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Abstract

Hocherman and Rosenau conjectured that long-wave unstable Cahn-Hilliard-type interface mod-
els develop finite-time singularities when the nonlinearity in the destabilizing term grows faster
at large amplitudes than the nonlinearity in the stabilizing term (Phys. D 67, 1993, pp. 113–125).
We consider this conjecture for a class of equations, often used to model thin films in a lubrication
context, by showing that if the solutions are uniformly bounded above or below (e.g., are non-
negative), then the destabilizing term can be stronger than previously conjectured yet the solution
still remains globally bounded.

For example, they conjecture that for the long-wave unstable equation

ht = −(hnhxxx)x − (hmhx)x ,

m > n leads to blowup. Using a conservation-of-volume constraint for the case m > n > 0,
we conjecture a different critical exponent for possible singularities of nonnegative solutions. We
prove that nonlinearities with exponents below the conjectured critical exponent yield globally
bounded solutions. Specifically, for the above equation, solutions are bounded ifm < n+2. The
bound is proved using energy methods and is then used to prove the existence of nonnegative weak
solutions in the sense of distributions. We present preliminary numerical evidence suggesting that
m ≥ n+ 2 can allow blowup. c© 1998 John Wiley & Sons, Inc.

1 Introduction

Long-wave unstable equations are ubiquitous in the modeling of pattern for-
mation in physical systems that involve interfaces. A now-classical example is
the periodic Kuramoto-Sivashinsky equation that arises in modeling combustion
[28, 29] and solidification [26, 27]

ht = −hxxxx − hxx + h2
x , h(x+ L) = h(x) .(1.1)

The graph of h represents the position of the interface between the solid and
liquid phases or the burnt and unburnt material. The equation arises from a
series of approximations including both a “sharp interface” assumption and an
assumption that the solution has a long-wave character.
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The KS equation (1.1) is long-wave unstable in that a small perturbation of
a flat interface yields, to linear order, the solution h = h0 + εg(t) cos(2πkx/L)
where g(t) ∼ eσt with linear growth rate

σ(k) = −k2
(

2π
L

)2
(
k2
(

2π
L

)2
− 1

)
.

Only long-wave perturbations grow: σ(k) > 0 ⇐⇒ |k| < L/2π. The growth
of the linearized solution implies that the nonlinear terms must enter into the
dynamics. In fact, the nonlinear term h2

x causes the solution to saturate—h
remains bounded and smooth despite the solutions of the linearized equation
growing exponentially in time [17, 35, 43]. The nonlinear term transports energy
from longer (growing) wavelengths to shorter wavelengths, which then dissipate
the energy.

The nonlinearity in the KS equation is advective and affects the dynamics
differently than do other types of nonlinearities. For example, if the nonlinearity
is destabilizing, it can cause finite-time blowup. The semilinear heat equation is
an example of a second-order equation with such a nonlinear destabilizing term:

ht = hxx + hp .

For p > 1 certain initial data can yield a finite-time blowup: h(x∗, t) ↑ ∞ at
some point x∗ as t ↑ T ∗ <∞. Extensive rigorous work on this equation shows
the existence and self-similarity of the blowup singularity [2, 32, 49].1

The Childress-Spiegel equation is a fourth-order equation with a nonlinear
destabilizing term

vt = − ∂2

∂x2 (vxx + v + v2) .(1.2)

The equation arises as an interface model in biofluids [15], solar convection
[20], and binary alloys [48]. It, too, can have a finite-time blowup: v(x∗, t) ↑ ∞
at a point x∗ as t ↑ T ∗ < ∞. One way in which this equation differs from the
KS equation is that if the period L ≈ 2π, then the nontrivial steady states near
the k = 1 mode are subcritical rather than supercritical. However, subcriticality
of nontrivial states is not the driving force for blowup, as a recently studied
generalization illustrates. The modified Kuramoto-Sivashinsky equation2

ht = −hxxxx − hxx + (1− λ)h2
x + λh2

xx(1.3)

1 This partial list of references is given simply as sources for further information.
2 Note that the Childress-Spiegel equation is a special case of the modified Kuramoto-

Sivashinsky equation with v = hxx and λ = 1.
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arises as a model for the dynamics of a hypercooled melt [47]. Solutions of
this equation can exhibit finite-time singularities in which

∫ T ∗
0 |hxx|2 dt ↑ ∞.

Numerics confirm the existence of a self-similar blowup profile in which |h|l∞
grows like − log(T ∗ − t) [7].

A natural question, addressed by Hocherman and Rosenau, is under what
conditions do such destabilizing nonlinearities allow finite-time blowup. For a
generic Cahn-Hilliard model, they conjectured:

CONJECTURE 1 ([38]) Consider the evolution equation

ut = − ∂

∂x

(
M(u)

∂

∂x
[−Q(u) +R(u)uxx]

)
(1.4)

with periodic boundary conditions u(x + L) = u(x). If M(u), R(u) ≥ 0 and
Q′(u) < 0, then the equation is long-wave unstable. In such a case, the behavior
of Q(s)/(sR(s)) determines the presence or absence of a finite-time blowup.

Specifically,

lim
s→∞

Q(s)
sR(s)

=


∞ u→∞ in finite time,

finite marginal case,

0 globally stable solutions.

(1.5)

This conjecture is consistent with the fact that the linear growth rate associ-
ated with linearized perturbations of a flat state u0 is

σ = M(u0)
[
Q′(u0)k2 −R(u0)k4

]
,

and the band of unstable modes becomes infinite (vanishes) as u0 ↑ ∞ if
Q′/R→∞ (→ 0).

In this article, we prove that while Hocherman and Rosenau’s conjecture may
stand for equations that have nondegenerate coefficients of diffusion, M(u) ≥
α > 0 for all u, it must be modified for degenerate diffusion coefficients. We
propose an alternate conjecture for such cases.

All previously studied examples of (1.4) seemed to confirm Conjecture 1.
However, these examples all had M(u) constant. In this paper, we use the fact
that if M(u) is degenerate, then the solutions can have special behavior near
points x0 where M(u(x0)) = 0. The vanishing of M(u) at u0 can stop the
solution from crossing the line u = u0. Such degeneracy of M can ensure
that solutions are uniformly bounded above (u ≤ u0) or below (u ≥ u0). This
“weak maximum principle” is not true for general fourth-order equations and
requires a certain degree of degeneracy in the fourth-order term. Specifically,
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for certain equations with M(0) = 0, nonnegative initial data can be proven to
yield nonnegative solutions.

Here we show that nonnegativity of solutions coupled with the conserva-
tion of volume,

∫
u = const, can lead to different behavior than that predicted

by Conjecture 1. The conjecture and proven results generalize immediately to
solutions that are uniformly bounded above or below.

1.1 Long-Wave Unstable Lubrication Models

Equations of the form (1.4) arise in modeling the dynamics of thin liquid films.
In some physical situations, a destabilizing force causes the liquid film to bead
up into isolated droplets. Such an instigator can be either an external force,
such as gravity in the case of a thin liquid film hanging from the bottom of a
horizontal surface [23], or intrinsic to the system, such as repulsive, long-range
van der Waals forces that enter the evolution equation in the form of a disjoining
pressure [19, 42, 50]. In such situations, a lubrication approximation reduces
the evolution equation to one of the form

ht = −(f(h)hxxx)x − (g(h)hx)x .(1.6)

For simplicity we consider periodic boundary conditions.
For thin liquid films, the fourth-order term of (1.6) comes from surface ten-

sion between the liquid and air and also incorporates any slippage at the liq-
uid/solid interface [36]. The general form for f(h) is

f(h) = h3 + λhp(1.7)

where 0 < p < 3 and λ > 0 determines a slip length [22, 37, 39, 40, 41]. There
is a long-wave instability if the second-order term of (1.6) has g(h) ≥ 0. In
the gravity-destabilized thin film problem, g(h) ∼ h3 [23]. For the thin film
problem with repulsive van der Waals forces [19, 42, 50],

g(h) =

{
A
h , 3D film,
A
h2 , 2D film,

(1.8)

for nonretarded interactions, and

g(h) =

{
B
h2 , 3D film,
B
h3 , 2D film,

(1.9)

for retarded interactions.
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In a recent work [13], we considered the case of attractive van der Waals
forces (g ≤ 0) and discussed the mathematical need for a cutoff of van der
Waals interactions on a microscopic-length scale. We considered a cutoff such
that g(h) ∼ hm as h ↓ 0 where m > 0. We call this a “porous media” cutoff be-
cause it can introduce behavior similar to that of the subdiffusive porous media
equation [45] near the contact line. In this case, the choice of cutoff depends on
the nature of the slip model used at the liquid/solid interface. With such a cutoff
of the attractive van der Waal forces, we prove existence and long-time behavior
results for nonnegative solutions. It is natural to consider a porous-media-type
cutoff for repulsive van der Waals interactions (g ≥ 0).

Another context in which equation (1.6) arises is the gravity-driven Hele-
Shaw cell, for which f(h) = g(h) = h [33, 34]. The fourth-order term comes
from surface tension between the two liquids. The second-order term comes
from the destabilization due to a density mismatch between the liquids. In [34],
Goldstein et al. show that the initial disturbance leads to a finite-time pinching
of the fluid neck (h ↓ 0) and is due to a long-wave instability that persists up to
times close to the singularity time. They present a scenario in which the higher
modes of the system are slaved to a low mode. However, their slaving mecha-
nism does not establish whether it is possible for the model to form finite-time
“spikes” in which hmax →∞. In this paper we prove that their equation always
leads to saturation in which the solution, while unstable to finite-wavelength
perturbations of a flat state, does not grow without bound. Such saturation was
observed in their numerical simulations.

In recent papers, authors studied the problem (1.6) for g = 0 [3, 6, 9] and
g ≤ 0 [13]. If g ≤ 0, the second-order term is stabilizing. In both situations,
solutions are uniformly bounded for all time, so that the only unresolved issue
regarding singularity formation is whether h ↓ 0 in finite time. However, in
the g ≥ 0 case considered here, the second-order term is destabilizing and two
new concerns arise: The problem may be ill-posed near the contact line and the
solution may blow up in finite time. Of course, h ↑ ∞ is a clear violation of the
assumptions made by the lubrication approximation, and the modeling equation
has broken down.

To prove the problem is well-posed, one must prove that the solutions not
only exist and depend smoothly on the initial data but are unique. While unique-
ness of weak solutions is not known for this class of problems, we conjecture,
based on linear stability theory, that ill-posedness is avoided if f(h) dominates
g(h) in the h ↓ 0 limit. Indeed, this condition proves to be sufficient to derive
an existence theory for the problem. The question of blowup versus uniform
boundedness presents an interesting case study for Conjecture 1. Writing equa-
tion (1.6) in the form of equation (1.4) with R(u) = 1, M(u) = f(u), and
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H

 L

Figure 1.1. Length and height scales of a bump.

Q′(u) = −g(u)/f(u), Conjecture 1 becomes “solutions can only blow up if
f(s)/g(s) <∞ as s→∞.” Given an equation of the type (1.6) in which f(h)
and g(h) are positive for h > 0, vanishing or diverging as h ↓ 0 and h→∞, is
Conjecture 1 true?

In this paper, we show that, for a class of nonnegative weak solutions of
equation (1.6), Conjecture 1 must be revised. This is because equation (1.6)
conserves volume (

∫
h) and has nonnegative solutions when f(y) and g(y) are

sufficiently degenerate at y = 0. These two properties are sufficient to control
the maximum of the solution for a range of cases where Conjecture 1 suggests
blowup occurs.

A heuristic argument based on volume conservation suggests a different scal-
ing than that of Conjecture 1. Consider a local maximum of the solution of
height H (see Figure 1.1). Denote the characteristic-length scale of this bump
by L. Conservation of volume requires that HL ≤ V , where V is the total fluid
volume. However, if the bump is growing without bound, the dynamics should
have a balance between the nonlinear terms in equation (1.6)

f(H)H
L4 ∼ g(H)H

L2 ⇒ f(H)
g(H)

∼ L2 .

This gives the constraint
H2f(H)
g(H)

< V 2 ,

suggesting that the solution can grow without bound only if

lim
s→∞

s2f(s)
g(s)

<∞ .

We analytically show that such scaling arguments are valid by proving that
s2f(s)/g(s) → ∞ as s → ∞ implies uniform boundedness for positive clas-
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sical solutions (in Section 2) and for nonnegative weak solutions (in Section
3).

Including the ht term from (1.6) in the scaling analysis, we get

Ḣ ≤ g(H)H
L2 ∼ g(H)2

f(H)
H .

This bound on Ḣ suggests that any blowup must take infinite time whenever

lim
s→∞

g(s)2

f(s)
= A <∞

since the solution would be dominated by eAt. We prove this for positive clas-
sical solutions (in Section 2) and for nonnegative weak solutions (in Section 3).
We conclude that finite-time singularities are only possible for equations of the
type (1.6) in which

lim
s→∞

s2f(s)
g(s)

<∞ and lim
s→∞

g(s)2

f(s)
=∞ .

1.2 The Need for Nonnegative Solutions

The modified Kuramoto-Sivashinsky equation (1.3) provides a case study for
the difference between the behavior predicted in Conjecture 1 and the results we
prove here.

Computations of solutions [7] of the modified KS equation

ht = −hxxxx − hxx + (1− λ)h2
x + λh2

xx

show that, as the solution becomes singular, the driving equation is

ht = −hxxxx + λh2
xx .

Rewriting this equation with v = hxx, it is of the form we consider (1.6)

vt = −vxxxx + 2λ(vvx)x .(1.10)

With f(v) = 1, g(v) = 2λv, and lim s2f(s)/g(s) = ∞, Conjecture 1
states that this equation produces a blowup in which v → ∞. The preceding
argument for sign-preserving solutions suggests that if the solution to (1.10) has
a fixed sign, then it cannot blow up because lims→∞ s2f(s)/g(s) = ∞. On
the other hand, solutions of (1.10) do have finite-time singularities with self-
similar structure in which max{v(x, t)} → ∞ and min{v(x, t)} → −∞ as
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Figure 1.2. The beginning of a blowup of the solution to (1.3) with initial data
h0(x) = 1 + 0.1 cos(πx) and 2(1 − λ) = 40. Note that although the initial
data is positive, the solution changes sign. The blowup occurs as in [7] with
the solution having a self-similar structure in which max{hxx(x, t)} → ∞ and
min{hxx(x, t)} → −∞ as t→ T ∗.

t → T ∗ while
∫
v = 0 [7]. Figure 1.2 presents the early evolution of a solution

that ultimately blows up in finite time. Note that although the initial data is
positive, the solution changes sign. In Section 2.3 we prove that all finite-time
singularities of the modified Kuramoto-Sivashinsky equation must be the type
where the solution changes sign and its second derivatives blow up and down to
±∞.

1.3 The Revised Conjecture

The scaling arguments of Section 1.1 lead us to make the following revised
conjecture in order to consider degenerate fourth-order equations.

CONJECTURE 2 Consider the evolution equation

ut = − ∂

∂x

(
f(u)

∂

∂x

[
−G̃′(u) + uxx

])
(1.11)
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with periodic boundary conditions u(x+L) = u(x). If f(u) ≥ 0 and G̃′′(u) ≤
0, then the equation is long-wave unstable. Suppose G̃′′(u) is bounded as u ↓ 0
and f is degenerate, f(u) ↓ 0 as u ↓ 0. In such a case, the behavior of G̃′′(u)/u2

as u→∞ determines the presence or absence of blowup for nonnegative solu-
tions.

Specifically,

lim
s→∞

G̃′′(s)
s2 =


∞ blowup,

finite marginal case,

0 globally bounded solutions.

(1.12)

Defining

A = lim
s→∞

√
f(s)G′′(s) ,

if A =∞, then it is possible that the blowup will occur in finite time.

The conjecture is written for equations where the degeneracy in f(y) occurs
at y = 0; hence it considers nonnegative solutions. The conjecture transforms in
a natural manner to consider equations with degeneracy f(u0) = 0 and solutions
u ≤ u0 or u ≥ u0.

We prove the global boundedness part of this conjecture for equations in
which f(u) is sufficiently degenerate at u = 0. In Section 4 we present a
preliminary numerical computation suggesting that Conjecture 2 is sharp.

The paper is organized as follows. In Section 2.1 we introduce the Lyapunov
function upon which the work depends. In Section 2 we use this Lyapunov func-
tion to prove the global boundedness part of Conjecture 2 for positive classical
solutions of equations of the form (1.11). In Section 2.3 we discuss the modified
Kuramoto-Sivashinsky equation (1.3) and, by using energy estimates, prove that
when a solution to (1.3) blows up, the second derivative hxx must simultane-
ously blow up to +∞ and blow down to −∞ (behavior observed in numerical
simulations [7]). In Section 3 we use the global boundedness results for positive
classical solutions to prove global existence of nonnegative weak solutions of
a class of equations of type (1.6). The proof follows arguments from previous
papers [3, 9] with G = 0. In Section 4 we present preliminary numerical simu-
lations that confirm the blowup part of Conjecture 2. We will study the detailed
structure of this blowup in a separate paper. Finally, in Section 5 we review the
results of this paper and consider the case of higher-space dimensions.
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2 H1 Bounds for Long-Wave Unstable Equations

2.1 The Lyapunov Function

We start by considering steady periodic solutions of the evolution equation (1.6).
These satisfy

0 = (f(h)hxxx)x + (g(h)hx)x .

By integrating, we get

C = f(h)hxxx + g(h)hx .

Assuming that f(y) and g(y) vanish only at y = 0, we show that C = 0. If
there is a point at which h vanishes, then C = 0. If there is no such point, then
f(h) > 0 and

C

f(h)
= hxxx +

g(h)
f(h)

hx = hxxx + F (h)x .

Integration yields

C

∫
S1

1
f(h)

dx = 0 ⇐⇒ C = 0 .

Hence if h ≥ 0 then C = 0, and integrating gives

D = hxx + F (h) where F ′(y) =
g(y)
f(y)

.

The constant D is determined by the steady state, D =
∫
F (h). Steady states

are extrema of the Lyapunov function

E(h) =
∫
S1

(
1
2
h2
x − G̃(h) +Dh

)
dx where G̃′′(y) =

g(y)
f(y)

.

This Lyapunov function is crucial in proving the uniform boundedness of posi-
tive and nonnegative solutions.

2.2 A Global Bound for Positive Solutions

We now consider positive smooth solutions of

ht = −(f(h)hxxx)x − (g(h)hx)x(2.1)

with periodic boundary conditions

h(0, t) = h(1, t)
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and initial condition h(x, t)|t=0 = h0(x). In Section 3, we prove that given
certain assumptions,3 such equations yield positive solutions from positive ini-
tial data. Slightly weaker assumptions on f yield nonnegative solutions from
nonnegative initial data.

In this section, we prove uniform boundedness of positive smooth solutions
of equations of the form (2.1) that satisfy the further constraint that

g(y)
y2f(y)

→ 0 as y →∞ .

(This is the condition of Conjecture 2.) The methods of this section require only
that the solution be nonnegative and smooth. As strictly positive solutions are
guaranteed to be smooth, we consider this case.

Equation (2.1) is a conservation law; therefore a smooth solution conserves
mass:

d

dt

∫
S1
h dx = 0 =⇒ h =

∫
S1
h dx =

∫
S1
h0 dx .

Moreover, smooth solutions satisfy

d

dt

1
2

∫
S1
h2
x dx = −

∫
S1
f(h)h2

xxx dx−
∫
S1
g(h)hxhxxx dx .

Finally, for any G(h), a smooth solution satisfies

d

dt

∫
S1
G(h) dx =

∫
S1
G′′(h)f(h)hxhxxx dx+

∫
S1
G′′(h)g(h)h2

x dx .

Choosing G̃(y) so that G̃′′(y) = g(y)/f(y) yields the Lyapunov function

d

dt

∫
S1

(
1
2
h2
x − G̃(h) +Dh

)
dx

= −
∫
S1
f(h)

[
hxxx +

g(h)
f(h)

hx

]2

dx ≤ 0 .
(2.2)

If in (2.2) the minus sign in front of G̃(h) were a plus sign, the Lyapunov func-
tion would be a sum of positive quantities and its dissipation would immediately
guarantee that the solution remains bounded in H1(S1) for all time. This is the
case when the second-order term is stabilizing (g ≤ 0) [13]. In the following,
we show that for some G̃, the Lyapunov function can be used to control |h|H1

despite its mixed sign.

3 Both f(y) and g(y) positive for y > 0, and as y ↓ 0, g(y) ↓ 0, g(y)/f(y) < M , and f(y) ↓ 0
“sufficiently strongly.”
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We assume for simplicity that both f and g behave as power laws in the
large and small y limits: f(y) ∼ yn1 , g(y) ∼ ym1 for y � 1, and f(y) ∼ yn2 ,
g(y) ∼ ym2 for y � 1. The further assumption4 m2 > n2 − 2 gives the crude
bound

G̃(y) ≤
{
ayp for y ≥ 1 ,
C for y ≤ 1 ,

(2.3)

where p = max{2,m1−n1 + 2}. The following lemma states that given bound
(2.3) with p < 4, the H1-norm of a positive function can be bounded by its
mean and the Lyapunov function E(h):

LEMMA 2.1 Let G̃ be a function on [0,∞) such that the bound (2.3) holds for
some exponent p < 4. Define a functional on H1 by

E(h) =
∫
S1

(
1
2
h2
x − G̃(h) +Dh

)
dx <∞

and define

q =

max
{

2, 2+p
4−p

}
if h > 1 ,

2 if h ≤ 1 .
(2.4)

Then there exist positive constants c1 and c2 such that for all nonnegative h ∈
H1(S1),

1
4
|h|2H1 < E(h) + c2h

q + c1 +
1
4
h

2
.(2.5)

The critical case p = 4 is discussed in a remark following the proof of this
lemma. In one space dimension, the H1-norm bounds the L∞-norm, providing
a uniform upper bound for the solution. The bound (2.5) depends only on E(h),
h =

∫
h, and the quantities used to bound G̃(h).

Lemma 2.1 immediately yields the following uniform boundedness result for
positive smooth solutions of equation (2.1):

PROPOSITION 2.2 Let h(x, t) be a smooth positive solution on [0, T ] to (2.1).
Let G̃′′(y) = g(y)/f(y) be such that G̃ satisfies the conditions of Lemma 2.1.

4 For the existence of nonnegative weak solutions with nonnegative initial data, the stronger
requirement of m2 ≥ n2 is needed.
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If the initial data h0 ∈ H1, then |h(·, t)|H1 is uniformly bounded by the initial
data

1
4
|h|2H1 < E(h) + c2h

q + c1 +
1
4
h

2

< E(h0) + c2h
q + c1 +

1
4
h

2
<∞ .

(2.6)

The constants c1 and c2 and the exponent q are as in Lemma 2.1.

The proof follows directly from Lemma 2.1 and the fact that for a smooth solu-
tion h of (2.1), E(h, t) ≤ E(h0) and

∫
h =

∫
h0.

In the proof of Lemma 2.1, we use the interpolation inequality (see, e.g., [31,
theorem 10.1, p. 27]):

Interpolation Lemma. Let p > 1. Then there exists a constant C1 de-
pending only on p so that for all u ∈ H1(S1)

|u|Lp ≤ C1|u|2(p−1)/3p
H1 |u|(2+p)/3p

L1 .(2.7)

PROOF OF LEMMA 2.1: Bound (2.3) on G̃(h) implies∫
S1
G̃(h) dx ≤ a

∫
{h≥1}

hp dx+
∫
{h<1}

C dx

≤ a

∫
S1
hp dx+ C .

For p > 0,

E(h) + c2h
q +

1
4
h

2 =
1
2

∫
S1
h2
x dx+

1
4
h

2 −
∫
S1
G̃(h) dx+Dh+ c2h

q

≥ 1
4
|h|2H1 − C − a

∫
S1
hp dx+Dh+ c2h

q

≥ 1
4
|h|2H1 − C − aCp1 |h|

2(p−1)/3
H1 h

(p+2)/3 +Dh+ c2h
q

(2.8)

≥ 1
8
|h|2H1 − C +Dh+

c2

2
h
q ≥ 1

8
|h|2H1 − C .(2.9)

In (2.8) we use the interpolation inequality (2.7) coupled with the key observa-
tion that for h ≥ 0, |h|1 =

∫
h = h. Step (2.9) uses the fact that (2.8) is of the

form
1
4
A− C − βA

p−1
3 B

p+2
3 +DB + c2B

q

where β = aCp1 and the following elementary lemma:5

5 This lemma is proved by considering two cases: A ≥ εBq and A ≤ εBq where ε =
(8β)3/(4−p) and c2 ≥ 2βε(p−1)/3.
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Lemma. Given 0 < p < 4 and β ∈ R, there exists a constant c2 such that
for all A,B ≥ 0,

1
4
A− βA(p−1)/3B(p+2)/3 + c2B

(2+p)/(4−p) ≥ 1
8
A+

c2

2
B(2+p)/(4−p) .

Remark Regarding the Critical Case p = 4. In this case, p = 4, (2.8) im-
plies that there exists a constant ccrit, depending on a, the asymptotic prefactor
for G̃ in (2.3), such that if h̄ < ccrit then Lemma 2.1 holds. Thus an a priori
upper bound also occurs for the critical case when the initial data has sufficiently
small mean.

As the scaling argument in Section 1.1 suggests, if p ≥ 4 in the bound (2.3),
smooth solutions have controlled growth if m1 ≤ n1/2. To see this, we assume
that m2 ≥ n2/2 and find that the solution satisfies

d

dt

1
2

∫
S1
h2
x = −

∫
S1
f(h)h2

xxx −
∫
S1
g(h)hxhxxx

= −
∫
S1
f(h)

(
hxxx +

1
2
g(h)
f(h)

hx

)2

+
1
4

∫
S1

g(h)2

f(h)
h2
x

≤ 1
4

∣∣∣∣∣g(h)2

f(h)

∣∣∣∣∣
L∞

∫
S1
h2
x ≤ C

∫
S1
h2
x .(2.10)

It follows immediately that ifm1 ≤ n1/2, then theH1-norm of h grows at most
exponentially in time.

In the m1 > n1/2 case, g2/f is not in L∞, and the final step (2.10) is not
valid. Instead, one finds

d

dt

1
2

∫
S1
h2
x ≤ C

(∫
S1
h2
x + h

2
)m1−n1/2+1

.

This does not preclude a finite-time blowup but does ensure that the H1-norm
of h is bounded for t < (

∫
S1 h0

2
x + h̄2)n1/2−m1/(C(m1 − n1/2)):

PROPOSITION 2.3 Let h(x, t) be a smooth positive solution of (2.1) with ini-
tial data h0 ∈ H1(S1). Assume that m2 ≥ n2/2.

If m1 ≤ n1/2, then |h(·, t)|H1 grows at most exponentially on any time
interval [0, T ].

Ifm1 > n1/2, then |h(·, t)|H1 has controlled growth on a finite-time interval

[0, T0) with T0 = C(
∫
h0

2
x + h

2)n1/2−m1 .
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As uniform boundedness is known whenever m1 < n1 + 2, the exponential
bound is only relevant for the case n1 + 2 ≤ m1 ≤ n1/2. This implies both
m1 and n1 are negative. The algebraic bound is for the case n1 + 2 ≤ m1
and m1 > n2/2. These conditions, suggestive of a possible finite-time blowup,
can be satisfied by both positive and negative exponents. We present such an
equation in the conclusions, Section 5.

Proposition 2.2 can be generalized to solutions that are no longer restricted
to be nonnegative if the solution h is smooth enough to admit integration by
parts and if for some 1 < p < 4 one has∫

S1
G̃(h) dx ≤ a

∫
S1
|h|p dx+ C .

In such a case, if the solution h has either an upper or lower pointwise bound,
then the Lyapunov function E(h) bounds theH1-norm of h. The proof is a minor
modification of the proof of Proposition 2.2. Proposition 2.3 can be analogously
generalized.

In the next subsection, we expand upon this observation to show that the
finite-time singularity of the MKS equation (1.3) must be of the form where
hxx ↑ ∞ and hxx ↓ −∞ simultaneously as t ↑ T ∗. Furthermore, |hxx|L1 →∞.
The rest of the article is independent of the next subsection. Those readers who
wish to read immediately about the existence of nonnegative weak solutions of
equation (2.1) should skip to Section 3.

2.3 Classifying the Finite-Time Singularity
of the Modified Kuramoto-Sivashinsky Equation

The methods used to prove Proposition 2.3 can be used to prove sharper re-
sults concerning blowup of the modified Kuramoto-Sivashinsky equation. In
[7], Bernoff and Bertozzi consider periodic solutions of the modified Kuramoto-
Sivashinsky equation

ht = −hxxxx − hxx + (1− λ)h2
x + λh2

xx .(2.11)

The λ = 0 case is the Kuramoto-Sivashinksy equation that is known to have
globally bounded smooth solutions.

For all values of λ 6= 0, Bernoff and Bertozzi prove that there exist periodic
initial conditions that lead to finite-time singularities in which |hxx|L∞ → ∞
as t ↑ T ∗. Moreover, their computations combined with asymptotic meth-
ods suggest that the finite-time singularities are of a self-similar form in which
max{hxx} ↑ ∞ and min{hxx} ↓ −∞ simultaneously as t ↑ T ∗. We prove here
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that |hxx|L1 must become singular when a blowup occurs. This then implies that
both max{hxx} ↑ ∞ and min{hxx} ↓ −∞ simultaneously, since for periodic
solutions

|hxx|L1 =
∫
h+
xx −

∫
h−xx = 2

∫
h+
xx = −2

∫
h−xx .

Here h+
xx and h−xx denote the positive and negative parts of hxx.

THEOREM 2.4 Consider the modified Kuramoto-Sivashinsky equation

ht = −hxxxx − hxx + (1− λ)h2
x + λh2

xx , x ∈ S1 .(2.12)

For λ 6= 0 there exist smooth periodic initial data that yield a finite-time singu-
larity in which

|hxx|L1 →∞ as t ↑ T ∗ .(2.13)

Moreover, all finite-time singularities from smooth periodic solutions to (2.12)
must satisfy (2.13).

PROOF: We first note that Bernoff and Bertozzi proved a continuation lem-
ma for the problem—all finite-time singularities must be accompanied by a
blowup of |hxx|L∞ . For this reason, we can assume that control of |hxx|L∞
implies there is no finite-time singularity.

Our proof relies on the construction of a kind of Lyapunov function for the
variable v = hxx. The proof is by contradiction: We prove that if v has bounded
L1-norm, then its L∞-norm is controlled.

The equation for v = hxx is

vt = −vxxxx − (g(v)vx)x + (1− λ)(h2
x)xx(2.14)

where g(v) = 1− 2λv. Taking G′′(v) = g(v),

E(v) =
∫
S1

(
1
2
v2
x −G(v)

)
dx

satisfies

d

dt
E(v) = −

∫
S1

[vxxx + g(v)vx]2 dx

+ 2(1− λ)
∫
S1

[vxxx + g(v)vx]hxv dx .
(2.15)
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Equation (2.15) implies

d

dt
E(v) ≤ (1− λ)2|hx|2L∞

∫
S1
v2 .

Since |hx|L∞ ≤ |v|L1 ,

d

dt
E(v) ≤ (1− λ)2|v|2L1 |v|2L2 .(2.16)

By an argument similar to the proof of Lemma 2.1, there exist constants c1
and C so that for all v ∈ H1,

1
8
|v|2H1 ≤ E(v) + C|v|5L1 + c1 .

The integrated form of (2.16) then implies

1
8
|v|2H1 ≤ E(v0) + C|v|5L1 + c1 +

∫ t

0
(1− λ)2|v|2L1 |v|2H1 .

We assume

|v|L1 < M .(2.17)

This assumption, combined with Grönwall’s lemma, yields

|v|2H1 ≤ 8(E(v0) + CM5 + c1)e8(1−λ)2M2t .

In short, on any finite-time interval, |v|H1 and hence |v|∞ is bounded by a func-
tion of the initial data and the maximum of its L1-norm. This is a contradic-
tion if the initial data is in the class for which Bernoff and Bertozzi proved
|hxx|∞ = |v|∞ →∞ in finite time. Therefore for such initial data, assumption
(2.17) must be false, finishing the proof.

As
∫
hxx = 0 is conserved by the evolution, a pointwise upper or lower

bound for hxx implies a bound on the L1-norm of hxx. This observation yields
a corollary predicting the simultaneous blowup of hxx found in numerical sim-
ulations:

COROLLARY 2.5 For λ 6= 0 there exist smooth periodic initial data for (2.12)
that yield a finite-time singularity in which

min{hxx} ↓ −∞ and max{hxx} ↑ ∞(2.18)

simultaneously as the blowup occurs. Moreover, all finite-time singularities from
smooth periodic solutions to (2.12) must satisfy (2.18).
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3 Weak Solutions: Existence, Positivity, and Behavior
near the Edge of Support

Section 2 addressed the question of global boundedness of positive smooth so-
lutions of the long-wave unstable diffusion equation

ht = −(f(h)hxxx)x − (g(h)hx)x .(3.1)

This equation has a Lyapunov function of the form

E(h) =
∫
S1

(
1
2
h2
x − G̃(h) +Dh

)
dx

where G̃′′(h) = g(h)/f(h). As before, we make the assumption that both f and
g behave as power laws in the large and small y limits:

f(y) ∼
{
yn1 for y � 1 ,
yn2 for y � 1 ,

(3.2)

g(y) ∼
{
ym1 for y � 1 ,
ym2 for y � 1 ,

(3.3)

and thus for y � 1

G̃(y) ∼


ym1−n1+2 if m1 − n1 6= −2,−1,
log(y) if m1 − n1 = −2,
y log(y)− y if m1 − n1 = −1.

In Section 2, we proved that if m1 − n1 + 2 < 4 (i.e., g(h)/(h2f(h)) → 0
as h → ∞), then positive smooth solutions are uniformly bounded in H1 and
thus in L∞.

For thin films, both positive and nonnegative solutions are of interest. In par-
ticular, nonnegative solutions can be used to describe coating flows with moving
contact lines. In this section, we derive a global existence theory, similar to that
derived for equation (3.1) without the long-wave instability [3, 6, 9, 13]. Further-
more, we discuss cases for which the contact line of a nonnegative solution can
be shown to have finite speed of propagation. Such finite speed of propagation is
relevant as it proves the solutions to be physically reasonable. Some of the tech-
niques used here are very similar to those in previous work [3, 4, 5, 9, 13]. For
this reason, we present sketches of the proofs and refer the reader to previous
papers whenever possible.
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Positive solutions are smooth since given a priori upper and lower bounds,
the equation is uniform parabolic [25, 30]. On the other hand, nonnegative so-
lutions can be positive to one side of a point and zero to the other side. Such
a point is denoted a “contact line” and an asymptotic expansion near this point
suggests that the solution may be C1 but not C2.6

For this reason, any formulation of an existence theory for nonnegative so-
lutions requires weak solutions rather than classical solutions. This is typically
done by integrating the evolution equation against a test function ϕ and then
integrating by parts. Taking ϕ ∈ C∞0 (0, T ; S1), we have

∫∫
QT

hϕt dx dt = −
∫∫

QT

f(h)hxxxϕx dx dt−
∫∫

QT

g(h)hxϕx dx dt .

(3.4)

QT is the parabolic cylinder [0, T ] × S1. The above formulation is a weak
solution in the sense of distributions and requires control of hxxx at the contact
line. Bernis and Friedman [6] introduced a weaker form of (3.4) to define a
weak solution for (3.1) with g = 0 that does not consider hxxx at the contact
line:

DEFINITION 3.1 A BF weak solution7 of equation (3.1) is a function h satis-
fying the conditions

h ∈ C 1
2 ,

1
8 ([0, T ]× S1) ∩ L∞(0, T ;H1(S1)) ,

h ∈ C4,1(P) , and
√
f(h)hxxx ∈ L2(P) ,

where P is the set [0, T ]× S1/(h = 0 ∪ t = 0) and h satisfies (3.1) in the sense
of ∫∫

QT

hϕt dx dt+
∫∫
P
f(h)hxxxϕx +

∫∫
QT

g(h)hxϕx dx dt = 0 .

For the g = 0 case, Bernis [4] denotes a “strong solution” to be one that
satisfies Definition 3.1 and in addition has h(·, t) ∈ C1(S1) for almost all t > 0.
This definition is motivated by the results in [3, 9, 13] showing that for f(h) =
hn, 0 < n < 3, there exists a weak solution in the sense of Definition 3.1 that is
C1(S1) for almost all t > 0.

6 See, e.g., [14] for traveling wave solutions to the equation with only the fourth-order term or
[13] for traveling wave solutions to the problem with a stabilizing second-order term.

7 We introduce the name “BF weak solution” to differentiate this solution from a weak solution
in the sense of distributions.
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In [9, 13] (for g = 0 and g ≤ 0) we showed that, for 1 < n2 < 3, a
nonnegative weak solution constructed to satisfy Definition 3.1 also satisfies the
equation in the sense of distributions in one of two ways:∫∫

QT

hϕt dx dt

=
∫∫

QT

f(h)hxxϕxx dx dt+
∫∫

QT

f ′(h)hxhxxϕx dx dt

−
∫∫

QT

g(h)hxϕx dx dt

(3.5)

or

−
∫∫

QT

hϕt dx dt

=
∫∫

QT

f(h)hxϕxxx dx dt+
3
2

∫∫
QT

f ′(h)h2
xϕxx dx dt

+
1
2

∫∫
QT

f ′′(h)h3
xϕx dx dt+

∫∫
QT

g(h)hxϕx dx dt .

(3.6)

Being a weak solution in the sense of (3.5) is stronger than being a weak solution
in the sense of (3.6) in that (3.5) requires some control of hxx.

Using the techniques developed in the above-mentioned papers, we outline
the analogous existence results for various weak solutions of (3.1) with g ≥ 0.

3.1 Initial Data and Problems of Interest

The weak solution theory considers two types of initial conditions, h0 > 0 and
h0 ≥ 0.

First, we consider positive initial data h0 > 0. In this case, we prove ex-
istence of nonnegative weak solutions for all n2 > 0. If n2 > 3.5, we show
that the solution remains smooth and positive for all time, while if n2 ≤ 3.5
finite-time singularities might occur in which a contact line spontaneously forms
(min{h} ↓ 0). A finite-time pinching singularity has been observed numerically
for the f(h) = g(h) = h case, although the authors did not consider the evo-
lution of the resultant weak solution [34]. The formation and evolution of a
contact line was studied numerically for the equation with f(h) = h1/2 and
g = 0 [10]. The contact line was observed to move with finite speed as was later
proven in [4].

Second, we consider nonnegative initial data h0 ≥ 0. For this case we prove
global existence theorems when 0 < n2 < 3, n2 ≤ m2, and f and g satisfy
the conditions of Proposition 2.2. We show that if there is a contact line, then it
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moves with finite speed and its position is a Hölder continuous function of time
if 1

2 < n2 < 3. The finite speed of propagation results follow immediately from
methods similar to those derived in [4, 5].

3.2 Approximate Problem

To prove the existence theory, we construct a family of smooth approximate
solutions. For the porous medium equation, a degenerate second-order equa-
tion, ht = (hmhx)x, m > 0, a natural approximate equation is the uniformly
parabolic equation hεt = ((hεm + ε)hεx)x. Because the approximate equa-
tion is second order, one can apply the maximum principle to find that positive
initial data yields positive solutions. A subsequence of these positive approx-
imate solutions will have a nonnegative ε → 0 limit, which can be proven to
be a weak solution of the porous medium equation. The lubrication equation,
ht = −(hnhxxx)x, n > 0, is a degenerate fourth-order equation. However, the
maximum principle does not apply so that the analogous approximate equation,
hεt = −((hεn + ε)hεxxx)x, can take positive initial data to a solution that may
be negative in regions.

To find strictly positive approximate solutions, we consider the problem with
“lifted” initial data

hε0(x) = h0(x) + δ(ε) > 0(3.7)

and approximate equation

hεt = −(fε(hε)hεxxx)x − (gε(hε)hεx)x ,(3.8)

where

fε(y) =


f(y)
yn2

yn2+4

εyn2+y4 if n2 < 4,

f(y) if n2 ≥ 4,
(3.9)

and

gε(y) =


g(y)
ym2

ym2+4

εym2+y4 if n2 < 4 and m2 < 4,

g(y) otherwise.
(3.10)

This is a slight modification of a regularization first suggested by Bernis and
Friedman [6] and later used in [3, 9] for equation (3.1) with g = 0. The reg-
ularizations (3.9–3.10) preserve the large y behavior of f(y) and g(y) while
modifying the small y behavior of f(y) and g(y).
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Like the regularizations used for the g = 0 case [3, 6, 9], fε(y) ∼ yn2 for y �
1 with n ≥ 4. This ensures that the approximate solutions are strictly positive,
smooth, and unique. The existence theory [13] for the lubrication equation with
a porous medium term, ht = −(hnhxxx)x + (hmhx)x, uses the approximation

hε0(x) = h0(x) + δ(ε) > 0 , hεt = −(fε(hε)hεxxx)x + (hεmhεx)x .

The porous medium term does not need to be regularized to ensure that the
approximate solutions be positive, smooth, and unique. However, as we demon-
strate below, if the second-order term is destabilizing, then positivity, smooth-
ness, and uniqueness of the approximate solutions are only guaranteed if g is
regularized whenever f is regularized.

PROPOSITION 3.2 (Global Existence and Positivity of Approximate Solutions)
Given a time T and positive initial data hε0 = h0 + δ(ε) ∈ H1(S1) with
h0 ≥ 0, with δ(ε) = εθ, ε < 1, and θ < 2

5 , the approximate equation (3.8)
with m1 < n1 + 2 and n2 ≤ m2 has a unique positive smooth solution for
all time. The approximate solution hε has a pointwise lower bound Mε that
depends on ε but not on T :

0 < Mε ≤ hε(x, t) , t ∈ [0, T ] .

Moreover, if 0 < n2 < 3 and h0 > 0, then for all −1
2 < s < 1, there exists

a constant C independent of both T and ε such that the following uniform-in-ε
bounds are satisfied for all approximate solutions:

|hε(·, t)|2H1 ≤ C ,(3.11) ∫∫
QT

(
hε
s/2+1

)2

xx
dx dt ≤ CT ,(3.12) ∫∫

QT

(
hε
s/4+1/2

)4

x
dx dt ≤ CT .(3.13)

If h0 ≥ 0, then the a priori bounds (3.12) and (3.13) hold for all s with
max{−1

2 , n2 − 2} < s < 1.

SKETCH OF PROOF: The proof essentially follows from the uniform bound-
edness of positive smooth solutions shown in Section 2 and methods from previ-
ous papers. First, short-time existence is proved following the same steps Bernis
and Friedman used for the g = 0 case. To prove that the solution can be contin-
ued in time and will remain positive, we note that from Proposition 2.2 there is
a global bound on the H1-norm (3.11). As in Bernis and Friedman, this implies
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that the solutions are uniformly in C1/2,1/8(ΩT ). A pointwise lower bound then
suffices to continue this positive solution indefinitely in time.

To obtain the pointwise lower bound, we follow the argument of theorem 3.1
in [9]. Defining Gε(y) to satisfy G′′ε(y) = 1/fε(y),8

d

dt

∫
S1
Gε(hε) = −

∫
S1
hε

2
xx −

∫
S1

gε(hε)
fε(hε)

hε
2
x .(3.14)

The assumption that g(y)/f(y) is bounded for all M > y > 0 and the a priori
bound (3.11) yield ∫

S1
Gε(hε) ≤ CT .(3.15)

Equation (3.14) shows why g must be regularized whenever f is regularized:
to have |gε(hε)/fε(hε)| pointwise bounded independently of ε. The pointwise
lower bound follows from the bound (3.15) and the Hölder continuity of the
approximate solution hε. Specifically, if δ(t) is the minimum value of hε(·, t)
occurring at the point x0(t), then hε(x, t) ≤ δ(t) + C|x− x0(t)|1/2. As fε and
gε have been regularized to behave like y4 for y � 1, (3.15) implies

∫
Gε(hε) ∼∫

ε/hε
2 ≤ CT . This and the Hölder continuity yield

0 < Mε = e−C2/ε ≤ δ(t) .

Finally, we defineGsε(y) to satisfy Gsε
′′(y) = ys/fε(y) for the bounds (3.12)

and (3.13). In the g ≤ 0 case this determines a family of entropies that are
dissipated as the solution evolves (if max{−1

2 , n − 2} < s < 1). Here we
show that although these entropies are not necessarily dissipated in time, they
continue to provide a framework in which to derive the bounds (3.12) and (3.13).
Specifically, their growth can be controlled for all time:

d

dt

∫
S1
Gsε(hε) dx =

∫
S1
hε
shεxhεxxx dx+

∫
S1
hε
s gε(hε)
fε(hε)

hε
2
x dx

= −
∫
S1
hε
shε

2
xxdx+

s(s− 1)
3

∫
S1
hε
s−2hε

4
x(3.16)

+
∫
S1
hε
s gε(hε)
fε(hε)

hε
2
x dx

≤ −
∫
S1

(hεs/2+1)2
xx + C

∫
S1

(hεs/2+1)2
x(3.17)

≤ −1
2

∫
S1

(hεs/2+1)2
xx + C1 .

8 Gε is different from G̃ in the Lyapunov function of the previous section.
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The condition −1
2 < s < 1 is used in step (3.17), and the condition s > n2 − 2

is needed for
∫
S1 Gsε(hε0) to be bounded independently of ε. Following the

arguments in [3, 9], the above yields the bounds (3.12) and (3.13).

If the initial data is strictly positive, h0 > 0, then the condition 0 < n2 < 3
can be broadened to include all 0 < n2 and the condition on s to include all
−1

2 < s < 1.

3.3 The ε→ 0 Limit

We use the a priori bounds of Proposition 3.2 to prove the existence of nonnega-
tive weak solutions. In the following, we present the proofs for the n2 > 0 case
with positive initial data h0 > 0 and for the 0 < n2 < 3 case with nonnegative
initial data h0 ≥ 0.

THEOREM 3.3 (Weak Solution from Positive Initial Data) Given T <∞, 0 <
n2, n2 ≤ m2, m1 < n1 + 2, initial data h0 ∈ H1(S1) and h0 > 0, and hε
the approximate solution of Proposition 3.2 on time interval [0, T ], there exists
a subsequence of {hε} that converges pointwise uniformly and weakly in

L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1))

as ε → 0 to a nonnegative BF-weak solution h. Furthermore, for 1 < n2
the solution h also satisfies the equation in the sense of distributions (3.5) and
inherits the a priori bounds (3.12) and (3.13) of Proposition 3.2 for all −1

2 <
s < 1. Finally, if n2 ≥ 3.5, then the weak solution is a positive classical
solution.

SKETCH OF PROOF: Given the a priori bounds of Proposition 3.2, the
proof follows identically those in section 4 of [13] and [9]. We refer the reader
to these papers. The result on global positivity when n2 ≥ 3.5 follows the anal-
ogous proof for the g = 0 case [11]. In particular, one uses the a priori bound
onGs(h) for s arbitrarily close to−1

2 combined with the a priori H1 (and hence
C1/2) bound.

As in [13], [9], and other references, the condition h0 > 0 can be weakened
to include nonnegative data for which the entropies

∫
S1 Gs0(h0) are bounded.

THEOREM 3.4 (Weak Solutions from Nonnegative Initial Data) Given T <∞,
0 < n2 < 3, n2 ≤ m2, m1 < n1 +2, and initial data h0 ∈ H1(S1) and h0 ≥ 0,
let hε be the approximate solution of Proposition 3.2 on time interval [0, T ].
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For 0 < n2 < 2, there exists a subsequence of {hε} that converges pointwise
uniformly and weakly in

L2(0, T ;H2(S1)) ∩ L∞(0, T ;H1(S1))

to a nonnegative BF-weak solution h. Furthermore, for 1 < n2 < 1, h also
satisfies the equation in the sense of distributions (3.5) and inherits the a priori
bounds (3.12) and (3.13) of Proposition 3.2 for all max(−1

2 , n2 − 2) < s < 1.
For 2 < n2 < 3, there exists a subsequence of {hε} that converges pointwise

uniformly and weakly in

L∞(0, T ;H1(S1))

to a nonnegative BF-weak solution h. Furthermore, h also satisfies the equation
in the sense of distributions (3.6) and inherits the a priori bounds (3.12) and
(3.13) of Proposition 3.2 for all s such that n2 − 2 < s < 1.

SKETCH OF PROOF: Again, the a priori bounds of Proposition 3.2 yield
the results. The proof follows those in section 4 of [13] and [9].

In fact, the nonnegative weak solutions of Theorem 3.4 are weak solutions
in the sense of distributions for 3

8 < n2 ≤ 1 and n2 = 2. The weak solution
formulation and analogous proofs can be found in [13] and [9].

We proved in Section 2 that the H1-norm of positive smooth solutions can
grow in a controlled manner if m1 ≥ n1 + 2 and m1 ≤ n1/2. This H1 control
then implies a priori bounds, propositions, and theorems analogous to Proposi-
tion 3.2 and Theorems 3.3 and 3.4.

If m1 ≥ n1 + 2 and m1 > n1/2, then Conjecture 2 suggests a finite-time
blowup is possible. However, Proposition 2.3 does provide short-time control of
the H1-norm of approximate solutions. Short-time equivalents of Proposition
3.2 and Theorems 3.3 and 3.4 then follow.

3.4 The Contact Line

In this section we establish two results. First, following the work of [3, 9, 13],
we consider the asymptotic behavior of the solution near the edge of support.
Second, following the work of [4, 5], we establish that the support of a weak
solution has finite speed of propagation.

For almost all t ∈ [0, T ], the weak solution satisfies the bounds (3.12) and
(3.13). Suppose that the contact line is at the point a(t) with h(x, t) > 0 for
x < a(t) and h(x, t) = 0 for x ≥ a(t). If the leading-order asymptotics of the



650 A. L. BERTOZZI AND M. C. PUGH

solution can be described by a power law behavior, h(x, t) ∼ C(t)(a(t)− x)β ,
the power law must satisfy the restrictions:

β ≥ 2 , 0 < n2 <
3
2
,

β ≥ 3
n
,

3
2
< n2 < 3 .

(3.18)

The constraints in (3.18) are identical to those computed for the g = 0 case
in [9]. The condition of g(y)/f(y) remaining bounded as y ↓ 0 is simply that
the second-order term cannot dominate the solution near the contact line; hence
the constraints in (3.18) depend only on n2. As in [9], we believe that the a priori
bounds (3.12) and (3.13) are sharp since the exponents β = 2 for 0 < n2 <

3
2

and β = 3/n for 3
2 < n2 < 3 are exactly those of the g = 0 case. The m2 ≥ n2

condition needed for existence of solutions implies that near the contact line, the
evolution equation is like the g = 0 case, suggesting that the exponents would
be sharp for this case as well.

We now show that the support of the weak solutions of Theorems 3.3 and
3.4 have a property known as finite speed of propagation. This property is not
enjoyed by solutions of uniformly parabolic equations; however, it is a well-
known property of solutions of the “porous media” equation ht = (hmhx)x,
m > 0. Recently it was shown that for the g = 0 case, the “strong”9 solutions
have support that propagates with finite speed [4, 5].

The key ideas of these papers are strong and local versions of the entropy
equation (3.17) for the weak solutions constructed in Theorems 3.3 and 3.4.
Without presenting all the details, we show how to extend these ideas to the
problem considered here.

DEFINITION 3.5 A function h(x, t) : S1 × [0,∞) → R is said to have finite
speed of propagation if for all t0 > 0, x0 ∈ S1, and r0 > 0, such thatBr0(x0) ⊂
S1 and h(x, 0) ≡ 0 almost everywhere in Br0(x0), there exists a T∗ > 0 and a
continuous function r : [t0, t0 + T∗)→ R+ with r(t0) = r0 such that

h(x, t) = 0 a.e. for all t ∈ [t0, t0 + T∗) and x ∈ Br(t)(x0) .

With this definition, we have the following theorem:

THEOREM 3.6 (Finite Speed of Propagation) The weak solutions of Theorems
3.3 and 3.4 have finite speed of propagation.

9 As used by Bernis in [4] to denote weak solutions that are C1 in space for a.e. time.
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The proof follows by considering local versions of the estimates in (3.17)
and using the Lyapunov function from Section 2. We sketch the proof below for
the 0 < n2 < 2 case.

LEMMA 3.7 Assume the hypotheses of either Theorem 3.3 or 3.4 with approx-
imate solutions from Proposition 3.2. If 0 < n2 < 2, then for any cutoff function
ξ(x) satisfying ξ ∈ C2(S1), ξ ≥ 0, there exists a positive constant C depending
only on s and n2 so that for all T > 0 and ε > 0, the approximate solutions
satisfy

∫
S1
ξ(x)(Gsε(hε(x, T ))−Gsε(h0(x) + εθ)dx

+
∫∫

QT

ξh̄sεhε
2
xx +

∫∫
QT

hε
s−2hε

4
x

≤ C
(∫∫

QT

|ξ′hεs−1hε
3
x|+

∫∫
QT

|ξ′hεshεxhεxx|

+
∫∫

QT

|ξ′′hεs+1hεxx|
)

+
∫∫

QT

∣∣∣∣∣ξhεsf(hε)
gε(hε)hε2

x

∣∣∣∣∣+
∫∫

QT

|ξ′Gsε′(hε)hεx| .

(3.19)

The proof of this lemma is identical to that of lemma 4.3 in [4]. The key
aspect of (3.19) is that because fε/gε ≤M , the last two terms on the right-hand
side, which arise from the long-wave unstable term in (3.1), can be absorbed
into the relevant terms when taking ε→ 0.

Choosing a cutoff function ϕr of the form

ϕr(x) = rϕ1

(
x

r

)
, r > 0 , ϕ1 ≥ 0 , ϕ4 ∈ C2

0 (R) ,(3.20)

we pass to the ε = 0 limit to obtain a bound analogous to that of lemma 4.5 in
[4]:

LEMMA 3.8 Given a cutoff function ξ = ϕ4
r where ϕr satisfies (3.20), let 0 <

n2 < 2 and h be the weak solution of either Theorem 3.3 or 3.4. Then there
exists a positive constant C2 depending only on s, n2, and ϕ1 such that for all
T > 0,
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1
(1− n2 + s)(2− n2 + s)

∫
S1
ϕ4
r(x)h2−n2+s(x, T )dx

− 1
(1− n2 + s)(2− n2 + s)

∫
S1
ϕ4
r(x)h2−n2+s(x, 0)

+
∫∫

QT

ϕ4
r(x)(h(s+2)/2)2

xx

≤ C2

∫∫
QT∩{ϕr>0}

hs+2 .

The constant C2 is slightly different from the constant in lemma 4.5 in [4] be-
cause the lower-order destabilizing terms are also absorbed into the estimate.

Following the arguments in [4], Lemma 3.8 is sufficient to imply that the
weak solution has finite speed of propagation.

The 2 < n2 < 3 case similarly follows the argument in [5] for the g = 0
case. In fact, since g < Cf and gε < Cfε, all the relevant inequalities in [5]
can be proved for the weak solutions constructed here. The details regarding the
Hölder continuity in time of the contact line in time for 1

2 < n2 < 3 follow the
arguments from [4] and [5].

4 Computational Results

In this section we present numerical simulations of

ht = −(f(h)hxxx)x − (g(h)hx)x ,(4.1)

which confirm the results of Sections 2 and 3 and support Conjecture 2.
We use a numerical method that is a modification of the finite difference

scheme used for related problems [10, 11, 12, 13]. The previously used schemes
were found to have numerical instabilities on nonuniform meshes near points at
which h ↓ 0 when used to study the long-wave unstable problem. We avoid this
numerical instability by modifying the numerical scheme to use an “entropy
dissipating” form [51] of the nonlinear term f(h).

4.1 Hanging Drops

In [23], Ehrhard considered a viscous fluid hanging from the bottom of a smooth
horizontal plate. In that work, the author did not compute solutions of the evolu-
tion equation. Instead, solutions of a quasi-static approximation were computed:
a sequence of steady states satisfying time-dependent boundary conditions. Here
we present solutions of the evolution equation.
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In the isothermal case, the equation for the dynamic evolution of the film
height is [24, eq. (4.8p)]

ht = −
((

h3

3
+ βh2

)
(hxxx −Ghx)

)
x

= −
((

h3

3
+ βh2

)
L(h)

)
x

.

(4.2)

β = 0 corresponds to a no-slip boundary condition at the liquid/solid interface—
this precludes contact line motion. A slip length β > 0 is introduced to allow
slippage near the contact line. For hanging drops, G < 0, there is a long-wave
instability. This reflects the Rayleigh-Taylor instability arising when a heavier
fluid is above a lighter one.

Figure 4.1 presents a numerical solution of equation (4.2) with G = −80,
β = 0, and initial data

h0(x) = 1 + 0.1 cos(πx) .(4.3)

The initial data is positive and the computation shows that the solution remains
positive (and hence smooth) for all time,10 apparently approaching a nonnega-
tive weak solution as t → ∞. The black lines denote successive times of the
height profile starting at t = 0 and ending at t = 100. The weak solution is a
periodic array of separated droplets and is denoted with circles:

h∞(x) =


1.66(1 + cos(

√
80x)) , |x| < π√

80
,

1.18(1 + cos(
√

80(1− |x|))) , 1− |x| < π√
80
,

0 , elsewhere.

(4.4)

A steady weak solution of equation (4.2) must satisfy L(h∞)≡0 wherever h∞ 6=
0: The solutions are shifted cosines of period 2π/

√
80. The above steady state

has zero contact angle and
∫
h∞ =

∫
h0.

4.2 Growth and Saturation in the Subcritical Case

We consider an equation that Hocherman and Rosenau conjectured to blow up
in finite time:

ht = −(h4hxxx)x − 138(h5.9hx)x = −(h4hxxx)x − 20(h6.9)xx

with initial data (4.3). This equation is subcritical in the sense that it satisfies
Theorem 3.3, its solutions remaining uniformly bounded for all time. However,
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x
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h(
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ht+(h
3
(hxxx+80hx))x=0 

Figure 4.1. Instability and droplet formation in a thin hanging film of liquid. The
circles denote the weak solution (4.4).

if the exponent 5.9 were a 6, the equation would be in the critical case for which
there are no analytical results.

The solid line in Figure 4.2 shows the growth of the maximum of the solu-
tion. There is an initial rapid growth, followed by saturation. This behavior is
to be contrasted with the apparent lack of saturation shown by the dashed line.
The dashed line presents the growth of the maximum for the same initial data in
the critical case ht = −(h4hxxx)x − 140(h6hx)x.

4.3 Preliminary Evidence of Blowup in the Critical Case

We present preliminary numerical results that suggest a finite-time blowup for
the critical case of Conjecture 2. We consider an equation with critical exponents

ht = −(h4hxxx)x − 140(h6hx)x = −(h4hxxx)x − 20(h7)xx

with initial data (4.3). The heuristic scaling argument presented in the intro-
duction suggests that blowup is possible for the critical case. As m > n

2 , the
exponents do not preclude a finite-time blowup of the H1-norm.

The computations show that the positive solution simultaneously approaches
infinity and zero as t ↑ 0.00042. The solution appears to go to zero at two points,

10 For this reason, we compute solutions of the original equation (4.2) rather than solutions of the
approximate equation used in Section 3 to prove existence of nonnegative weak solutions.
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0 0.0002 0.0004 0.0006 0.0008 0.001
time

0.0
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15.0
h m

ax m1=5.9
m1=6.0

initial growth

saturation

Figure 4.2. Initial growth and saturation of the height of the solution for ht =
−(h4hxxx)x − 20(h6.9)xx. The dashed line represents the solution to the same
equation with the 6.9 replaced by 7.

one on each side of the point at which it is blowing up. Figure 4.3 presents a
logarithmic-scale plot of h near the point where the blowup occurs.

5 Summary and Conclusions

This paper considers a class of 1-D long-wave, unstable, degenerate diffusion
equations arising largely in the context of surface-tension-driven interface mo-
tion.

For equations of the form

ht = −(f(h)hxxx)x − (g(h)hx)x ,(5.1)

we show that for a class of nonlinear diffusion coefficients f and g, positive
smooth solutions remain uniformly bounded. Equations with such degenerate
diffusion coefficients were conjectured in [38] to yield finite-time singularities.
Specifically, it was conjectured that only if g(h)/f(h) decays as h ↑ ∞ will so-
lutions remain bounded. Here we prove that it suffices if g(h)/(h2f(h)) decays
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Figure 4.3. Apparent singularity occurring in finite time for solution to ht =
−(h4hxxx)x − 20(h7)xx.

as a power law as h ↑ ∞ to preclude blowup.
Positive solutions are a natural class of solutions when f(y) vanishes suffi-

ciently fast as y ↓ 0, since we show that such equations often preserve positivity
(h0 > 0 =⇒ h > 0). When f(y) vanishes at a rate too slow to permit the
positivity-preserving property, we show that it is still possible that f vanishes
fast enough to yield a weak maximum principle (h0 ≥ 0 =⇒ h ≥ 0).

We prove the existence of nonnegative weak solutions for a range of equa-
tions of type (5.1). The weak existence theory builds upon previous theory
[3, 9, 13] for related equations with g ≤ 0 or g = 0—equations that do not
have a long-wave instability. We extend recent work on finite speed of prop-
agation of the support for the g = 0 case to prove that in the g ≥ 0 case the
nonnegative weak solutions also have finite speed of propagation.

We present preliminary numerical evidence of finite-time blowup in a “crit-
ical case” where g(h) = ch2f(h), suggesting that our conjecture is sharp. The
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numerics show h blowing up at one point and touching down at a pair of points,
one to each side. The observed singularities appear to have interesting structure
involving matched asymptotics and second-type self-similarity. Such behavior
is found in the h ↓ 0 singularities in the g = 0 case [1, 11, 12, 21]. The super-
critical case, which we do not present here, has singularities with the expected
dimensional scaling. We will pursue the details of the structure of the singulari-
ties in a separate paper.

Another model mentioned by Hocherman and Rosenau [38] is the Benny
equation [46], which in the nonconvective case takes the form of (5.1) with
f(h) = c1h

3 and g(h) = c2h
6 + c3h

3, c1, c2 > 0. Numerical computations
in [46] supported Conjecture 1. It is interesting to note that, were they to have
considered a “modified Benny equation” with g(h) = c2h

m, Hocherman and
Rosenau would have predicted finite-time singularities for m > 3; however, our
results here prove that blowup is not possible for all m < 5 nor in the critical
case m = 5 for initial data of sufficiently small mean.

We note that a subclass of problems, included in the possible blowup sce-
nario of Conjecture 2, are those with “negative exponents” n1, m1. Consider,
for example, the equation

ht = −
((

h4

1 + h7

)
hxxx

)
x

−
((

h4

1 + h5

)
hx

)
x

,

where the behavior of the coefficients f and g near h = 0 insures positivity of the
solution whenever it is bounded. If a blowup were to occur for this equation, it
would necessarily involve a singularity in higher derivatives since both diffusion
exponents decay as h→ 0.

There remain unsolved theoretical problems. For example, the numerical
evidence suggests that Conjecture 2 is sharp. Can one prove this? There are
conjectures related to pinching singularities that are still unproven for the g = 0
and g ≤ 0 cases. For example, pinching singularities were numerically observed
for equation (5.1) with f(h) = h, g(h) = 0 [1, 11, 12, 21]. There is no analytical
proof. The question of uniqueness of nonnegative weak solutions also remains
an open problem.

Variational methods have been applied to ht = −(hhxxx)x, proving the
existence of solutions with nonzero contact angles [44]. Such approaches have
yet to be brought to bear on nonquadratic nonlinearities or equations with a
second-order term.

Furthermore, there are related long-wave unstable equations to which the
energy methods of this paper do not directly apply. One example is motion by
the Laplacian of mean curvature [8, 16]. Other examples are addressed in the
paper [38] in which Hocherman and Rosenau made their conjecture.



658 A. L. BERTOZZI AND M. C. PUGH

In higher space dimensions, we expect a different type of scaling to occur.
Consider nonnegative solutions of the evolution equation

ht = −∇ · (f(h)∇∆h+ g(h)∇h) , x ∈ RD ,(5.2)

and suppose that the solution blows up in finite time with hmax ↑ ∞. Applying
the scaling argument presented in the introduction, finite-time blowup can only
happen if

lim
h→∞

g(h)
h2/Df(h)

=∞ .

The methods of Section 2 do not immediately extend to higher dimensions. This
is due to the Sobolev embedding lemma that states that the H1-norm controls
L∞ in one space dimension but not in higher dimensions. Various analytical
results have been proven in higher dimensions. We refer the reader to a recent
paper of Dal Passo et al. for further references [18].

Acknowledgment. We thank the anonymous referee for useful suggestions,
including the remark about the critical case following the proof of Lemma 2.1.

A. B. was supported by an ONR Young Investigator/PECASE award and an
Alfred P. Sloan Research Fellowship. M. P. was supported by an NSF postdoc-
toral fellowship while at the Courant Institute and the Ambrose Monell Founda-
tion while at the Institute for Advanced Study.

Bibliography

[1] Almgren, R., Bertozzi, A. L., and Brenner, M. P., Stable and unstable singularities in the
unforced Hele-Shaw cell, Phys. Fluids 8, 1996, pp. 1356–1370.

[2] Ball, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equa-
tions, Quart. J. Math. Oxford Ser. (2) 8, 1977, pp. 473–486.

[3] Beretta, E., Bertsch, M., and Dal Passo, R., Nonnegative solutions of a fourth order nonlin-
ear degenerate parabolic equation, Arch. Rational Mech. Anal. 129, 1995, pp. 175–200.

[4] Bernis, F., Finite speed of propagation and continuity of the interface for slow viscous flows,
Adv. Differential Equations 1, 1996, pp. 337–368.

[5] Bernis, F., Finite speed of propagation for thin viscous flows when 2 ≤ n < 3, C. R. Acad.
Sci. Paris Sér. I Math. 322, 1996, pp. 1169–1174.

[6] Bernis, F., and Friedman, A., Higher order nonlinear degenerate parabolic equations, J.
Differential Equations 83, 1990, pp. 179–206.

[7] Bernoff, A. J., and Bertozzi, A. L., Singularities in a modified Kuramoto-Sivashinsky equa-
tion describing interface motion for phase transition, Phys. D 85, 1995, pp. 375–404.

[8] Bernoff, A. J., Bertozzi, A. L., and Witelski, T. P., Axisymmetric surface diffusion: Dynam-
ics and stability of self-similar pinch-off, 1998, preprint.



LONG-WAVE UNSTABLE THIN FILM EQUATIONS 659

[9] Bertozzi, A., and Pugh, M., The lubrication approximation for thin viscous films: regularity
and long time behavior of weak solutions, Comm. Pure Appl. Math. 49, 1996, pp. 85–123.

[10] Bertozzi, A. L., Loss and gain of regularity in a lubrication equation for thin viscous films,
pp. 72–85 in: Free Boundary Problems: Theory and Applications (Toledo, 1993), J. I. Díaz,
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