |y|

)
∗W0

]
. (40)

We can now find C1 from the solvability condition. Since L0 has a one-dimensional
null space, spanned by (n − 2)W0 + y · ∇W0, the formal adjoint L∗0 is expected
to have a non-trivial null space too, containing a nonzero function W ∗0 such that
L∗0(W ∗0 ) = 0. The solvability condition for (40) is then obtained by multiplying
both sides with W ∗0 and integrating on the whole space, i.e.

0 =

∫
Rn
W ∗0

(
C1L(W0)− C1W0 −∇ ·

[
W0

(
y

|y|2
ln |y|

)
∗W0

])
dy

= −C1

∫
Rn
W ∗0W0dy −

∫
Rn
W ∗0∇ ·

[
W0

(
y

|y|2
ln |y|

)
∗W0

]
dy. (41)

This gives the coefficient C1 for the first order correction of βε as

C1 = − 1∫
RnW

∗
0W0dy

∫
Rn
W ∗0∇ ·

[
W0

(
y

y|2
ln |y|

)
∗W0

]
dy. (42)

Since both the leading order profile equation (35) and the adjoint equation
L∗0(W ∗) = 0 are nonlinear nonlocal, there is no explicit form for the exact solu-
tions and they are also very challenging to solve numerically. In the special case
of even dimensions, we can use the fact that successive Laplacians of the kernel
K̃0(y) = ln |y| becomes the fundamental solution of the Laplace equation. This

allows us to compute the convolution K̃0 ∗W0 by a system of ODEs. This obser-
vation enables us to transform both integro-differential equations into two systems
of ODEs by shooting methods, in the same spirit as calculating the exponent β for
the special case γ = 1 in [20, 22].

We start with dimension n = 4, and the case in higher even dimensions can be
generalized similarly. We introduce the scalar variables w0(r)(= W0(|y|)), w1(r),
w2(r) and w3(r) defined on [0,∞), such that

w3 =
d

dr
K̃0 ∗ w0, w2 = ∆rK̃0 ∗ w0, w1 = w′2, (43)

where, by abuse of notion, the convolution is always performed on Rn, but evaluated
at r = |y|. Upon this change of variables, the governing equation (35) becomes

16π2

(
dw0

dr
w3 + w0w0

)
= 3w0 + r

dw0

dr
. (44)

Therefore, the above system of ODEs can be rewritten as

dw0

dr
= −16π2w2 − 3

16π2w3 − r
w0, (45a)

dw1

dr
= −w0 −

3

r
w1, (45b)

dw2

dr
= w1, (45c)

dw3

dr
= w2 −

3

r
w3. (45d)
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This system is equivalent to (35) in the sense that W0(y) = w0(r) with r = |y|,
provided that the initial conditions at r = 0 and far field conditions as r goes to
infinity match each other. The expected decay rate O(r1−n) for w0 implies that
both w1 and w2 converge to zero as r goes to infinity and the shooting method
is used to choose wi(0)s appropriately to enforce these decay conditions in the far
field. The dimension n = 4 is special because these initial conditions are determined
completely by the local well-posedness of the system (45), i.e,

w1(0) = 0, w2(0) = 3/16π2, w3(0) = 0, (46)

and w0(0) = 1 for normalization. To avoid the singularity at the origin, the sys-
tem (45) is calculated with any ODE solver starting at small r > 0, where the
solution can be represented as a rapidly converging power series [20, 22].

Once the profile w0(= W0) is found, the solution (or the eigenfunction) to the
adjoint equation L∗0(W ∗0 ) = 0 is obtained similarly. Let w∗0 = W ∗0 and d

drw
∗
1 =

W0
y
|y| · ∇W

∗
0 , then the second term in L∗0(W ∗0 ) can be rewritten as

∇ ·
∫
Rn
∇w∗1(y) ln |x− y|dy = −∇ ·

∫
Rn
w∗1(y)∇y ln |x− y|dy = ∆r ln |x| ∗ w∗1 .

Denote the last convolution integral ∆r ln |x|∗w∗1 as w∗3 and let w∗2 = d
drw

∗
3 . Then the

system of ODEs for the variables associated with the adjoint equation L∗0(W ∗0 ) = 0
becomes

dw∗0
dr

= −16π2w∗2 + w∗0
16π2w∗3 − r

, (47a)

dw∗1
dr

= −16π2w∗2 + w∗0
16π2w∗3 − r

w0, (47b)

dw∗2
dr

= −w∗1 −
3

r
w∗2 , (47c)

dw∗3
dr

= w∗2 . (47d)

The initial condition w∗0(0) = 1 is chosen for normalization in the one-dimensional
family of solutions. By the local well-posedness of the above system and the even
symmetry of w∗1 and w∗3 , we must have w∗2(0) = −w∗0(0) = −1/16π2 and w∗2(0) = 0.
This leaves the problem of finding the shooting parameter w∗3(0) such that w0(r)
goes to zero as r goes to infinity. Once both the profile w0 and the solution w∗0
to the adjoint equation are found, the coefficient in the first order correction of β
can be evaluated from (42). The comparison of this correction with the numerically
computed β is shown in Figure 9, where C1 estimated from (42) is approximately
2.17 in dimension four. In higher dimensions, the two systems of ODEs (45) and (47)
can be solved similarly, with more shooting parameters (or initial conditions) and
are therefore more difficult to solve [22].

3.4. The asymptotics when ε = 2 − γ → 0. When γ → 2−, the asymptotic
expansions suggested from Figure 7 are

βε =
C0

ε
+ C1 + C2ε+ · · · , (48a)

αε = (2− ε)βε + 1 =
nC0

ε
+ (nC1 − C0 + 1) + · · · . (48b)
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Figure 9. The comparison of the first order correction and the
numerically computed β in dimension four. Here C1 estimated
from (42) is approximately 2.17.

Unlike the previous case when γ → 0−, because of the relatively slow decay of
the integrand in the convolution, two asymptotic expansions

Uε = U0 + εU1 + ε2U2 + · · · (49a)

and

Uε = Ũε(1 + εW1 + ε2W2 + · · · ) (49b)

are employed, where

Ũε = [U0]1+εv1+ε
2v2+···

= U0

[
1 + εv1 lnU0 + ε2

(
v2 lnU0 +

1

2
v21 ln2 U0

)
+ · · ·

]
(50)

for some constants v1,v2,· · · . The first one (49a) is uniform when |y| is close to
the origin while the second one (49b) is uniform when |y| is large and is the one

that has to be used in the convolution. Here Ũε characterizes the power-law decay
of the solution Uε and Wis change slower than any power at infinity. These two
asymptotic expansions are related, for example

U1 = U0(W1 + v1 lnU0).

The non-uniformity of the first one (49a) is obvious, because of the factor lnU0 in
U1 for any v1 6= 0.

The constants v1, v2, · · · , can be calculated from the relation between the ex-
pected leading order decay of U0(y) ∼ |y|−n and that of Uε(x) ∼ |y|−αε/βε , i.e.,

n(1 + εv1 + ε2v2 + · · · ) =
αε
βε

= n− ε+
1

βε
. (51)
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This gives

v1 =
1

n

(
1

C0
− 1

)
, v2 = − C1

nC2
0

, · · · . (52)

For bounded y, using (49a), the right hand side of the steady state

∇ · (Uε∇Kε ∗ Uε) = αεUε + βεy · ∇Uε, Kε(y) = |y|2−ε (53)

becomes

C0

ε
∇ · (yU0(y)) + [C1∇ · (yU0(y)) + C0∇ · (yU1(y)) + (1− C0)U0(y))]

+ ε[C2∇ · (yU0(y)) +C1∇ · (yU1(y)) +C0∇ · (yU2(y)) + (1−C0)U1−C1U0] + · · ·

The left hand of the steady state (53) can be written as

Uε(y)

∫
Rn

∆Kε(y − y′)Uε(y′)dy′ +∇Uε(y) ·
∫
Rn
∇Kε(y − y′)Uε(y′)dy′

= (2n− (n+ 2)ε+ ε2)Uε(y)

∫
Rn
|y − y′|−εUε(y′)dy′

+ (2− ε)∇Uε(y) ·
∫
Rn

(y − y′)|y − y′|−εUε(y′)dy′ (54)

We are going to use the expansion (49a) for Uε(y) and (49b) for Uε(y
′) in the above

expression, where the O(ε−1) constant term arises from the convolution integrals
for the slow algebraic decay of the integrand. When |y′| is large, |y − y′|−ε can be
expanded as

|y − y′|−ε = |y′|−ε exp

(
−ε ln

|y − y′|
|y′|

)
= |y′|−ε

[
1− ε ln

|y − y′|
|y′|

+
ε2

2
ln2 |y − y′|

|y′|
+ · · ·

]
.

The non-uniformity when |y − y′| is small turns out to be unimportant since the
associated integrals are absolutely integrable.

To further facilitate the calculation, we assume the following asymptotic form of
the integrals ∫

Rn
|y′|−εŨε(y′)dy′ =

A0

ε
+A1 + εA2 + · · · , (55a)∫

Rn
|y′|−εŨε(y′)W1(y′)dy′ =

B0

ε
+B1 + εB2 + · · · , (55b)∫

Rn
|y′|−εŨε(y′)W2(y′)dy′ =

D0

ε
+D1 + εD2 + · · · . (55c)

The exact values of these constants Ai, Bi and Di are not used in the derivation of
the leading order equation, as shown later.

With all the expansions above, keeping all terms up to O(ε), the first term in (54)
can be simplified as

(2n− (n+ 2)ε+ ε2) [U0(y) + εU1(y) + · · · ]∫
Rn
|y − y′|−εŨε(y′)(1 + εW1(y′) + · · · )dy′

= 2nU0(y)

∫
Rn
|y′|−ε

(
1 + εW1(y′) + ε2W2(y′)

)
Ũε(y

′)dy′
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+ε(2nU1(y)− (n+ 2)U0(y))

∫
Rn

(1 + εW1(y′))Ũε(y
′)dy′

+ε(2nU2(y)− (n+ 2)U1(y) + U0(y))

∫
Rn
|y′|−εŨε(y′)dy′

−2εnU0(y)

∫
Rn
|y′|−εŨε(y′) ln

|y − y′|
|y′|

dy′ +O(ε2)

= 2nU0(y)(
A0

ε
+ (A1 +B0) + ε(A2 +B1 +D0))

+(2nU1(y)− (n+ 2)U0(y))(A0 + ε(A1 +B0))
+ε(2nU2(y)− (n+ 2)U1(y) + U0(y))A0

−2εnU0(y)

∫
Rn
U0(y′) ln

|y − y′|
|y′|

dy′ +O(ε2),

and the second term in (54) as

(2− ε) [∇U0(y) + ε∇U1(y) + · · · ]∫
Rn

(y − y′)|y − y′|−εŨε(y′)(1 + εW1(y′) + · · · )dy′

= 2y · ∇U0(y)(
A0

ε
+ (A1 +B0 −

A0

n
) + ε(A2 +B1 +D0 −

A1

n
− B0

n
))

+x · ∇(2U1(y)− U0(y))(A0 + ε(A1 +B0 +
A0

n
))

−2εy · ∇U0(y)

∫
Rn
U0(y′) ln

|y − y′|
|y′|

dy′

+2ε∇U0(y) ·
∫
Rn
y′U0(y′)

(
ln
|y − y′|
|y′|

+
y · y′

|y′|2

)
dy′ +O(ε2). (56)

Therefore, the leading order O( 1
ε ) equation of (53) is

2A0∇ · (yU0(y)) = C0∇ · (yU0(y)) (57)

which gives C0 = 2A0.
The O(1) equation is

(C0 − 1)U0(y) +

(
2A1 + 2B0 −

n+ 2

n
A0 − C1

)
∇ · (yU0(y)) = 0. (58)

There exists a non-trivial solution U0(y) satisfying the boundary condition U0(0) =
1 and U0(y) ∼ |y|−n only when both coefficients vanish, i.e.,

C0 = 1, 2A1 + 2B0 − C1 =
n+ 2

2n
. (59)

Finally the order O(ε) equation is

C1U0(y) +

(
2A2 + 2B1 + 2D0 −

n+ 2

n
(A1 +B0)− C1

)
∇ · (yU0(y))

= 2∇ · (yU0(y))

∫
Rn
U0(y′) ln

|y − y′|
|y′|

dy′

− 2∇U0(y) ·
∫
Rn
y′U0(y′)

(
ln
|y − y′|
|y′|

+
(y, y′)

|y′|2

)
dy′.

(60)



ASYMPTOTICS OF BLOWUP SOLUTIONS 21

Evaluating the above equation at y = 0, we get

n

(
2A2 + 2B1 + 2D0 −

n+ 2

n
(A1 +B0)− C1

)
+ C1 = 0 (61)

As a result, the governing equation (60) can be simplified as

C1

n
y · ∇U0(y) = 2∇U0(y) ·

∫
Rn
y′U0(y′)

(
ln
|y − y′|
|y′|

+
y · y′

|y′|2

)
dy′

− 2∇ · (yU0(y))

∫
Rn
U0(y′) ln

|y − y′|
|y′|

dy′. (62)

The unknown constant C1 can be determined from the self-consistent condition
of the above equation when |y| goes to infinity. Since the U0(y) decays like O(|y|−n),
so does the left hand side of (62). This decay is balanced by the first term on the
right hand side since ∇ · (yU0(y)) ∼ o(|y|−n). More precisely, the constant C1

satisfies the condition

C1

n
y · ∇U0(y) ≈ 2∇U0(y) ·

∫
Rn
y′U0(y′)

(
ln
|y − y′|
|y′|

+
y · y′

|y′|2

)
dy′ (63)

as |y| → ∞, or equivalently

C1 = lim
|y|→∞

2

|y|2

∫
Rn
y · y′U0(y′)

(
ln
|y − y′|
|y′|

+
y · y′

|y′|2

)
dy′. (64)

In general, the coefficient C1 can only be estimated from (64) using any numeri-
cally calculated profile U0 when γ is close to 2. The comparison of the numerical
computed β and its first order asymptotic expansion is shown in Figure 10, where
C1(≈ 1.42) is estimated from (64) with the limiting profile U0 calculated with
γ = 1.98 and the limit taken at |y| = 105.
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Figure 10. The comparison of the first order correction and the
numerically computed β (rescaled by 2 − γ) in dimension four.
Here C1(≈ 1.42) is estimated from (64) with the limiting profile U0

calculated with γ = 1.98 and the limit taken at |y| = 105.
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4. Conclusion. We have analyzed the asymptotic behavior of two types of blowup
solutions to the aggregation equation ut = ∇ · (u∇K ∗ u), depending on the power
of the homogeneous kernel K(x) = |x|γ . The phenomena when γ > 2 is studied
thoroughly for the one-dimensional granular flow [32, 3], but the anomalous scaling
in the self-similar solutions are studied only recently in [21]. This paper gives a
complete picture of the generic radially symmetric blowup solutions for this simple
kernel, whose analysis is guided heavily by numerical simulations, especially the
asymptotic behavior of the anomalous exponent when γ is close to 0 and 2. These
results are actually true for a larger class of non-smooth radially symmetric initial
condition. For instance, as long as initially there is mass around the origin, the
solution still exhibits second-kind self-similarity, reflecting the connection between
this anomaly and the conservation of total mass. However, the stability of these
solutions under non-radial perturbation and the possibility of other (stable or un-
stable) self-similar solutions remains unknown and is challenging numerically too.
Another important generalization is the introduction of additional smoothing ef-
fects, like degenerate or fractional diffusion. This may lead to more physical steady
state solutions instead of the singular ones considered here. We also note that the
recent work [6] proves existence of blowup solutions that can be continued for all
time as measure-valued solutions, in the case of radially symmetric monotone de-
creasing data for 2 − n ≤ γ < 2. The monotonicity property is preserved for this
range of γ, a feature observed in our numerical simulations but not proved rigor-
ously until this new work. It would be interesting to examine the initial blowup
profile for these more singular kernels K(x) = |x|γ/γ in the range 2 − n < γ < 0
for which no numerical results currently exist.
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