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Abstract. A wavelet analogue of the Ginzburg–Landau energy (WGL) was recently designed
and integrated in variational methods for image processing. In this paper we prove global well–
posedness of the gradient descent equation (in the weak sense) and convergence to an extremum. We
also develop further uses for this energy completed with an additional edge preserving forcing term.
We present examples including inpainting, superresolution, segmentation, denoising, and contour
detection. Combining the spatial and the edge-preserving forcing terms gives an amazing flexibility
of the model, that is not only applicable to various image processing tasks, but also highly tunable.

1. Introduction. This paper discusses variational properties of the wavelet
Ginzburg–Landau energy ([11, 12]) and well-posedness of the associated gradient de-
scent problem. We investigate the properties of the minimizers in the diffuse-interface
context. We also continue our study of the qualitatively new category of methods that
use wavelets in settings analogous to the widely known differential models for image
processing. Its key elements are the nonlocal operators based on wavelets (as a par-
ticular case of a sparse representation system). One can see it as a way to combine
advantages of two effective and popular classes of techniques within one method,
which may also lead to a wider acceptance of the variational methods by considering
those not involving numerical PDE solving.

The wavelet Ginzburg-Landau energy was first introduced in an earlier work [11]
that described the design of the wavelet Laplacian — a pseudo–differential operator
that retains the properties of its differential prototype (and brings in additional ad-
vantages) in the context of an image processing model involving diffusive structure.
This idea was inspired by [4], where the properties of Cahn–Hilliard equation were
utilized for image inpainting, more specifically — for restoration of broken connections
over the missing image parts. The wavelet Laplacian actually inherits many proper-
ties of the regular Laplace operator, moreover, just as the associated WGL functional
matches the role of the classical Ginzburg-Landau energy(GL), while bringing in sig-
nificant advantages [11] such as introducing much lower diffuse-interface blur in the
processed images, nevertheless restoring the feature connections. In another work [12]
we proved that in the case of 2D binary functions the wavelet Ginzburg Landau en-
ergy (defined using a regular wavelet) converges in the variational sense (Γ-converges)
to its sharp-interface limit as the analogue of the interface parameter ε tends to 0.
However, unlike the Total Variation functional, that is the sharp limit of the classical
Ginzburg–Landau energy, the limiting energy for WGL is anisotropic, the anisotropy
arising from the structure of a separable dyadic wavelet kernel used in the definition
of the WGL energy.

Although the rigorous analysis of the Γ-convergence had been done for this energy
in [12], in practice we use gradient descent to compute the energy minimizers, which
makes it necessary to develop theory for the associated dynamic problem. This is
the first paper that addresses this issue and discusses the properties of the respective
solutions in the diffuse-interface context. After we justify the well-posedness of the
problem and properties of the resulting minimizers, we apply the gradient descent
method in numerical simulations of image recovery.

This paper describes a generalization of the inpainting model from [11] that be-
comes a more unified image recovery tool. It is also variational, and uses the WGL
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energy as the regularizing part, but includes two forcing terms in the energy that is
subject to minimization: the edge preserving fidelity term and the spatial fidelity term
that already appeared in the old model. This additional flexibility in incorporating
any given information in the problem setting extends the applicability of this model
to many more image reconstruction applications than the classically defined image
inpainting. Namely, this model can be used for the recovery of noisy, occluded or in-
completely transmitted binary images, for segmentation of images (including binary
contour extraction), for inpainting, superresolution and other types of grayscale and
color image processing. Examples of multipurpose image reconstruction/analysis are
addressed from a unified point of view originating from the WGL image inpainting
technique.

The problem of image reconstruction from incomplete data has been studied ex-
tensively from various angles. Two important classes of relevant techniques are those
addressing the recovery of pixel information and wavelet coefficients. Restoration of
missing or occluded parts in the spatial (pixel) domain, generally referred to as ”im-
age inpainting”, is a problem of a related class, formulated and studied mostly during
the last decade (see [2],[1],[3],[6] and other works). The term “inpainting” is self–
explanatory: indeed, numerical techniques suitable for this problem tend to inherit
visual properties of hand–drawn painting restorations. A separate class of image re-
covery methods are designed to manipulate the pixel values implicitly, via processing
performed entirely in the wavelet domain ([8],[7],[15]). Both of the mentioned cate-
gories of methods often involve PDE–based processing in either the pixel or wavelet
domain. The variational method based on the WGL energy is qualitatively differ-
ent: rather than expressing the discretized versions of the differential operators using
wavelets([21]), or applying the known variational methods in the wavelet domain([8]
energy and associated ”diffusion-style” operators that replace and outperform the
differential operators in a diffuse-interface setting.

The paper is organized as follows. After introducing main notions, we discuss
some properties of the wavelet Laplace operator (Section 2.1). Then we address the
gradient descent minimization of the WGL energy from the “classical PDE” point of
view and prove that the respective differential equation is well–posed and has global in
time solutions converging to extrema of WGL (Section 2.2). We also give some a priori
regularity estimates of the minimizers as well as some sufficient conditions for the
minimizer uniqueness. The rest of the paper is devoted to the discussion of variational
techniques for multipurpose image processing based on the minimization of WGL with
additional forcing terms. In this context we introduce the edge–preserving fidelity
term (section 3.1) and discuss its construction depending on the image processing
application involved. The presence of both the spatial and the edge-preserving wavelet
forcing terms enhances the model by making it adaptable to a variety of image recovery
tasks and tunable within each of those.

2. Variational properties of the WGL functional.

2.1. Preliminary discussion of the problem setting. Let us introduce the
main notations and assumptions that will be used throughout the text.

We consider functions defined periodically on [0, 1]N (unless otherwise specified).
Function spaces are defined accordingly (e.g. L2 means L2([0, 1]N )).

The sign of the scalar product 〈·, ·〉 denotes the L2 product unless otherwise
specified.

Whenever the limits of integration are omitted, we assume the integration over
the entire domain.
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Consider the class of wavelets ψ that have an associated scaling function φ. Define
the wavelet mode (j, k) as

ψj,k(x) = 2Nj/2ψ(2jx− k), j = 0, 1, 2, . . . , k ∈ RN ,

and the wavelet transform of a function f ∈ L2 at the mode (j, k) as

Wf(j, k) = 〈f, ψj,k〉. (WT )

Similarly, let us also denote

φj,k(x) = 2Nj/2φ(2jx− k), j = 0, 1, 2, . . . , k ∈ RN .

Later in the text we will make additional assumptions on the regularity of the wavelet
ψ. In the case of functions defined on [0, 1]N the range of the translation parameter k
at the j−th dilation scale is restricted to [0, 2j ]N . When discussing multi-dimensional
cases, we use ψ as a general notation for the wavelet functions, assuming, wherever
needed, summation over all of those.

Image processing techniques, in most cases, need to be translation invariant. We
will be using the semicontinuous dyadic wavelet transform ([17]), which produces the
following decomposition for any function u ∈ L2:

u(x) =

∫
〈u, φ0,µ〉φ0,µdµ+

∑
j

∫
〈u, ψj,µ〉ψj,µdµ. (IWT )

We will denote an orthogonal projection of a function u on the subspace Λ as PrΛu,
and also use the following notation for the continuous analogues of projections of
an arbitrary function u ∈ L2 on the wavelet–generated “approximation” or “detail”
subspaces Vj or Wj (as defined in [20]):

PWju =

∫
〈u, ψj,µ〉ψj,µdµ, PVju =

∫
〈u, φ0,µ〉φ0,µdµ+

j−1∑
s=0

PWsu.

We will also use PΛu to denote an analogous operator for an arbitrary subspace Λ.
When we consider periodic functions on a finite rectangular domain, without fur-

ther adjustment of notations, we assume that the wavelet transform is also periodized
(details on the wavelet kernel periodization can be found in [17], [18] or [20]). Notice
that in the case of the non-redundant discrete representation, we will use the following
projection notations:

For any function u ∈ L2 we define its B-seminorm in the translation invariant
form as

|u|B =

 ∞∑
j=0

22j

∫
|〈ψj,µ, u〉|2dµ

1/2

.

This seminorm is equivalent to the classical, translation-dependent Besov (B1
2,2) semi-

norm on the cases when the wavelet ψ is sufficiently regular ([11]). In the latter case
the translation-invariant version of the Besov seminorm equal to the average of the
classical Besov seminorms of the given function shifted over the unit interval. We
also extend this definition and consider Besov–type seminorms, which are defined as
above, except for the wavelet ψ being non-regular.
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In other words, we define a Banach space B as a space of Lebesgue measurable
functions with a norm expressed directly in terms of the wavelet coefficients:

‖u‖2B = ‖PV0u‖2L2 + |u|2B .

If ψ is a sufficiently regular wavelet(r-regular [18] with r ≥ 2), B is the Besov 1-
2-2 space, which is equivalent to the Sobolev space H1 with the equivalence of the
respective seminorms:

|u|B � |u|H1 ,

where

|u|2H1 =

∫
|∇u(x)|2dx.

We will simplify notations further by calling such wavelets “regular”. For other
wavelets, which we will call “non–regular”, this definition produces a “weighted L2”
Besov–type space, that extends the definition of Besov spaces formally: the norm and
seminorm are defined in terms of the wavelet coefficients as described above. In fact,
every space B generated by any non-regular wavelet consists of piece-wise constant
functions. Those are identically constant on their domain in case one uses the trans-
lation invariant B-seminorm, and include functions with jumps on the dyadic grid in
case the seminorm is defined using the non-redundant wavelet transform.

Our interest in the Besov–type spaces is related to the applications that require
the wavelet generating the WGL energy to have a special shape. An example of such
application is the blind deconvolution of the 2D bar codes (see [10]). Therefore, when
talking about the Besov–type spaces one can always replace those with finite–scale
subspaces of those that are encountered in practice when processing finite signals
(images).

To explain the nature of our computational examples as well as to illustrate the
case of the WGL energy on the Besov–type spaces, we will also consider the following
finite–dimensional (hence, associated with a discrete representation) spaces

VJ = {u(x) =
∑

~k:ki=0,1,...2J−1

{a~kφJ,~k}}.

For example, if ψ is the Haar wavelet function, then VJ consists of piecewise constant
functions discontinuous only on the dyadic grid of mesh size 2−J . The space VJ
of functions of two variables generated by any separable wavelet kernel has periodic
dyadic structure suitable for image processing. The following representation of any
function u ∈ VJ is translation invariant in the discrete sense, i.e. invariant w.r.t.
translations by multiples of 2−J :

u(x) =
∑

~k:ki=0,1,...2J−1

〈ψJ,~k, u〉ψJ,~k(x). (Ud)

This representation can be viewed as an integral representation w.r.t. the singular
measure∑
~k:ki=0,...,2J−1

δ(~k2−J). Respectively, the B seminorm can be re-defined for functions
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from such spaces in a discrete (but still redundant) form as

|u|B(VJ ) =

 J∑
j=0

22j
∑

~k:ki=0,...,2J−1

|〈u, ψj,k〉|2dµ

1/2

. (Bd)

So, given an image f of size 2N × 2N we assume that the intensity values fi,j at

the pixel position (i, j) equal to the respective coefficients a~k, ~k = (i, j)T up to a
normalizing (rescaling) constant. All of our numerical examples were implemented in
Matlab and use the discrete representation (Ud) with the wavelet coefficient values
obtained from the stationary wavelet transform (swt) routine.

For the purposes of our discussion, we will always assume that we operate with an
orthonormal wavelet ψ that has a scaling function φ and assume that the associated
B-seminorm is translation invariant (in the discrete or continuous sense). To simplify
notations, we will not distinguish between those, since all theoretical arguments stay
valid for both cases (unless otherwise specified).

Wavelet Ginzburg–Landau energy. The main object of analysis as well as
the key tool for image processing applications considered in this paper is the wavelet
Ginzburg–Landau (WGL) energy functional (introduced in [11])

WGL(u) =
ε

2
|u|2B +

1

4ε

∫
W (u)dx, where W (u) = (u2 − 1)2.

We will use an operator named the “wavelet Laplacian” (introduced in [11] in
terms of the discrete wavelet transform), which has the wavelet basis functions as
eigenfunctions, and acts on those in the same “scale–proportional” manner as the
Laplace operator does on the Fourier basis. Given an orthonormal wavelet ψ the
“wavelet Laplacian” of any u ∈ L2(R) is formally defined as

∆wu = −
+∞∑
j=0

22j

∫
〈f, ψj,κ〉ψj,κdκ. (WvL)

In the case of VJ , we also define

∆VJw u = −
+∞∑
j=0

22j
∑
〈f, ψj,κ〉ψj,κdκ.

Fig.2.1 compares the regular and wavelet Laplace operators applied to the “peppers”
image.

(a) (b) (c) (d)

Fig. 2.1. (A) Original “peppers” image, (B) wavelet Laplace operator generated by DB4
wavelet, (C) wavelet Laplace operator generated by Haar wavelet, (D) regular Laplace operator.
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Translation invariant energy, as well as an operator based on the redundant
wavelet representation, cause certain difficulty in the problem analysis, since the
semi–discrete dyadic wavelet transform, even though associated with a stable frame,
is highly redundant. There is no orthogonality between the terms of the function rep-
resentation. Remarkably, the derivative-style identity 〈−∆wu, u〉 = |u|2B still holds.
Indeed, in the case of functions defined on RN , rewriting the product in terms of the
Fourier transforms gives

〈−∆wu, u〉 =

∫
̂(−∆wu)(ξ)û(ξ)dξ =

∫
û(ξ)

∞∑
j=0

22j |ψ̂(2−jξ)|2û(ξ)dξ =

=

∫
|û(ξ)|2

∞∑
j=0

22j |ψ̂(2−jξ)|2 = |u|2B .

The same argument applies to the Fourier series of functions defined periodically
on [0, 1]N . In particular, the fact that 〈−∆wu, u〉 = |u|2B implies that the “wavelet
Allen–Cahn” equation [10] with the translation invariant wavelet Laplacian

ut = ε∆wu−
1

ε
W ′(u), W (u) = (u2 − 1)2 (WAC)

describes the gradient descent in the problem of minimizing the WGL energy with
the translation invariant Besov seminorm.

The steady states of (WAC) satisfy the respective Euler–Lagrange equation:

ε∆wu−
1

ε
W ′(u) = 0. (EL)

Convention Referring to the weak solutions of the gradient descent (wavelet Allen–
Cahn) and Euler–Lagrange equations, we imply solutions to the following weak for-
mulations. Function u(x, t) ∈ H1(Ω× [0, T ]) is a weak solution to the gradient descent
equation for the WGL energy if∫ T

0

〈ut, v〉dt = ε

∫ T

0

B(u(·, t), v(·, t))dt− 1

ε

∫ T

0

〈W ′(u), v〉dt for any v ∈ H1(Ω×[0, T ]).

(WACweak)
Function u(x) ∈ H1(Ω) is a weak solution to the Euler–Lagrange equation for the
WGL energy if

εB(u, v)− 1

ε
〈W ′(u), v〉 = 0 for any v ∈ H1(Ω). (ELweak)

Here B(·, ·) is the bilinear form defined on functions from H1 as follows:

B(f, g) = 〈f,∆wg〉 for any f ∈ H1, g ∈ H2

and can be defined as

B(f, g) = lim
n→∞

〈f,∆wgn〉,

where {gn} ⊂ H2 is an arbitrary sequence approximating g in H1. One can show
that B(f, g) . |f |H1 · |g|H1 and the above limit indeed defines a bilinear form on H1
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(a similar argument is described in [11]). In the same sense as the wavelet Laplacian
resembles the classical Laplace operator, the bilinear form is similar to the product∫
∇f∇gdx. We use the notation B(·, ·) due to the absence of a short convenient defini-

tion of a “wavelet gradient” (which would be possible if we used a completely discrete
non-redundant and not translation invariant wavelet transform for the definition of
the wavelet-based pseudo-differential operators and the Besov seminorm).

Our next step is to show that the above gradient descent problem with an ap-
propriate initial condition is well-posed in the following sense: given any initial con-
dition u(x, 0) ∈ H1([0, 1]N ) the gradient descent equation has a unique weak solution
u(x, t) ∈ H1([0, 1]N × [0,+∞)) that converges in H1([0, 1]N ) to a steady state u∗(x);
this steady state is an extremum of the WGL energy and WGL(u∗) < WGL(u) (in
fact, WGL(u(·, t)) is monotonely decreasing as t→∞).

Even though the wavelet Laplacian inherits many properties of the classical differ-
ential operator, as do the WGL and GL energies, the “wavelet Allen-Cahn” equation,
unlike its classical analogue, does not satisfy a maximum principle (as it contains a
non-local wavelet operator). Thus, in the following section we will often use energy
methods that do not rely on maximum principle.

2.2. Gradient descent minimization of the WGL energy in the case of
a regular wavelet. The following discussion of the gradient descent minimization of
the WGL energy involves tools typical in the context of partial and ordinary differen-
tial equations. Those include, in particular, the Picard theorem for ODE in Banach
spaces [14] and energy methods [16].

Assume that the wavelet that is chosen to construct the Besov seminorm in the
definition of the WGL energy is regular, so that the associated space B is equivalent
to H1 ([17], [18]).

Let us investigate properties of the solution of the gradient descent equation
arising in the problem of the WGL energy minimization.{

ut = ε∆wu− 1
εu

3 + 1
εu,

u(x, 0) = u0(x) ∈ H1([0, 1]N ).
(GD)

Here ∆w is the wavelet Laplace operator defined by (WvL). The following lemma gives
some a priori regularity estimates for the solution of (GD). The norms and seminorms
mentioned in the lemma are associated with the spaces of functions defined on [0, 1]N ,
so we omit the domain indication to simplify the notations(i.e. L2 means L2([0, 1]N ),
etc), unless the domain is different from [0, 1]N (in particular, U = [0, 1]N × [0, T ]);
the same applies to the domains of integration.

Lemma 2.1. Let u(x, t) be a solution of the system (GD) on U = {(x, t) : x ∈
[0, 1]N , t ∈ [0, T ]} with the initial condition u(x, 0) = u0(x) ∈ H1([0, 1]N ) and let
E(u) = WGL(u). Then:
(i) ‖u(·, t)‖L2 , ‖u(·, t)‖L4 , |u(·, t)|H1 are uniformly bounded with respect to t;
(ii) u(x, t) ∈ H1(U) with |u|2H1(U) ≤ E(u0)(1+ c

ε ), c > 0, the estimate is uniform with
respect to T .

Proof. (i) The gradient descent system implies

d

dt
‖u‖2L2 = −ε|u|2B −

1

ε

∫
u4 +

1

ε

∫
u2dx ≤ −ε|u|2B −

1

ε

[(∫
u2

)2

−
∫
u2

]
.

Thus, d
dt‖u‖

2
L2 becomes negative whenever ‖u‖L2 > 1, hence,

‖u‖L2 ≤ max{‖u0‖L2 , 1}.
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The WGL energy evaluated at the function u(x, t) is non-increasing w.r.t. the time
variable t:

d

dt
E(u(x, t)) =

∫
ut(−ε∆wu+ ε−1(u3−u))dx = −

∫
(−ε∆wu+ ε−1(u3−u))2dx ≤ 0.

(2.1)
Hence, at all times t ∈ [0, T ] when the solution of the gradient descent equation exists,
values |u|2B and

∫
u4 stay uniformly bounded:

|u|2B ≤
2

ε
E0, ‖u‖4L4 ≤ 4εE0 + 2 max ‖u‖2L2 ≤ 4εE0 + 2 max{‖u0‖L2 , 1}.

Therefore, (i) is true.

(ii) We notice that ‖u‖2H1(U) =
∫ T

0
‖u(·, t)‖2L2dt +

∫ T
0
|u(·, t)|2H1dt +

∫ T
0

∫
u2
tdx.

The minimized energy stays non-negative, hence∫ T

0

∫
u2
tdt ≤ E(u0)

for an arbitrarily large T > 0. This, together with the uniform bound on the norm
of the solution u in H1([0, 1]N ), implies that u(x, t) ∈ H1(U) with the respective
seminorm estimate.

Now, let us prove that the gradient descent problem associated with the mini-
mization of the WGL energy is well-posed.

Remark 1. Since both the usual and translation invariant Besov Bs2,2 seminorms
are equivalent to the Hs seminorm (due to our assumption about the wavelet regular-
ity), then for any function u ∈ VJ one has |u|Bs2,2 ≤ As2

Js‖u‖L2 . In the lemma 2.2
we will use this fact with s = 2.

Lemma 2.2. Let BR(0) denote an open ball of radius R ≥ 1 centered at 0 in
L2([0, 1]N ). The gradient descent equation projected on VJ with the initial condition
u(x, 0) = PrVJu0(x), u0 ∈ BR(0) has a unique solution in VJ ∩ BR(0) which exists
globally in time. Moreover, u(x, t) converges to a solution of the corresponding Euler–
Lagrange equation projected on VJ .

Proof. Consider the projection of (GD) on a subspace VJ (the orthogonal projec-
tion on the subspace of the multiresolution analysis, via the discrete wavelet decom-
position):

∂tPrVJu = εPrVJ∆wu−
1

ε
PrVJu

3 +
1

ε
PrVJu.

Since we are looking for a solution u(x, t) that belongs to VJ w.r.t. x at any t, the
Cauchy problem becomes{

ut = εPVJ∆wu− 1
εPVJu

3 + 1
εu,

u(x, 0) = PrVJu0(x).
(GDVJ )

This gradient descent setting is associated with the minimization of WGL on VJ .
Let F denote the r.h.s. of the above equation:

F (u) = εPrVJ∆wu−
1

ε
PrVJu

3 +
1

ε
u.

The above ODE is autonomous, so it suffices to prove that F is locally Lipschitz.
Indeed, let us consider the difference of the values of F at two elements u, v ∈ VJ that
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also belong to a fixed ball BR(u0) ⊆ B1(0)

δF := F (PrVJu)− F (PrVJu) = εPrVJ∆w(u− v)− 1

ε
PrVJ (u3 − v3) +

1

ε
PVJ (u− v).

We will estimate the terms in the above sum separately. Using the fact that the Besov
seminorms defined via the discrete and continuous wavelet transforms are equivalent
and some more subtle estimates (given in detail in [12]) one can see that for any
f ∈ VJ

c1‖∆d
wf‖L2 ≤ ‖PrVJ∆wf‖L2 ≤ c2‖∆d

wf‖L2 , where c1, c2 are independent of f.

Finally, we get the following estimates for each term in the sum:

‖PrVJ∆w(u− v)‖L2 ≤ a22j‖u− v‖L2 , a = A2 - the seminorms equivalency constant,

‖u‖L∞ ≤ CJ,α22(1+α)J‖u‖L2 for any α > 0⇒

max{‖u‖L∞ , ‖v‖L∞} ≤ CJ,α22(1+α)J‖u0‖2L2 ,

‖u3 − v3‖2L2 ≤ (3 max{‖u‖L∞ , ‖v‖L∞}2)2‖u− v‖2L2 .

Therefore,

|δF |L2 ≤ (
1

ε
+ aε24J + 9C2

J,α24(1+α)JR4)‖u− v)‖L2 ,

here the Lipschitz constant K = 1
ε + aε24J + 9C2

J,α24(1+α)JR4 depends on the radius
R, parameter ε and the scale J of the multiresolution subspace VJ , all of which we
fixed in advance, and is independent of the choice of the initial condition u0.

Thus, by the generalization of the Picard theorem for Cauchy problems on a
Banach space, there exists a time interval [0, t0], where 0 < t0 ≤ R/K, on which
(GDVJ ) has a unique solution u(x, t).

Our next step is to show that the solution u(x, t) stays within BR(0) at any
t ∈ [0, t0], which will allow us to conclude that the solution can be extended infinitely
in time.

After multiplying both sides of the projected (GD) equation

ut = εPrVJ∆wu−
1

ε
PrVJu

3 +
1

ε
u

by u and integrating over the spatial domain, we get∫
uut = −ε|u|2B −

1

ε

∫
uPrVJu

3 +
1

ε

∫
u2,

1/2
d

dt
|u|2L2 = −ε|u|2B −

1

ε

∫
u4 +

1

ε

∫
u2,

1/2
d

dt
|u|2L2 ≤ −ε|u|2B −

1

ε
(‖u‖4L2 − ‖u‖2L2).
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The right hand side of the above inequality becomes negative if either ‖u‖L2([0,1]N )

exceeds 1 or ‖u‖L2([0,1]N ) = 1, u 6= const. Therefore, u(x, t) stays within BR(0)
when t ∈ [0, t0]. Applying the same reasoning to the gradient descent system with an
updated initial condition u(x, t0) we obtain the existence of solution for t ∈ [0, 2t0].
Repeating the same procedure proves that the solution can be extended globally in
time.

Now, since
∫
u2
tdxdt is bounded (see proof of Lemma 2.1, part(ii) — namely,∫ t

0
u2
t (x, s)dxds ≤ (1 + c

ε )E(PrVJu0) for any t),∫
u2
tdx→ 0 as t→∞ i.e. ut(x, t)→ 0 as t→∞ in L2([0, 1]N ).

Hence, the limit of the solution u∗J(x) = limt→∞ u(x, t) satisfies the Euler–Lagrange
equation for minimizers of WGL on VJ . Passing to the limit in both sides of the
gradient descent equation is justified, since u(·, t) ∈ VJ and the wavelet ψ is sufficiently
regular by assumption. .

Theorem 2.3. When 1 ≤ N ≤ 4 the gradient descent equation with an initial
condition u(x, t) = u0(x) ∈ H1([0, 1]N ) has a unique weak solution, which exists
globally in time and satisfies ‖u‖L2 ≤ max{‖u0‖L2 , 1}.

Furthermore, u(x, t) converges to a steady state u∗(x) in H1([0, 1]N ) as t → ∞,
and u∗(x) is a weak solution of the respective Euler–Lagrange equation

ε∆wu
∗ − 1

ε
(u∗)3 +

1

ε
u∗ = 0,

and thus is an extremum of WGL with a lower energy value than the one at the initial
condition u0.

Proof. Consider the sequence {un(x, t)} of solutions to the following systems:{
ut = εPrVn∆wu− 1

εPrVnu
3 + 1

εu,
u(x, 0) = PrVnu0(x).

(GD∗Vn)

Fix any finite T > 0. The WGL energy of each un decreases with time, since the
ODE in (GD∗Vn) is a gradient descent equation for minimization of WGL on VJ .

Therefore, the norms of un in H1([0, 1]N , [0, T ]) for any T > 0 are uniformly bounded,
and hence, there exists a subsequence {unk}∞k=1 that converges weakly to a limit
u ∈ H1([0, 1]N , [0, T ]).

We would like to conclude that the weak limit u solves the original gradient
descent problem in the weak formulation, i.e. (WACweak) introduced in Section 2.1.
Convergence of the time derivative and the wavelet Laplace (i.e. the bilinear form)
component follows explicitly from the weak convergence of un to u in H1 . The proof
of convergence for the non–linear part of the equation requires additional reasoning.
In the case N = 1 there exists a uniform L∞ bound for all un that guarantees the
convergence of the respective cubes u3

n weakly in H1:∣∣∣∣∫ (u3
n − u3)vdxdt

∣∣∣∣ =

∣∣∣∣∫ (un − u)(u2
n + unu+ u2)vdxdt

∣∣∣∣ ≤
≤ ‖u− un‖L1 · 3 sup

n
‖un‖2L∞‖v‖L∞

n→∞→ 0.

10



In cases N > 1 the sequence un converges to u in Lp([0, 1]N , [0, T ]),

1 ≤ p < 2(N+1)
N−1 . Indeed, noticing that∫
|u3 − u3

n| ≤ [

∫
|u− un|p]1/p[

∫
|u2
n + unu+ u2|p/(p−1)](p−1)/p,

we see that for any N : 1 < N ≤ 4 there exists such an exponent p that both p and

2p/(p−1) do not exceed 2(N+1)
N−1 . Therefore, for all such N it is true that u3

n converges

to u3 in L1.
So, we conclude that u solves (GD) in the weak sense.
Let us prove that solution u(x, t) of the (GD) problem converges to an extremum

of WGL, i.e. to a steady state that weakly solves the Euler–Lagrange equation, as
t → ∞. Since ut = ε∆wu − 1

εu
3 + 1

εu, the WGL energy evaluated at u(·, t) is non-
increasing as t→∞, as was shown in the proof of Lemma 2.1 (equality (2.1)). Since
the energy is also non-negative, the values WGL(u(·, t)) converge to some value E0,
while d

dtWGL(u(·, t))→ 0. This implies convergence of ε∆wu− 1
ε (u3−u) (and hence,

of ut) to 0 as t → ∞ in the L2 sense. At the same time, given any sequence of time
points {tn}∞n=0 such that tn → +∞, the sequence of functions u(·, tn) has to have a
subsequence converging to some function u∗ ∈ H1([0, 1]N ) (by the same compactness
argument as in Theorem 3.5). Since solution u of the (GD) system is continuous with
respect to t(as a function [0, T ]→ H1([0, 1]N )), after possibly being redefined on a set
of measure 0), we conclude that u(·, t) → u∗ in H1([0, 1]N ) as t → ∞. An argument
analogous to the one showing that u solves the gradient descent equation in the weak
sense, one can prove that u∗ satisfies the Euler–Lagrange equation for minimizers of
WGL

ε∆wu
∗ − 1

ε
((u∗)3 − u∗) = 0

weakly. Therefore, u∗ is an extremum point of WGL with a lower energy value than
the energy at the initial function u0.

Let us remark that the proof of the existence of the (GD) solutions can also be
deduced from Brezis’ theory for monotone operators [5]. We thank one of the paper’s
reviewers for pointing this out.

2.3. General properties of WGL minimizers.

2.3.1. Geometric properties: diffuse interface analogy. The WGL energy
was designed to match the structure of the diffuse interface models from material
science and fluid dynamics. It also inherited an important property of the classical
Ginzburg–Landau energy: when B seminorm is generated using a sufficiently regular
wavelet, the WGL energy converges to its anisotropic sharp-interface limit as the
scaling parameter ε tends to 0. The complete proof of this fact and description of the
way the limiting functional depends on the chosen wavelet are given in [12]. Let us
only remark that one of the main steps in the above analysis was to notice that for the

binary functions (u = χE , where E has a finite perimeter), the limit limn→∞
|un|B
|un|H1

is

independent of the choice of the approximating sequence {un} ⊂ H1, un → u in L2.
Later we will show how the value of ε influences the distribution of the Besov

seminorm energy of a minimizer between wavelet scales. We will use the following
notation for the scale associated with ε.

Convention Let Jε = min{j : 2−j < ε}. For any ε > 0 we separate all wavelet
modes in two categories: high frequency modes HF = {ψj,k : j > Jε} and low
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frequency modes LF = {ψj,k : j ≤ Jε}. This separation is an analogue of the notion
“scale of the problem” used in the research of diffuse interface models. Later on in
this paper projections of a function on the respective subspaces are called the high
and low frequency components of this function.

The WGL minimizer existence and non-uniqueness follows from the fact that, in
the case of the finite periodic domain, in particular, two minimizers of WGL are equal
to the constant functions 1 and −1. If we take B to be the space of functions with
finite B - seminorm that are defined on the entire space, it makes sense to take the
double–well potential in a slightly adjusted form: W (u) = u2(u− 1)2 (hence, u = 0 is
a minimizer). In the most general case one can always use the compactness argument
of Theorem 3.5. The non-uniqueness also arises from the energy being even w.r.t. u.

The following lemma explains the nature of the separation of the wavelet scales
into the low and high frequencies and the role of the diffuse interface parameter ε in
this definition.

Lemma 2.4. If u solves (EL), its low frequency components are dominating:

Jε∑
j=0

(1− 22jε2)

∫
c2j,kdk >

∞∑
j=Jε+1

(−1 + 22jε2)

∫
c2j,kdk

and

Jε∑
j=0

∫
c2j,kdk > 2

∞∑
J=Jε+1

∞∑
j=J

∫
c2j,kdk

where cj,k = 〈u, ψj,k〉, j = 0, 1, ..., k ∈ RN .

Proof. (EL) implies

〈u3, ψj,k〉 = (1− ε222j)cj,k,

hence, for all j > − log2 ε the solution u and its cube u3 have either coefficients of
opposite sign, or both zero coefficients. Then∫

u3 =

∫
u,

Jε∑
j=0

(1− 22jε2)c2j,k >

∞∑
j=Jε+1

(−1 + 22jε2)c2j,k,

Jε∑
j=0

∫
c2j,kdk > 3

∞∑
J=Jε+1

∞∑
j=J

∫
c2j,kdk.

The last equality implies

Jε∑
j=0

∫
c2j,kdk > (22(J−Jε) − 1)

∞∑
j=J

∫
c2j,kdk,

and, moreover,

Jε∑
j=0

∫
c2j,kdk > 2

∞∑
J=Jε+1

∞∑
j=J

∫
c2j,kdk.
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In the case of a regular wavelet ψ generating the classical Besov seminorm the
above lemma implies that ε controls the steepness of transitions that the minimizer
is allowed to have.The smaller is ε, the more wavelet scales are included in the domi-
nating low frequency (LF) range, thus allowing the minimizer to change faster.

Fig.2.2 shows two extrema obtained numerically by solving the gradient descent
system (with the same initial condition) to steady state. Solutions (a) and (b) cor-
respond to the problems with two different values of parameter ε: 1/2 and 1/16
respectively.

(a) (b)

Fig. 2.2. Steady state solutions of the gradient descent equation with (a) ε = 1/2, (b) ε = 1/16.

Remark. Before we continue discussing the minimizers, let us remark that in this
paper there are two different situations when we talk about the value of epsilon in
relation to the minimizer properties. The first is the description of the dependence
between the value of ε and the ”diffuse interface width”, which, in our case is expressed
in terms of how many coarsest wavelet levels contain the dominating part of the Besov-
seminorm energy (lemma 2.4 above). Another situation is the study of the modified
WGL energy with additional forcing terms, where we show that by choosing the
forcing term weights large enough (comparing to ε−1) we can achieve the minimizer
uniqueness. In the applications it makes sense to choose the value of ε depending on
how sharp we require the edges of the output to be, and how large are the gaps we
might need to connect those edges over (inpainting case). After that we can choose
the values of the forcing parameters - depending on how important it is for us to
preserve certain spatial and/or edge-related info.

2.3.2. More on regularity of WGL minimizers.
Lemma 2.5. Any solution of (EL) that belongs to L∞ is also infinitely smooth.
The proof of a more general fact can be found in [12].
Remark (EL) has no non-trivial binary solutions. Indeed, if u is a steady state

and |u(x)| = 1 a.e., then ∆wu(x) = 0, hence, u is trivial. Hence, (GD) has no non-
trivial binary steady states. The results of the binary image recovery that we consider
in the next section are grayscale rather than binary. However, those are sufficiently
close to the binary class so that simple thresholding procedure returns a binary result
close to the original solution.

This also implies that the WGL minimizers can have no jumps between two exact
steady states of the double–well. Non-constant minimizers have to assume other,
“grayscale” values between −1 and 1, which means that the model indeed has the
“diffuse interface” nature.

Lemma 2.6. Every solution of (EL) on RN belongs to the Sobolev W 2,1 space.
Proof. If u be a solution of (EL), then ∆wu = 1

ε2 (u3 − u). Since u ∈ L4 (WGL
energy assumes a finite value at u), ∆wu ∈ L1(RN ). So, by the Hausdorff-Young
inequality,

û(ξ)

∞∑
j=0

22j |ψ̂(2−jξ)|2 ≤
∫
|(u2(x)− 1)u(x)|dx ≤ ‖u‖L2‖u2 − 1‖L2 .
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Now, since

∞∑
j=0

22j |ψ̂(2−jξ)|2 = O(|ξ|2), |ξ| → +∞,

any of the second order derivatives of u is measurable, with its Fourier transform in
L∞, hence, it belongs to L1.

Lemma 2.7. Every minimizer of WGL in one or two dimensions

WGL(u) =
ε

2
|u|2B +

1

4ε

∫
W (u(x))dx

belongs to L∞.
Proof. 1. For N = 1 the statement follows from the Sobolev embedding H1 ⊂⊂

L∞.
2. Let N = 2. Every minimizer of WGL satisfies

ε∆wu =
1

ε
(u3 − u) = 0.

After differentiating both sides of the above equality one can express a derivative of
∆wu as :

ε2∂x∆wu = ∂xu(3u2 − 1),

and see that its L1 norm is finite

ε2
∫
|∂x∆wu| ≤ |u|H1 [

∫
(3u2 − 1)2]1/2 <∞.

Therefore, ∆wu ∈ W 1,1 and ξ∆̂wu(ξ) ∈ L∞. Since we know ∆̂wu(ξ) = û(ξ)O(|ξ|2),
ξ → ∞ we conclude û(ξ) ≤ C0

|ξ|3 , hence, û(ξ) ∈ L1 (or l1 in case of the periodized

domain/Fourier series) and u ∈ L∞.
Corollary 2.8. Every minimizer of WGL in one or two dimensions is infinitely

smooth.
This statement follows directly from the lemmas 2.5 and 2.7.

3. Adding the fidelity terms in the spatial and wavelet domains. The
examples we describe below generalize our previous work on WGL inpainting. The
modified WGL energy we describe below is designed for the general problem of image
recovery. We include an additional fidelity term involving wavelet coefficient data in
the model together with the spatial fidelity. The resulting energy can be used for a
variety of image recovery applications and serves as an especially convenient tool for
applications without clearly defined problem type, i.e. inpainting with undetermined
missing area, superresolution of noisy images, combined inpainting and superresolu-
tion and so on.

3.1. Modified WGL energy with fidelity terms (WGLF). In the most
general form, the modified WGL energy that we are going to discuss can be defined
as a sum of the WGL functional itself and two additional fidelity terms — the edge–
preserving and the spatial consistency term:

E(u) = WGL(u) +
µ

2
‖(u− f)χΩ‖2L2 +

λ

2
|PΛ(u− f)|2B ,
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χΩ and χΛ are indicators of the information to be preserved in the spatial and wavelet
domains respectively. We assume that the set of preserved modes is finite so |PΛ(u−
f)|2B is a valid expression, despite the fact that the original function f might not
belong to B (for instance, if ψ is regular and f is binary). This model can be used in
a variety of applications, and is adaptable to each of those by a special choice of the
forcing term(s) and the initial guess.

The spatial fidelity term is designed to preserve the truly known values of the
function in case those are given. The spatial mask is the indicator function of a
subset of the function domain where the function values are known. This term can
be assigned a weight µ depends on the importance of the spatial constraint and the
quality of given data (µ can be increased in cases when the given image has high
contrast and low noise level). The edge-forcing mask χΛ is defined on the set of all
wavelet indices, it is simply the indicator function of Λ — an a priori chosen set of
wavelet modes.

In general, the choice of forcing terms and their weights varies depending on
each particular application and properties of the initially known data. More detailed
discussion of the properties of both fidelity terms shows that in many cases those
terms, being present exclusively, produce almost identical steady states in the case
of the binary inpainting problem with a predefined unknown area. Nevertheless, the
edge forcing term allows to use the WGLF minimization method (with the appropriate
choices of Ω and Λ) for a much wider set of image reconstruction problems.

The existence of minimizers of WGLF can be proven in the same way as for
the unmodified WGL energy: indeed, adding two more non-negative terms to the
original WGL functional brings no change to the compactness argument used to prove
Theorem 3.5.

3.2. Variational properties of the modified WGLF energy with the L2

spatial fidelity term. We will prove several lemmas characterizing minimizers of
the modified WGL energy that includes only the spatial fidelity:

E(u) = WGL(u) +
µ

2
‖(u− f)χΩ‖2L2 ,

We will abbreviate this form of modified WGL energy as WGLFs.

Lemma 3.1. Let u and v be two solutions of the Euler–Lagrange equation for
the modified WGL energy with the spatial fidelity (λ = 0) and let µ > 1

ε . Any of the
following conditions is sufficient for the identical equality u ≡ v:
1. minimizers coincide on the unknown domain:

∫
Ωc

(u− v)2 = 0;
2. the L2-norm of the difference on the unknown domain is significantly smaller than
the same on the known domain:

∫
Ωc

(u− v)2 < (µε− 1)
∫

Ω
(u− v)2;

3. low frequency components of u and v are the same: |PLF (u− v)|2 = 0.

Proof. Both u and v satisfy (EL):

ε∆wu−
1

ε
(u3 − u)− µχΩ(u− f) = 0 and ε∆wv −

1

ε
(v3 − v)− µχΩ(v − f) = 0,

Hence, after multiplying the difference of the above equations by (u− v) and integra-
tion one gets

ε|u− v|2B +
1

ε

∫
(u− v)2(u3 + uv + v3)− 1

ε
‖u− v‖2L2 + µ

∫
Ω

(u− v)2 = 0.
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Now, both condition 1 and 2 imply

ε|u− v|2B +
1

ε

∫
(u− v)2(u3 + uv + v3) = 0,

which is only possible if u ≡ v. Condition 3 implies ε|u − v|2B ≥ 1
ε ‖u − v‖

2
L2 , which,

by similar reasoning, occurs only if u− v ≡ 0.
The following lemma describes a set of functions that contains exactly one min-

imizer of WGLF whenever µε > 1. This set includes all functions with sufficient
portion of the “low frequency” components localized inside of the known domain Ω.

Lemma 3.2. Let µε > 1, λ = 0 then WGLF is a convex functional on the
following subspace of functions:

X = {u ∈ B : (µε− 1)

∫
Ω

u2
LF ≥

∫
Ωc
u2
LF }.

Consequently, if there exists a solution u to the Euler-Lagrange equation such that
u ∈ X, then this solution is unique and it is the global minimizer of the WGLF
energy.

Proof. We need to show that the second variation of WGLF is positive definite
on X:

ε|y|2B +
1

ε

∫
([3u2 − 1]y2)dx+ µ

∫
Ω

y2 > 0 ∀y ∈ X \ {Θ}.

To prove this condition it suffices to show that

ε|y|2B −
1

ε

∫
y2dx+ µ

∫
Ω

y2 > 0 ∀y ∈ X \ {Θ}.

Let us rewrite the l.h.s. of the above inequality by separating the LF and HF modes
and grouping some terms:

ε|PLF y|2B+(ε|PHF y|2B−
1

ε

∫
PHF y

2dx)+(−1

ε

∫
PLF y

2dx+µ

∫
Ω

PLF y
2)+µ

∫
Ω

PHF y
2.

Now, the second terms is non-negative by definition of the HF modes and the third
terms is non-negative due to the property defining the functions in X, thus the entire
sum is positive. Indeed, if PLF y 6= 0, the first term is positive, and if PLF y = 0, then,
as y 6= 0, we have PHF y 6= 0, and the second term in the sum is strictly positive.

Therefore, any solutions of the EL equation in this case have to be local minimizers
of the energy, thus there exists at most one global minimizer.

Let us also remark that X is a non-zero subspace, for instance, if f(x) = 1 for
any x ∈ Ω and (µε − 1)|Ω| > |Ωc|, in which case the unique minimizer is identically
equal to 1.

Corollary 3.3. Let µε > 2, and |Ω| > |Ωc| (unknown domain is smaller) then
WGLFs has a unique minimizer among all functions with L∞ norm not exceeding 1.

Since we are looking for nearly-binary functions that solve the inpainting prob-
lem, this criterium gives a reasonable sufficient condition for the uniqueness of the
minimizer that fits the role of a binary image.

The following corollary states that the minimizer uniqueness for the WGL energy
defined using the non-redundant wavelet transform can be guaranteed by imposing
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conditions on the wavelet basis functions and the inpainting (missing) domain geom-
etry.

Corollary 3.4. Let the B-seminorm in the definition of WGLF be defined via
the non-redundant wavelet transform based on the orthonormal wavelet basis {ψj,k}.
If any ψj,κ with j < − log2 ε (any LF wavelet kernel value) satisfies

(µε− 1)

∫
Ω

ψ2
j,k >

∫
Ωc
ψ2
j,k,

then the modified WGL energy with the spatial fidelity term has a unique minimizer
in B.

3.3. Variational properties of the modified WGL energy with both fi-
delity terms. The proof of the minimizer existence for the WGLF energy uses the
standard “compactness argument”.

Theorem 3.5. The WGLF energy functional

E(v) =
ε

2
|v|2B +

1

4ε

∫
W (v)dx+

µ

2
‖(u− f)χΩ‖2L2 +

λ

2
|PΛ(u− f)|2B ,

has at least one minimizer on B, elements of which can be defined either on a torus
or on the entire space. The minimizer may not be unique.

Proof. The energy functional E is non-negative, and hence has a finite infimum
M <∞. Let us prove the infimum is attained on some function from the admissible
set B. Consider a minimizing sequence {un} : E(un)→M as n→∞. The sequence
of energy values E(un) converges, and hence is bounded, and so are the seminorms
|un|B .

The corresponding norms ‖un‖B can be estimated from above using the bound
on the integral of the double–well:∫

W (un)dx ≤ C ⇒ |
∫
u2
n − 1| ≤ C ′′,

∫
u2
n ≤ C ′′ + 1,

where C ′, C ′′ are positive constants. Thus, the sequence ‖un‖B is also bounded:

‖un‖2B ≤ |un|2B + ‖un‖2L2 ,

and since B is Banach, {un} has a weakly converging subsequence: {unk} : unk ⇀
u ∈ B. The sequence is also bounded in L4, so, WLOG we can assume that unk
converges weakly in L4 as well. Fix some v = unk∗ . Then

ε

2
〈unk , v〉B +

1

4ε

∫
(u2
nk
− 1)(v2 − 1)dx+

µ

2
〈unk − f, v − f〉2L2(Ω)+

+
λ

2
〈PΛ(unk − f), PΛ(v − f)〉2B →

ε

2
〈u, v〉B +

1

4ε

∫
(u2 − 1)(v2 − 1)dx+

+
µ

2
〈u− f, v − f〉2L2(Ω) +

λ

2
〈PΛ(u− f), PΛ(v − f)〉2B .

Now, if we let k∗ →∞, we conclude that

ε

2
〈unk , unk∗ 〉B +

1

4ε

∫
(u2
nk
− 1)(u2

nk∗
− 1)dx+

µ

2
〈unk − f, unk∗ − f〉

2
L2(Ω)+
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+
λ

2
〈PΛ(unk − f), PΛ(unk∗ − f)〉2B → E(u) as k, k∗ →∞.

Taking the diagonal subsequence with k = k∗ we see that E(unk)→ E(u) as k →∞.
Hence, the minimum of the WGLF energy is achieved at the element u ∈ B.

The Euler–Lagrange equation for the modified WGL energy with both fidelity
terms takes the form

ε∆wu− ε−1(u3 − u)− λ∆wPΛ(u− f)− µχΩ(u− f) = 0.

Let us describe the critical points of the modified WGL energy based on the sign of
its second variation. Second variation of WGLF at a point v ∈ B is

δ2
vWGLF (u) = ε|v|2B +

1

ε

∫
(3u2 − 1)v2dx+ λ|PΛv|2B + µ

∫
Ωc
v2dx.

The above expression cannot be negatively definite w.r.t. v, since it is positive for
v from any subspace Wj where j > − log2 ε independently of u. Therefore, modified
WGL functional does not have any local maxima.

A natural question to ask is: in which cases is it possible to recover a function
f from the variational WGLF model exactly? The following lemma describes one of
the possible situations allowing for such recovery.

Lemma 3.6. If f is a local minimizer of the WGL energy, then u = f is a local
minimizer of the modified WGLF energy.

Proof. Since f is a local minimizer of the WGL energy and the global minimizer
of the fidelity terms, it is a local minimizer of the WGLF. If, additionally, it is known
that the WGLF has a unique minimizer, then the function f can be recovered.

Let us estimate some parts of the sum that represents δ2
vWGFL(u).

δ2
vWGL(u) =

[
ε|vHF |2B −

1

ε

∫
Ωc
v2
HF dx

]
+ (µ− 1

ε
)

∫
Ωc
v2dx+

+

[
λ|PΛv|2B −

1

ε

∫
Ωc
v2
LF∩Λdx

]
+

[
ε|vLF |2B −

1

ε

∫
Ωc
v2
LF\Λdx+

1

ε

∫
3u2v2dx

]
.

The first term is non-negative by the definition of the HF components, the second and
third terms are non-negative provided µ > 1

ε and λ > 1
ε respectively. So, this repre-

sentation allows one to formulate a sufficient condition of u being a local minimizer
of the WGLF energy.

Lemma 3.7. Let u be a solution of the EL equation for WGLF with µ > 1
ε and

λ > 1
ε . For u to be a local minimizer it suffices to satisfy

ε2|vLF |2B −
∫

Ωc
v2
LF\Λdx+

∫
3u2v2dx > 0 ∀v ∈ C∞0 .

The lemma itself does not give a clear intuitive understanding of the nature of this
condition. However, its corollaries have a straightforward connection to the imaging
problems. We are going to assume that 1

ε < λ, µ everywhere in the further discussion.
Corollary 3.8. If Λ ⊇ LF , any solution of the EL equation for the modified

WGL energy is a minimizer. Therefore, the minimizer is unique.
In image processing terms, this defines the relation between the diffuse interface

parameter ε and criteria for the known information to be sufficient to recover the
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unique output. Namely, knowing all of the LF components of the function one can
recover it in a unique way using the WGLF model. This applies in particular to the
superresolution problem, which is described in detail in Section 4.2. Fig.3.1 shows the
underresolved picture of a black triangle, the set of edges that were included in the
forcing term and the unique output of the minimization algorithm. In this case we
took ε = 1/16 which corresponds to LF wavelet scales j = 1, 2, 3, 4. Having the values
of the wavelet transform fixed at those scales, the WGLF minimization algorithm
recovers one the same output (Fig.3.1 (c)) for any initial condition (with all other
parameters being identical).

(a) (b) (c)

Fig. 3.1. (a) 4 times underresolved image; (b) edges included in the forcing term of WGLF
(based on the ’DB4’ wavelet); (c) minimization output.

Corollary 3.9. If u is a solution of the EL equation for WGLF and |u(x)| ≥
3−1/2 for a.e. x ∈ Ωc, then u is a local minimizer of WGLF. Therefore, the minimizer
is unique on the set of functions

{v ∈ B : |v(x)| ≥ 3−1/2 for a.e. x ∈ Ωc}.

This statement merely says that the WGLF minimization problem has a unique solu-
tion on the set of functions that do not have significant variations of color (including
those that involve changing its sign) on the unknown domain Ωc.

3.4. Edge preserving wavelet fidelity term. The following section discusses
a possible construction of the edge–preserving fidelity term in the WGLF energy.
The effectiveness of such fidelity term choice in practice is illustrated with several
computational examples.

3.4.1. Thresholding of the wavelet coefficients for binary functions.
Thresholding of wavelet coefficients has been efficiently used in image processing in a
variety of ways (in particular, for the translation-invariant thresholding see [9]). The
thresholding method described in this section is designed specifically with the goal of
choosing the subset of wavelet modes Λ that constitute the forcing term of WGLF,
thus allowing to enforce only those features that are considered significant for the
given image and ignore edges introduced by any undesired occlusions.

Since any binary image is effectively an indicator function of a bounded measur-
able set, we would like to define a unified procedure for the classification of significant
vs. not significant wavelet coefficients of a binary function. Then, after choosing all
significant wavelet modes for the given binary image one can, using the same evalu-
ation method, find all coefficients significant for the occlusion indicator and exclude
those from the edge–preserving fidelity term. Here we account for two main factors
influencing the thresholding parameters: the properties of the wavelet decomposi-
tion of binary functions (characteristic functions of finite perimeter sets) and the fact
that the edge–preserving fidelity term penalizes the deviation of wavelet coefficients
measured in terms of the Besov seminorm.

Let us introduce some general notations for the thresholding procedure. Given
a function u ∈ L2 we define an associated boolean function b = b(u) to indicate the
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significance of each coefficient with index (j,~k) in the entire wavelet decomposition

u(x) =
∑
j,~k

cj,~kψj,k(x),

in accordance with a certain criterium S. Namely, b : I = {(j,~k)}j∈Z,~k∈Zn 7→ {0, 1},

b(j,~k) =

{
1, S is true for cj,~k,

0, otherwise.
(THR)

In the inpainting context

Λ = supp b ⊂ I.

We describe possible choices of S based on the scale-dependent thresholding of
wavelet coefficients, which can either be uniform within each scale or relative, esti-
mating each coefficient as compared to the rest of the wavelet decomposition. Such
criteria occur to be applicable to most of the images containing visually pronounced
contours. Since all applications we consider deal with images in 2D, the spatial rescal-
ing constants are those for the wavelet decomposition in R2.

As the thresholding procedure is entirely application-determined, we will consider
functions from the spaces VJ and assume that their wavelet decomposition is trans-
lation invariant with respect to translations by multiples of 2−J , i.e. translations
at the finest wavelet scale, or one-pixel translations. In this manner, any wavelet
decomposition of a function u ∈ VJ involves 22J coefficients at each of the wavelet
scales.

Absolute (Besov) thresholding Given a fixed thresholding parameter T >
0, we define the absolute significance threshold at scale j as

τj = 2jT .

Then for any function u ∈ L2 the logical statement S in (THR) can be written as

(j, k)→ Λ⇔ |〈u, ψj,k〉| > τj ,

which, is equivalent to

(j, k)→ Λ⇔ |〈u, ψj,k〉ψj,k|B > T

in terms of the B -seminorm estimates.
While the classical hard thresholding uses a fixed threshold level, the above ab-

solute thresholding is scale-dependent: we fix the uniform parameter, but apply the
hard thresholding to each scale with the rescaled parameter (multiplied by 2j).

For a reasonably chosen T the absolute Besov thresholding can be viewed as a
denoising procedure, because one disregards all details that are below the significance
threshold uniformly defined for each scale. The drawback of using the absolute thresh-
olding is the necessity to set the thresholding parameter T in advance, moreover, the
choice of this value may require preliminary testing under user supervision.

The need for non-uniform, “relative” thresholding arises from the necessity to au-
tomatize the procedure completely, as well as from the idea of using different thresh-
olds for edges in separate directions.
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Relative thresholding Let us define the thresholding rule for each scale of
wavelet decomposition of functions u ∈ VJ . In order to do that, consider the expected
value(the mean)Mj and the standard deviationDj for the set of all wavelet coefficients
cj,k = 〈ψj,k, u〉 at scale j ∈ N:

Mj = 2−Nj
2J−1∑
ki=0

cj,k,

D2
j = 2−Nj

2J−1∑
ki=0

(cj,k −Mj)
2 = 2−Nj

2J−1∑
ki=0

c2j,k −M2
j .

Definition We define the relative significance threshold at scale j as

τj = C2jDj , C = 2−Jmax ,

where Jmax is the thresholding scale, which is defined as the maximum level of
wavelet decomposition J (i.e. the image resolution) or as the scale that stores the
most significant information (visually significant, or defined by a specific application
or the given data quality). In practice, to make the thresholding more precise, the
coefficient C may be adjusted by an additional multiple reflecting the quota of the
edges in the image.

In this manner, we define the following unified criterium S for the relative wavelet
thresholding.

Definition A mode ψj,~k is chosen to be relatively significant for a function

u, i.e. bu(j, k) = 1 if and only if it differs from the mean coefficient value at the scale
j by more than the standard deviation times the dyadic scaling multiple:

|〈u, ψj,k〉 −Mj | ≥ C2jDj .

The relative thresholding leaves intact those coefficients that differ sufficiently from
the mean of all coefficients at this wavelet scale. Let us explain the reasons for such
choice of the thresholding condition.

Consider a characteristic function of some measurable set u = χE ∈ L2(R2). Due
to u being locally homogeneous of degree 0, we get:

〈u, ψj,k〉 � 2p〈u, ψj+p,2pk〉.

Only wavelet modes supported in the neighborhood of the set boundary ∂E may
produce non-zero projections, thus the total amount of non-zero coefficients at scale
j grows as O(2j). The decrease in the coefficient values as the scale increases and
the respective increase of the integration domain for the translation parameter k
makes the mean value of the non-zero coefficients stay within the same order O(1),
while the mean value of all coefficients decreases as O(2−j). The standard deviation,
for the same reasons, changes as O(2−j) as the scale j increases. Therefore, the
coefficients of wavelet modes supported near ∂E should differ from the mean value by
a value comparable to 2jDj . The exact choice of the coefficient C in practice depends
on the importance of reconstructing an exactly “binary” function, the set geometry
(approximate length of the boundary ∂E), etc.

Fig.3.2 shows an example of a binary function (the indicator of the set correspond-
ing to the white part of the image), and the function reconstructed from the wavelet
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coefficients that were not eliminated by relative thresholding. The thresholding scale
in this setting equals the finest scale of possible decomposition for an image 256×256.

(a) (b)

Fig. 3.2. Example of the indicator function thresholding: (a) a binary image, (b) its edges
reconstructed from “significant” wavelet coefficients of the stationary wavelet transform.

The described technique itself can be useful in filtering out the major jumps in
the signals that, in theory, are supposed to correspond to continuous functions ([13]).

3.4.2. Locally adaptive thresholding. Going back to the problem of image
inpainting, let us recall that Ω denotes the part of the domain where function is defined
(known), and Ωc is the set where function values are missing (occluded, corrupted).
We define the locally adaptive thresholding as a procedure of the simultaneous
scale–dependent thresholding of the image u and the indicator function of its unknown
area χΩc using the evaluation criterium S that is a conjunction of two statements: “the
mode corresponds to a coefficient of u that is above significance threshold” and “the
mode corresponds to a coefficient of χΩc that is below its significance threshold”. In
the case of absolute thresholding, it can be expressed as the following rule of choosing
significant modes:

(j,~k) ∈ Λ⇔ |〈u, ψj,k〉| ≥ 2jT, |〈χΩ, ψj,k〉| ≤ 2jt,

where T and t are fixed significant thresholds for functions u and χΩ respectively.
To use the relative thresholding in the same setting, one needs to replace t and T
by the deviation–based parameters computed separately for each scale of the image.
Fig.3.3 shows the result of locally adaptive relative thresholding. The binary (black
and white) image has a missing area that is shown in gray. The r.h.s. image shows
the function that was reconstructed from wavelet coefficients not eliminated by the
relative locally adaptive thresholding, i.e. coefficients that are significant for the
binary image and are not correlated with the occlusion. Getting somewhat ahead of
the current discussion, Fig.3.3 (c) shows the result of binary inpainting preserving the
edges shown in Fig.3.3 (b).

(a) (b) (c)

Fig. 3.3. Example of the locally adaptive wavelet coefficient thresholding: (a) given binary
image with the missing part indicated by gray, (b) the result of relative locally adaptive thresholding:
the edges of the occlusion are ignored, while the edges of the original image are preserved, (c) the
result of inpainting using WAC with the edge fidelity.
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The next section deals with the energy functional designed for the variational
image inpainting. Constructing this functional involves the choice of the edges that
one would like to be preserved in the process of inpainting, this is where the above
thresholding methods are applied.

3.5. Modified WGL energy for image inpainting. This subsection de-
scribes the application of the introduced modified WGL energy model to image in-
painting. The problem of image inpainting using the WGL energy with the spatial
fidelity term has been addressed in [10]. Adding the edge–preserving fidelity allows
to deal with certain marginal situations within the same class of inpainting prob-
lems, such as inpainting with unclearly defined missing area or direction-dominated
inpainting.

3.5.1. Binary inpainting model with edge–preserving fidelity term. As
described before, the inpainting problem set-up necessarily includes specification of
the set Λ. We define this set so that it includes coefficients of the image at each scale
that are relatively significant for the entire image, and are not relatively significant
for the occlusion indicator (i.e. perform locally adaptive thresholding). The knowl-
edge of relatively significant coefficients of the mask χΩc allows to perform locally
adaptive thresholding: to choose the set of wavelet coefficients of function u that
are minimally correlated to the mask.

The most natural way to approach the inpainting problem is to use a simple
technique to preprocess the image and apply a more computationally expensive one
to refine it. Polynomial interpolation over the unknown domain produces a good
initial guess for the gradient descent minimization of WGLF that makes convergence
to the steady state much faster for all choices of the forcing terms.

In most of cases the WGLF inpainting methods with the spatial vs. the edge
fidelity produce almost identical results. Indeed, Fig.3.4 shows the simplest example
of stripe reconnection. Having the missing area and the parameter ε fixed, the models
with only the spatial fidelity term and only the edge fidelity give the same output when
the image evolution starts from an interpolation over the missing area. Nevertheless,
the dynamics of the gradient descent solution might be very different if one starts
its evolution from a guess relatively far from the target steady state. An example of
an inpainting problem and the corresponding choice of significant edge information
can be seen in Fig.3.2, Fig.3.4. The latter figure shows that the problem set–up, in
particular, the edges included in the fidelity term, depend on the choice of the wavelet
function and may produce different results. As it can be seen in Fig.3.4, the use of

(a) (b) (c) (d)

Fig. 3.4. (a) The inpainting problem: black and white parts of the image are known, the
gray area is to be inpainted, (b) minimizer of WGLF with spatial forcing term only, (c) the set
of ”significant” modes for the edge–preserving term of WGLF, (d) minimizer of WGLF with the
edge–preserving forcing term only

spatial fidelity results in a more exact contrast preservation, while the edge fidelity
eliminates any contrast jumps near the boundary of the missing region. Connecting
ability of both models is the same: the stripe is reconnected if the width of the
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missing area (gray occlusion in Fig.3.4(a)) does not exceed the width of the stripe.
Next subsection addresses with the question of using non-local information in the
inpainting model and considers those cases when the missing area is wider than the
stripe itself.

The choice between the spatial vs. edge–preserving wavelet fidelity terms is usu-
ally defined by the specifics of each image processing application. While the spatial
forcing term works great for the classical inpainting problem when the unknown do-
main is defined a priori, the edge–preserving fidelity is of help in cases when, given
a corrupted grayscale image, one needs to recover a binary one. A typical exam-
ple of such situation is shown in Fig.3.5, where the task is to recover the black and
white text from the scanned image of an old document (Declaration of Independence,
source: www.ushistory.org). In order to use the spatial fidelity, one would need to
allow semi–supervised processing: to obtain the user choice of the average text color
and background color and then threshold the image. The edge fidelity term, on the
other hand, does not require this, being defined by the adaptive coefficient threshold-
ing described in 3.4.1. The result of the inpainting by minimizing the WGLF with
the forcing term is shown in Fig.3.5.

(a) (b) (c)

Fig. 3.5. Advantage of the edge–preserving fidelity term for the binary text inpainting. (a)
Given image (grayscale, scanned, with a lot of paper defects and color fading); (b) edges used in the
forcing term of WGLF; (c) result of the WGLF inpainting with the wavelet-domain forcing term

3.5.2. Direction–dominated inpainting. In certain cases, the dominating di-
rection can be clearly inferred from the known part of the image. However, the energy
functional we discussed before only uses information from a certain neighborhood of
the missing area in the recovery of unknown intensity values. Thus, it fails to restore
certain details (connections) that would seem obviously necessary to any person per-
forming the manual image recovery. This drawback can be eliminated by introducing
an additional parameter of the modified WGL energy that depends on an individual
image: we allow the horizontal, vertical and diagonal components of the wavelet de-
composition have variable weights in the expression for the Besov seminorm. Namely,
given a function f , we replace the Besov seminorm |f |2B in the first term of the WGL
energy by the following “weighted” seminorm, which will be denoted |f |∗B :

(|f |∗B)2 = ah|fh|B2 + av|fv|B2 + ad|fd|B2 , ah, av, ad > 0.

Here fh, fv and fd denote the horizontal, vertical and diagonal components of the
function f . This modification to the WGL energy functional was also considered in
[12] in the context of minimizing anisotropic surface tension functionals that produces
the Wulff shape minimizers.

The implementation of the upgraded inpainting algorithm is completely anal-
ogous to the one described above except for an additional step that is performed
before starting the gradient descent minimization. One determines relatively signifi-
cant coefficients of the wavelet decomposition of the known part of a grayscale image
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and concludes whether there is a direction such that respective coefficients dominate
the others. If so, the WGL part of the inpainting energy functional gets updated by
assigning a smaller coefficient to the dominant seminorm component, thus allowing
more edges to form in the respective direction.

WGL∗[a](f) =
ε

2
(ah|fh|B2 + av|fv|B2 + ad|fd|B2) +

1

4ε

∫
f(x, y)2(f(x, y)− 1)2dxdy.

Minimizing this energy with forcing terms instead of the original WGL allows the
recovered image to have a similar relation between its edge directions as the one in
the original image.

Example in Fig.3.6 below shows inpainting of a horizontal stripe using the energy
that prioritizes horizontal wavelet components. The sequence of images represents
the gradient descent solution at consecutive time moments, the last image shows the
output of the method — the recovered steady state. As one can see, the adaptively

Fig. 3.6. Solution of the gradient descent equation as time increases: the initial condition with
the gap(gray) of width 50px intersecting the white stripe of width 40 px, solution after 5000, 10000,
15000, 30000, 150000 iterations.

Fig. 3.7. Solution of the gradient descent equation as time increases: the initial condition
— same as in Fig.3.6, but rotated by 45◦, and the solution after 250, 500, 4000, 20000, 100000
iterations.

chosen weights assigned to the coefficients of different directions allow to achieve the
contour reconnection which would otherwise be impossible in cases when the gap
width exceeds the width of the stripe.

4. Modified WGL energy for denoising, segmentation, superresolution.

4.1. Inpainting approach to binary denoising. One can interpret denoising
of binary images as a special type of inpainting where the entire image is treated as
missing. Therefore, the inpainting model is used with µs ≡ 0. The spatial mask, being
a zero matrix, requires no locally adaptive thresholding, hence, the significant features
are extracted from the image itself using absolute or relative Besov thresholding.

Denoising of grayscale and color images can be performed via bitwise denoising. The
intensity matrix of each color component of an RGB image can be rewritten in the
dyadic form,

Icolor(x) =

#bits∑
j=0

Ij(x)2−j color ∈ {red, green, blue}
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(a) (b) (c) (d)

Fig. 4.1. (a) Original image, (b) noisy image, SNR=7.7(dB), (c) chosen edge set, (d) output.

and processed by denoising each dyadic digit of intensity Ij as an independent binary
matrix followed by backward synthesis. The scales that can be included into the
wavelet forcing term depend on the quality of data: the clearer is the image the finer
scale can be enforced within denoising. However, the properties of the output are
affected by the choice of the interface scale ε and the fidelity weight µ as well, which
one can also observe in Fig.4.2.

(a) (b) (c)

Fig. 4.2. Grayscale image denoising (a) a noisy photo of the Mars surface taken in the 80th,
512 × 512 ; (b) denoised image, ε = 0.1, µ = 0.05, 6 levels of decomposition in the DB4 wavelet
basis, 1 finest scale ignored (c) same setting as in (b) except for ε = 0.0625.

4.2. Superresolution.

4.2.1. Binary superresolution. Consider an image f represented by a matrix
(fk1,k2) of size 2n × 2n that requires ×2m magnification. We can identify the image
matrix with a function defined on [0, 1]2 that belongs to the MRA subspace Vn

f(x) =
∑
~k

fk1,k2φn,~k(x), x ∈ [0, 1]2.

(any image matrix is considered in this sense when one applies a discrete wavelet
transform to it: we identify the spatial values and the approximation coefficients at
the highest level of wavelet decomposition). Now, a matrix F of size 2n+m × 2n+m

can be obtained by sampling f(x) on a refined grid of respective size: Fp1,p2 =
f( p1−1

2n+m ,
p1−1
2n+m ). In other words, a candidate for the superresolved image matrix can

be obtained by wavelet interpolation: representing the initial discrete signal as a
finite linear combination of wavelet basis functions, and discretizing on a new, refined,
grid..

The result of wavelet interpolation applied to a binary matrix f (as in Fig.4.3(a))
is not necessarily binary, moreover, it is usually grayscale — Fig.4.3(b).

Now, the problem of superresolution can be addressed as the question of denoising
and edge–sharpening of the grayscale initial guess. The solution is obtained by finding
minimizers to the WGLF energy with the edge preserving fidelity term only:

E(u) = WGL(u) +
λ

2
|PΛ(u− f)|2B .
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(a) (b) (c) (d)

Fig. 4.3. (a) Initial binary image of size 32x32 (a black triangle on white background), (b) the
result of wavelet interpolation(using DB4) performed to increase the image 4 times, (c) gradient
descent solution, ε = 0.125, µw = 0.025 after 500 iterations, (d) difference between the output (c)
and the original image after ×4 dilation (as in ’Paint’ picture editor).

by the gradient descent method with the defined initial guess. In the absence of any
additional information, index set Λ should be restricted to N coarsest scales, where
N is the maximum depth of the wavelet decomposition for the original image. Here
our idea is somewhat related to the wavelet pan-sharpening technique [19], where the
missing fine scale information is recovered by a variational methods that preserves
given data on coarser scales.

Essentially, 2m-times magnification implies that log2m finest scales of the stretched
image decomposition are deliberately excluded from the forcing term, as details of
those scales bear no reliable information. The spatial fidelity term is identically zero.
Fig.4.3 (c) shows the result of superresolution method applied to the initial image
(Fig.4.3(a)) to achieve ×4 magnification. In this case two finest scales of the initial
guess contain unverified information and, hence, are excluded from the edge-forcing
term.

4.2.2. Grayscale and color superresolution. Superresolution of images in
general can be performed bitwise, by applying a binary superresolution technique to
each separate bit of a grayscale or color image. Namely, the image intensity matrix,
in its dyadic representation (BIN),

I(x) =

#bits∑
j=0

Ij(x)2−j (BIN)

can be processed by “superresolving” each dyadic digit of intensity Ij as an indepen-
dent binary matrix.

(a) (b) (c)

Fig. 4.4. Example of a bitwise grayscale ×4 superresolution of a brain image: (a) the under-
resolved image, (b) the result of processing and (c) their difference. The structure of the difference
shows that the relevant edge information was preserved, while the pixellation effect was eliminated.

4.3. Inpainting approach to segmentation.

4.3.1. Segmentation problem revised. Binary image segmentation, i.e. sep-
aration object/background can be also viewed as a problem of inpainting inside the
area between the known object part and the known background part while preserving
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Bit 1: Bit 2:

Fig. 4.5. Bitwise ×4 superresolution of a brain image. First two original bits of the underre-
solved image (first two bits), and the output of binary superresolution.

the edges (specifically, those that separate the latter two). The wavelet fidelity term
is obtained by wavelet thresholding with zero mask, the spatial term may be either
absent or localized in the preclassified (known object and known background) areas.

Fig 4.6 demonstrates this approach applied to the problem of segmenting the
camera-man silhouette from the background of the image shown in Fig.4.6(a). We
assume that the known data consists of two preclassified areas: those are colored
in white in Fig.4.6 (b),(c) and belong to the “known background” and the “known
object” respectively. The binary output of the WGLF technique, i.e. completed
classification of all pixels, is shown in Fig.4.6 (f).

(a) (b) (c)

Fig. 4.6. Example of grayscale image segmentation using the binary WGLF inpainting model
with the edge–preserving forcing term. (a) The original image, (b) the white areas indicate the
“known” object pixels, (c) the white areas indicate the “known” background pixels, (d) the result of
the WGLF segmentation.

In cases when it is needed to extract specified objects from the given image, one
can use a similar procedure with incorporated self-correction. All areas colored as
”object” that do not have connection to the originally given ”known object” area,
should be disregarded and filled with the background color.

Fig.4.7 demonstrates an example of the aerial photo segmentation. The output
image in this case is not strictly black and white, since the edge forcing term was
assigned a large weight, and thus prioritized over the double–well potential. The final
output can be binarized by simple thresholding of pixel values.

4.3.2. Extraction of binary contours from grayscale images. There is a
class of applications which requires the concepts of inpainting and segmentation to
merge. Examples of such problems include the text recovery from occluded noisy
images or inpainting of the road map based on possibly occluded aerial photos.

The process of recovering specific binary contours from grayscale images follows
the steps below.

1. Analyzing the scale of the target contour (letter, road) and choosing appro-
priate scaling parameters.

2. Processing (modification) of the image with the goal of tracing all edges
(contours, letters, roads) while ignoring occlusions, in whichever way those
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Fig. 4.7. A. Given image (source: Google Maps) with partial classification: pixels inside the
letter “O” belong to the “object”, pixels within the letters “B” belong to the “background” ; B. edges
used in the forcing term; C. result of the WGLF segmentation

(a) (b) (c) (d) (e)

Fig. 4.8. (a) A grayscale aerial photo (source: Google Maps); (b) partial indicator of the roads
(known road pixels are white); (c) edges included in the forcing term initially; (d) intermediate state
of gradient descent solution; (e) result of the self–correction: elements without connections to the
“known road” areas were removed.

are specified, until the system reaches its steady state. Provide a binary
result: contours vs. background.

3. Correction of the entire contour set by excluding extra components, if there
is any a priori classification of “text” or “occlusion” vs the “background”
available.

Consider a problem of road-map recovery out of a grayscale aerial image and partial
classification of the roads. The term “partial classification” refers to the case when the
complete classification of each image pixel as “known” or “unknown” is not available,
instead, one is given an incomplete indicator of road pixels (specifies the pixels that
are “known to belong to roads”), with no information about the rest. An example of
partial classification is shown in Fig.4.8(a),(b).

In this case, the output image is expected to be binary and represent a completed
road indicator function (the updated/recovered road map). This problem setting is
different from the problem of grayscale road inpainting given predefined occlusions, as
it aims to recover the complete road silhouette rather than reconstruct the grayscale
intensity values behind a specific occlusion.

The given image Fig.4.8(a) serves as a source for “reference edges” (obtained
by non–linear thresholding), i.e. edges included in the forcing term before evolution
starts Fig.4.8(c). The known road indicator can be used to construct an initial guess
to speed up the algorithm convergence.

As we mentioned in the discussion of the inpainting approach to segmentation,
the procedure incorporates self–correction. After every N iterations Fig.4.8 (d) we
detect the new set of roads and “erase” connected components of this set that do not
intersect with the initial road indicator as well as remove corresponding edges from
the reference edge set. Such artifacts may occur due to the fast ”phase separation”
around near-binary values in the initial condition. The example in Fig.4.9 shows the
results of processing via the same technique.
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(a) (b) (c)

Fig. 4.9. (a) Given grayscale image (source: Google Maps), (b) partial road classification
(“known road pixels” marked as red), (c) the result of road contour detection and self-correction.

An analogous approach can be successfully applied to the text extraction from
noisy images.

5. Conclusion. We considered the problem of the WGL energy minimization by
gradient descent and proved the existence of a weak solution and its convergence to a
steady state which is an extremum of the WGL energy. This argument can be gener-
alized for the gradient descent minimization associated with a modified WGL energy
(completed with a spatial and an edge preserving forcing terms). The latter provides
a highly adaptable variational tool for a variety of image processing problems that
involve recovering and preserving important edge information. Since the described
techniques involve the WGL energy that was shown to converge to a weighted TV
seminorm, i.e. is anisotropic, one of the next possible steps to improving those meth-
ods is to consider a similar isotropic energy. For instance, this energy modification
can be achieved by replacing the wavelet components with their analogues defined via
curvelets or shearlets, which, however, involve numerical implementations of higher
complexity.
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