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Abstract. We present an energy-methods-based proof of the existence and unique-
ness of solutions of a nonlocal aggregation equation with degenerate diffusion. The
equation we study is relevant to models of biological aggregation.

1. Introduction

We consider the existence and uniqueness of solutions of an aggregation equation with
degenerate diffusion. Such nonlocal equations appear in models of biological aggregation
that have been introduced by Topaz, Bertozzi, and Lewis [25] and Burger, Capasso, and
Morale [9]. The model has been further studied by Burger and Di Francesco [10]. We
refer the reader to these papers for further references on the well studied problem of
mathematical modeling of large-scale collective behavior in living organisms. Related
model, without the diffusion, has been studied by Topaz and Bertozzi [24], Bodnar and
Velazquez [6], Laurent [16], Bertozzi and Brandman [3], and others.

In this paper we provide a proof of the existence and uniqueness of weak solutions of
the equation:

ρt −∆A(ρ) +∇ · [(ρ∇K ∗ ρ)] = 0
where A is such that the equation is (degenerate) parabolic and K is smooth, nonneg-
ative, and integrable. The precise conditions on A and K are given in Section 2. We
consider the problem with no-flux boundary conditions on bounded convex domains
and on RN . In applications to biology, ρ represents the population density, while K
is the sensing (interaction) kernel that models the long-range attraction. The therm
containing A(ρ) models the local repulsion (dispersal mechanism).

Burger, Capasso, and Morale [9] have already shown the existence and uniqueness of
entropy solutions to the equation. Such solutions have an entropy condition as a part of
the definition of a solution. They were developed by Carrillo [11] to study (among other
problems) parabolic-hyperbolic problems, in particular degenerate parabolic equations
with lower order terms that include conservation-law-type terms. For more on entropy
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solutions we refer to works of Karlsen and Risebro [13, 14] and references therein. The
uniqueness of solutions relies on L1 stability estimates.

Here we show that the standard notion of a weak solutions is sufficient for uniqueness
of solutions. Heuristically, this is possible since the nonlocal term does not create shocks.
The proof of uniqueness relies on the stability of solutions in the H−1 sense. We also
provide a detailed proof of the existence of solutions. The proof is based on energy
methods and relies only on basic facts of theory of uniformly parabolic equations and
some functional analysis. The main technical difficulty comes from the the degeneracy
of the diffusion term. Note that without the nonlocal term the equation is the well
studied filtration equation (generalized porous medium equation). For the wealth of
information on the filtration equation and further references we refer to the book by
Vazquez [26]. Our approach to existence uses a number of tools from the paper by Alt
and Luckhaus [1].

Our manuscript considers the case where K is smooth enough to guarantee that solu-
tions stay bounded on any finite time interval. We mention for completeness that there
is significant activity on the blowup problem for the case where K is not smooth and
indeed finite time blowup can occur with mildly singular K (e. g. Lipschitz continuous).
Some recent work on this problem includes [5, 3, 4] for the inviscid case [21, 22, 20] for
the problem with fractional diffusion and [17] for the problem in 1D with nonlinear
diffusion.

Associated to the equation is a natural Lyapunov functional, the energy:

E(ρ) :=
∫

Ω
G(ρ)− 1

2
ρK ∗ ρdx

where G is such that G′′(z) = A′(z)/z for z > 0. We prove the energy dissipation
inequality (28), which is important for applications.

The energy is not just a dissipated quantity; the equation is a gradient flow of the
energy with respect to the Wasserstein metric. This fact was used by Burger and Di
Francesco [10] to show the existence and uniqueness of solutions in one dimension. They
used the theory of gradient flows in Wasserstein metric developed by Ambrosio, Gigli,
and Savaré [2]. The theory applies to several dimensions as well. However the present
approach is applicable to a wider class of nonlinearities and directly provides better
regularity of solutions. On the other hand for equations for which the gradient flow
theory of [2] is applicable (i.e. when the energy is geodesically λ-convex), one obtains
the energy-dissipation equality (instead of an inequality in (28)). Let us point out
that, in one dimension, Burger and Di Francesco [10] also obtained further properties
of solutions that do not follow from [2].

The paper is organized as follows. In Section 2 we prove the uniqueness and existence
of solutions on bounded convex domains. In Section 3 we prove the existence and
uniqueness on RN . In Section 4 we introduce the energy and prove the energy-dissipation
inequality.
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2. Solutions on a bounded domain

Let Ω be a bounded convex domain in RN . Let us remark that the convexity as-
sumption is used only in Lemma 5. The assumption can be removed for many of the
nonlinearities A, in particular for the ones where A′′ is bounded.

We consider the equation on ΩT := Ω× [0, T ] with no-flux boundary conditions:

ρt −∆A(ρ) +∇ · [(ρ∇K ∗ ρ)] = 0 in ΩT

ρ(0) = ρ0 in Ω

(−∇A(ρ) + ρ∇K ∗ ρ) · ν = 0 on ∂Ω× [0, T )
.(E1)

Above, and in the remainder of the paper, ρ(t) refers to the function ρ( · , t) : Ω → R. In
the convolution term, ρ is extended by zero, outside of Ω. More precisely ∇K ∗ ρ(x) =∫
Ω∇K(x− y)ρ(y)dy.
We make the following assumptions on A and K:
(A1) A is a C1 function on [0,∞) with A′ > 0 on (0,∞). We also require A(0) = 0.

(K1) K ∈W 2,1(RN ) is a smooth nonnegative function with ‖K‖C2(RN ) <∞.
(K2)

∫
RN K(x)dx = 1.

Since A and A+ c yield the same equation, the requirement that A(0) = 0 does not
reduce generality. Note that A(s) = sm for m ≥ 1 satisfies the above conditions. The
requirement (K2) is nonessential and made only for convenience.

We are interested in existence of bounded, nonnegative weak solutions. By H̃−1(Ω)
we denote the dual of H1(Ω).

Definition 1 (Weak solution). Assume ρ0 ∈ L∞(Ω) is nonnegative. A function
ρ : ΩT −→ [0,∞) is a weak solution of (E1) if ρ ∈ L∞(ΩT ), A(ρ) ∈ L2(0, T,H1(Ω)),
ρt ∈ L2(0, T, H̃−1(Ω)) and for all test functions φ ∈ H1(Ω) for almost all t ∈ [0, T ]

(1) 〈ρt(t), φ〉+
∫

Ω
∇A(ρ(t)) · ∇φ− ρ(t)(∇K ∗ ρ(t)) · ∇φdx = 0.

Here 〈, 〉 denotes the dual pairing between H̃−1(Ω) and H1(Ω). We furthermore require
initial conditions to be satisfied in H̃−1 sense:

ρ( · , t)) → ρ0 in H̃−1(Ω) as t→ 0.

Recall that ρ ∈ H1(0, T, H̃−1(Ω)) implies that ρ ∈ C(0, T, H̃−1(Ω)). Below we show
that in fact ρ ∈ C(0, T, Lp(Ω)) for all p ∈ [1,∞), so that the initial conditions are taken
in the Lp sense.

By density of piecewise constant functions in L2 the condition (1) is equivalent to
requiring

(2)
∫ T

0
〈ρt, φ〉dt+

∫ T

0

∫
Ω
∇A(ρ) · ∇φ− ρ(∇K ∗ ρ) · ∇φdx dt = 0.
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for all φ ∈ L2(0, T,H1(Ω)).
Furthermore, it is a simple exercise to check that the above definition is equivalent

with the following statement

Definition 2. Assume ρ0 ∈ L∞(Ω) is nonnegative. A function ρ : ΩT −→ [0,∞) is a
weak solution of (E1) if ρ ∈ L∞(ΩT ), A(ρ) ∈ L2(0, T,H1(Ω)), and for all test functions
φ ∈ C∞(ΩT ) such that φ(T ) = φ(0) = 0

(3)
∫ T

0

∫
Ω
−ρφt +∇A(ρ) · ∇φ− ρ(∇K ∗ ρ) · ∇φdx = 0.

Initial conditions are required in H̃−1 sense:

ρ( · , t)) → ρ0 in H̃−1(Ω) as t→ 0.

Important property of weak solutions is that the total population is preserved in time.

Lemma 3. Let u be a weak solution of (E1). Then for all t ∈ [0, T ]∫
Ω
ρ(x, t) =

∫
Ω
ρ0(x)dx.

To prove this lemma it suffices to take the test function φ ≡ 1 and integrate in time.

2.1. Uniqueness. We now establish the uniqueness of weak solutions.

Theorem 4. Let ρ0 ∈ L∞(Ω) be nonnegative. There exists at most one weak solution
to problem (E1).

Proof. Assume that there are two solutions to the problem: u and v. To prove unique-
ness we use a version of the standard argument which is based on estimating the H̃−1

norm of the difference u(t) − v(t). Since u, v ∈ C(0, T, H̃−1(Ω)) we can define φ(t) to
be the solution of

∆φ(t) = u(t)− v(t) in Ω

∇φ(t) · ν = 0 on ∂Ω× (0, T )
(4)

for which
∫
Ω φ(t)dx = 0. Due to Lemma 3,

∫
Ω u(t)−v(t)dx = 0 for all t ∈ [0, T ] and thus

the Neumann problem above has a solution. Note that φ(0) = 0. Due to regularity of
u− v, the basic regularity theory yields: φ ∈ L2(0, T,H2(Ω)) and φ ∈ H1(0, T,H1(Ω)).
Thus ∇φ ∈ C(0, T, L2(Ω)). Also φt solves (in the weak sense)

∆φt = ut − vt in ΩT

∇φt · ν = 0 on ∂Ω× (0, T )
(5)

Subtracting the weak formulations (2) satisfied by u and v we obtain for all τ ∈ [0, T ]:∫
Ω
|∇φ(t)|2dx = −

∫ τ

0
〈ut − vt, φ〉dt =

∫ τ

0

∫
Ω
∇(A(u)−A(v)) · ∇φdxdt

}
I

−
∫ τ

0

∫
Ω
((∇K ∗ u)u− (∇K ∗ v)v) · ∇φdxdt

}
II
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�

From (5) follows

−
∫ τ

0
〈ut − vt, φ〉dt =

∫ τ

0

∫
Ω
∇φt · ∇φdxdt =

1
2

∫
Ω
|∇φ(T )|2 − |∇φ(0)|2dx

=
1
2

∫
Ω
|∇φ(T )|2dx

(6)

From (4) follows, using that A(u)−A(v) ∈ L2(0, T,H1(Ω)) and the monotonicity of A

(7) I = −
∫ τ

0

∫
Ω
(A(u)−A(v))(u− v) dxdt ≤ 0

We now consider

II =−
∫ τ

0

∫
Ω
(u− v)(∇K ∗ u) · ∇φdx

}
III

+
∫ τ

0

∫
Ω
v(∇K ∗ (u− v)) · ∇φdx

}
IV

Using (4)

III =
∫ τ

0

∫
Ω
∇φ · ((∆K ∗ u)∇φ+ (∇K ∗ u)∆φ)dxdt

and hence

|III| =
∣∣∣∣12
∫ τ

0

∫
Ω
(∆K ∗ u)|∇φ|2dxdt

∣∣∣∣ ≤ C

∫ τ

0

∫
Ω
|∇φ|2dxdt(8)

Using the definition of solution of (4) in the inner-most integral gives

IV =
∫ τ

0

∫
Ω
v(x)∇φ(x) ·

∫
Ω
∇K(x− y)(u(y, t)− v(y, t))dydxdt(9)

=
∫ τ

0

∫
Ω

∑
i,j

v(∂i∂iK ∗ ∂jφ)∂iφdxdt

and thus

|IV | ≤ ‖v‖L∞(ΩT )

∫ τ

0

∫
Ω

∑
i,j

|(∂i∂iK ∗ ∂jφ)∂iφ | dxdt

≤
∑
i,j

‖∂i∂jK ∗ ∂jφ‖1/2
L2(ΩT )

‖∂iφ‖1/2
L2(ΩT )

≤ C‖∇φ‖L2(ΩT )

(10)

The last inequality is a consequence of Young’s inequality for convolutions (see for
example [12]). The constant C can be taken independent of Ω. Let η(t) :=

∫
Ω |∇φ(t)|2dt.
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Combining (6), (7), (8), and (10) gives that

η(τ) ≤ C

∫ τ

0
η(s)ds.

Since η(0) = 0 from Gronwall’s inequality follows that η(t) = 0 for all T ≥ t ≥ 0.
Therefore u ≡ v.

2.2. Existence. To establish the existence of solutions, we carry out two approximating
procedures. While this is not entirely necessary, it separates handling the nonlocality
and the degeneracy of the equation. It is thus transparent which tools are necessary to
handle each.

One approximation is to perturb the equation to make it uniformly parabolic: Let

a := A′.

For ε > 0 let aε(z) be smooth and even, and such that

(11) a(z) + ε ≤ aε(z) ≤ a(z) + 2ε for z ≥ 0.

Let

Aε(z) :=
∫ z

0
aε(s)ds.

Consider

(E2) ∂tρε −∆Aε(ρε) +∇ · [(ρε∇K ∗ ρε)] = 0 on ΩT

with no-flux boundary conditions and initial conditions as in (E1). The notion of weak
solution for (E2) is analogous to the one for (E1).

To show the existence of solutions of the nonlocal equation (E2) we utilize the fol-
lowing local equation: For ã ∈ C∞(R, [0,∞)) let Ã(s) :=

∫ s
0 ã(z)dz. We assume

(A2) There exists λ > 0 such that ã(z) > λ for all z ∈ R.
Let V be a smooth vector field on ΩT with bounded divergence. Consider the equation

(E3) ∂tu−∆Ã(u) +∇ · (uV ) = 0 on ΩT

with no-flux boundary condition

(−∇Ã(u) + uV ) · ν = 0 on ∂Ω× [0, T ].

The initial data are taken in the H̃−1 sense.
For ã satisfying the condition (A2) the equation (E3) is a uniformly parabolic quasi-

linear equation with smooth coefficients. Thus, by standard theory [15, 18], there exist
a unique classical short time solution to the equation on ΩT0 for some T0 > 0.

Lemma 5 (L∞ bound). Assume u ∈ C2(ΩT ) is a solution of (E3) with smooth,
nonnegative bounded initial data u0. Assume further that

(12) V · ν ≤ 0 on ∂Ω× (0, T )
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Then u is nonnegative and for all t ∈ [0, T ]

‖u( · , t)‖L∞(Ω) ≤ eµt‖u0‖L∞(Ω)

where µ = ‖∇ · V ‖L∞(ΩT ).

Proof. The claim of the lemma follows directly from the comparison principle. Consider
v(x, t) := eµt‖u( · , 0)‖L∞(Ω). It is a supersolution in the interior of ΩT . On the lateral
boundary, ∂Ω× (0, T ), we use V ·ν ≤ 0 to establish that (−∇A(v)+vV ) ·ν ≤ 0. Thus v
is a supersolution to the problem. To show that u is nonnegative, note that w(x, t) ≡ 0
is a subsolution. �

The condition (12) is satisfied for equations of our interest, (E1) and (E2), with
V = ∇K ∗ ρ on convex domains. If the condition (12) does not hold the construction of
a supersolution is still possible for a number of nonlinearities A, but is more intricate.
In particular the supersolutions need to be x-dependent. Let us also point out that the
above lemma is the only claim that, as we apply it, relies on the convexity of Ω.

The L∞ bounds above ensure that, when (A2) holds, the equation (E3) is uniformly
parabolic, with smooth and bounded coefficients. By classical theory [15, 18] it then
has smooth solutions for all t > 0.

The next four lemmas contain the compactness and continuity results we need.
Lemma is analogous to one obtained by Alt and Luckhaus [1], who studied a family
of equations that includes (E3). We present a proof here, for completeness.

Lemma 6. Let F be a convex C1 function and f = F ′. Assume

f(u) ∈ L2(0, T,H1(Ω)), u ∈ H1(0, T, H̃−1(Ω)), and F (u) ∈ L∞(0, T, L1(Ω)).

Then for almost all 0 ≤ s, τ ≤ T

(13)
∫

Ω
F (u(x, τ))− F (u(x, s))dx =

∫ τ

s
〈ut, f(u(t))〉dt.

Proof. Let t ∈ (0, T ) and h > 0 small. Convexity of F implies that for all x ∈ Ω

F (u(x, t))− F (u(x, t− h)) ≥ f(u(x, t− h))(u(x, t)− u(x, t− h))(14)

F (u(x, t))− F (u(x, t− h)) ≤ f(u(x, t))(u(x, t)− u(x, t− h))(15)

Let 0 < s < τ < T . Since u ∈ H1(0, T, H̃−1(Ω))

u( · )− u( · − h)
h

→ ut in L2(s, τ, H̃−1(Ω)) as h→ 0.

Convergence of translates gives

f(u( · − h) → f(u( · )) in L2(s, τ,H1(Ω)).
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Using (14) and the claims above we obtain for 0 < h ≤ s < τ ≤ T

1
h

∫ τ

τ−h

∫
Ω
F (u(t))dt− 1

h

∫ s

s−h

∫
Ω
F (u(t))dt =

1
h

∫ τ

s

∫
Ω
F (u(t))− F (u(t− h))dxdt

≥
∫ τ

s

∫
Ω
f(u(t− h))

u(t)− u(t− h)
h

dxdt

Taking the limit h → 0 and using the Lebesgue differentiation theorem we obtain for
a.e. 0 < h ≤ s < τ ≤ T∫

Ω
F (u(x, τ))− F (u(x, s))dx ≥

∫ τ

s
〈ut, f(u(t))〉dt.

Using the inequality (15) in analogous fashion one can obtain the opposite inequality. �

Lemma 7. Assume that A satisfies the condition (A1). Let M > 0. Let U be a bounded
measurable set. There exists ωs : [0,∞) → [0,∞) nondecreasing, with limz→0 ωs(z) = 0
such that for all nonnegative functions f1, f2 ∈ L∞(U) for which ‖f1‖L∞ ≤ M and
‖f2‖L∞ ≤M

‖f2 − f1‖L1(U) ≤ ωs(‖A(f2)−A(f1)‖L1(U)).

We use this lemma with either U = Ω or U = Ω× [0, T ].

Proof. Let for x ≥ 0 and y ≥ 0

σ(x, y) :=

{
A(y)−A(x)

y−x if x 6= y

A′(x) if x = y.

Note that σ is continuous. Consider δ > 0. Let C(δ) = min[δ,M ]×[0,M ] σ(x, y). Since
A′(x) > 0 for all x > 0, C(δ) > 0 for all δ > 0. Given f1 and f2 in L∞(U), let
U1 := {x ∈ U : f1(x) < δ and f2(x) < δ} and let U2 := U\U1. Then∫

U
|f2(x)− f1(x)|dx =

∫
U1

|f2(x)− f1(x)|dx+
∫

U2

|f2(x)− f1(x)|dx

≤ δ|U |+ 1
C(δ)

∫
U
|A(f2(x))−A(f1(x))|dx.

Defining ωs(z) := infδ>0

{
1

C(δ) z + |U |δ
}

completes the proof. �

The following lemma is used in conjunction with the estimates of Lemma 11 to prove
L1 precompactness in time of approximate solutions to (E1). It represents a version of
Lemma 1.8 by Alt and Luckhaus [1].

Lemma 8. Assume that A satisfies the condition (A1). Let M > 0 and δ > 0. Let F
be a family of nonnegative L∞(Ω) functions such that for all f ∈ F

(16) ‖A(f)‖H1(Ω) ≤M, and ‖f‖L∞(Ω) ≤M.
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There exists a nondecreasing function ωM : [0,∞) → [0,∞) satisfying ωM (δ) → 0 as
δ → 0, such that if for f1, f2 ∈ F∫

Ω
(A(f2)−A(f1)(f2 − f1)dx ≤ δ

then
‖f1 − f2‖L1(Ω) ≤ ωM (δ).

Proof. Assume that the claim does not hold. Then there exists κ > 0 and sequences
f1,n and f2,n in F such that∫

Ω
(A(f2,n)−A(f1,n)(f2,n − f1,n)dx ≤ 1

n
and

∫
Ω
|f2,n − f1,n|dx ≥ κ.

The bounds in (16) imply that there exist f1, f2 ∈ L2(Ω), and a subsequence of (A(f1,n), A(f2,n)),
which we can assume to be the whole sequence, such that

A(f1,n) → A(f1) and A(f2,n) → A(f2) in L2(Ω) as n→∞
and furthermore

f1,n ⇀ f1 and f2,n ⇀ f2 in L2 as n→∞.

Therefore ∫
Ω
(A(f2)−A(f1))(f2 − f1)dx = 0.

Thus f1 = f2 a.e. Consequently ‖A(f2,n)−A(f1,n)‖L1 → 0 as n→∞. Lemma 7 implies
that ‖f2,n − f1,n‖L1 → 0 as n → ∞. This contradicts the assumption we made when
constructing the sequences. �

The following lemma is needed for proving the continuity in time (in Lp topology)
of solutions. It is a special case of results of Visintin [27] and Brezis [8]. Since in this
special case there exists a simple proof, we present it.

Lemma 9. Let F ∈ C2([0,∞), [0,∞)) be convex with F (0) = 0 and F ′′ > 0 on (0,∞).
Let fn, for n = 1, 2, . . . , and f be nonnegative functions on Ω bounded from above by
M > 0. Furthermore assume

fn ⇀ f in L1(Ω) and ‖F (fn)‖L1(Ω) → ‖F (f)‖L1(Ω)

as n→∞. Then
fn → f in L2(Ω) as n→∞.

Proof. Since F ′′ > 0 on (0,∞) for each δ > 0 there exists θ > 0 such that for all
y ∈ [δ,M ] and all h ∈ [0, y]

(17) F (y + h) + F (y − h) > 2F (y) + θh2

Let ε > 0. For δ ≥ 0 let Ωδ := {x ∈ Ω : f(x) > δ}. Let us consider ‖fn − f‖L2(Ω):∫
Ω
|f − fn|2dx =

∫
{f=0}

f2
ndx+

∫
Ω0\Ωδ

|f − fn|2dx+
∫

Ωδ

|f − fn|2dx.
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The first term ∫
{f=0}

f2
ndx ≤M

∫
{f=0}

fn <
ε

3

for n large enough, by the weak L1(Ω) convergence. For δ > 0, small enough, |Ω0\Ωδ| <
ε

3M2 and thus ∫
Ω0\Ωδ

|f − fn|2dx ≤M2 ε

3M2
=
ε

3

for all n. Regarding the third term: Using (17) when integrating on Ωδ and the fact
that F is convex when integration on Ω\Ωδ one obtains

2
∫

Ω
F

(
fn + f

2

)
dx ≤

∫
Ω
F (fn) + F (f)dx− θ

4

∫
Ωδ

|f − fn|2dx.

Since F is convex the functional w 7→
∫
F (w)dx is weakly lower-semicontinuous with

respect to L1 topology. Using the assumption of the lemma and taking lim infn→∞ gives

2
∫

Ω
F (f)dx ≤ 2

∫
Ω
F (f)− θ

4
lim sup

n→∞

∫
Ωδ

|f − fn|2dx.

Therefore ∫
Ωδ

|f − fn|2dx <
ε

3
for all n large enough. Combining the bounds establishes the L2 convergence. �

The following is the standard gradient bound; we state it for weak solutions.

Lemma 10 (gradient bound). Let u ∈ L∞(ΩT ) be a weak solution of (E3). There ex-
ists a constant C depending only on T , ‖ |V | ‖L∞(ΩT ), ‖u‖L∞(ΩT ), ‖u0‖L1, and Ã(‖u‖L∞(ΩT ))
such that

‖∇Ã(u)‖L2(0,T,L2(Ω)) < C.

Proof. Let us use Ã(u) as the test function in the formulation of a weak solution (2).∫ T

0
〈ut, Ã(u)〉dt = −

∫
ΩT

|∇Ã(u)|2dxdt+
∫

ΩT

uV · ∇Ã(u)dxdt.

Note that ∣∣∣∣∫
ΩT

uV · ∇Ã(u)dxdt
∣∣∣∣ ≤ ∫

ΩT

|u|2|V |2dxdt+
1
4

∫
ΩT

|∇Ã(u)|2dxdt.

Let F (z) :=
∫ z
0 Ã(s)ds. Using Lemma 6 and F (z) ≤ Ã(z)z we obtain

3
4

∫
ΩT

|∇Ã(u)|2dxdt ≤ lim inf
t→0

∫
Ω
F (u(t))dx+

∫
ΩT

|u|2|V |2dxdt

≤ Ã(‖u‖L∞(Ω))‖u0‖L1(Ω) + T‖V ‖2
L∞(ΩT )‖u‖L∞(ΩT )‖u0‖L1(Ω)

which implies the desired bound. �
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The following lemma is a version of a claim proven in Subsection 1.7 of Alt and
Luckhaus [1].

Lemma 11. Let V be an L∞ vector field on ΩT . Assume Ã satisfies conditions (A1)-
(A2). Let u be a weak solution of (E3) with no-flux boundary conditions and initial data
in L∞(Ω). There exists a constant C depending only on T , ‖u‖L∞(ΩT ), ‖A(u)‖L∞(ΩT ),
and ‖A(u)‖L2(0,T,H1(Ω)) such that∫ T−h

0

∫
Ω
(u(x, t+ h)− u(x, t)) (A(u(x, t+ h))−A(u(x, t)))dxdt ≤ Ch

for all h ∈ [0, T ].

Proof. Consider the test function

φ1(t) :=
1
h

∫ t+h

t
A(u(s))ds

on the time interval [0, T − h] and the test function

φ2(t) := φ1(t− h)

on the time interval [h, T ]. Subtracting the equalities resulting from the definition of
the weak solution yields the desired bound, via straightforward calculations. �

Theorem 12 (Existence for (E2)). Let ε > 0 and ρ0 a nonnegative smooth function
on Ω. The equation (E2) has a weak solution ρ on ΩT . Furthermore ρ is smooth on
Ω× (0, T ].

Proof. Let ã := aε. We employ the following iteration scheme: Let u1(x, t) := ρ0(x) for
all (x, t) ∈ ΩT . For k ≥ 1 let uk+1 be the solution of

(18) uk+1
t −∇ · (ã(uk+1)∇uk+1) +∇ · (uk+1∇(K ∗ uk)) = 0

with initial data uk+1( · , 0) = ρ0 and no-flux boundary conditions.
Since the equations preserve the nonnegativity and the ”mass” of the solutions we

have ‖uk( · , t)‖L1 =
∫
Ω uk(x, t)dx =

∫
Ω ρ0(x)dx. By the L∞ estimates of Lemma 5,

‖uk‖L∞(ΩT ) ≤ eMkT ‖ρ0‖L∞ , where Mk = ‖(∆K) ∗ uk−1( · , t)‖L∞(ΩT ). Thus Mk ≤
‖∆K‖L∞ ‖uk−1( · , t)‖L1 = ‖∆K‖L∞ ‖ρ0‖1

L. Hence Mk can be chosen independent of
k. Consequently, Lemma 10 produces bounds on ‖ã(uk)∇uk‖L2(0,T,L2(Ω)) which are
independent of k. Since ã ≥ ε > 0 this implies bounds on ‖∇uk‖L2(0,T,L2(Ω)). The
L2(0, T, L2(Ω)) bound on uk and L2(0, T, L∞(Ω)) bound on ∇K ∗ uk−1 that follows
via Young’s inequality, imply a bound on uk ∇K ∗ uk−1 in L2(0, T, L2(Ω)) independent
of k. Weak formulation of the equation then yields that uk

t is a bounded sequence in
L2(0, T, H̃−1(Ω)).

Repeated application of the Lions-Aubin Lemma (see [23][pg. 106], for example)
yields that there exists a subsequence of uk, which for convenience we assume to be the
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whole sequence, and a function ρ ∈ L2(0, T, L2(Ω)) such that

(19) uk → ρ and Ã(uk) → Ã(ρ) in L2(0, T, L2(Ω)).

The L∞ bound of Lemma 5, implies a bound on L∞ norm of ρ. The gradient bound
of Lemma 10 now implies that, along a subsequence, which we again assume to be the
whole sequence,

∇Ã(uk) ⇀ ∇Ã(ρ) in L2(0, T, L2(Ω)).

By Cauchy-Schwarz inequality

‖∇K ∗ uk−1 −∇K ∗ ρ‖L2(0,T,L∞(Ω)) ≤ |Ω|1/2‖∇K‖L∞(RN )‖uk−1 − ρ‖L2(ΩT ).

It follows that
uk∇K ∗ uk−1 → ρ∇K ∗ ρ in L2(0, T, L2(Ω)).

Therefore ∫ T

0

∫
Ω
ρφt −∇A(ρ) · ∇φ+ ρ(∇K ∗ ρ) · ∇φdxdt = 0.

By the estimates above ρk are bounded in H1(0, T, H̃−1(Ω)). Since H1(0, T, H̃−1(Ω))
continuously embeds in C1/2(0, T, H̃−1(Ω)) and thus compactly in C(0, T, H̃−1(Ω)) there
exists a subsequence of ρk which converges in C(0, T, H̃−1(Ω)). We assume for notational
simplicity that the subsequence is the whole sequence. Thus

ρk → ρ in C(0, T, H̃−1(Ω)) as k →∞.

Therefore ρ(t) → ρ0 in H̃−1(Ω) as t→ 0.
Smoothness of solution can now be shown using the standard theory (using test

functions that approximate ∆A(ρ) and ρt to show improved regularity, differentiating
the equation and iterating the procedure). �

Theorem 13 (Existence for (E1)). Let ρ0 be a nonnegative function in L∞(Ω). The
problem (E1) has a weak solution on ΩT . Furthermore ρ ∈ C(0, T, Lp(Ω)) for all p ∈
[1,∞).

Proof. Let aε and Aε(z) be as in (11). Let ρε
0 be smooth approximations of ρ0 such that

‖ρε
0‖L1 = ‖ρ0‖L1 , ‖ρε

0‖L∞ ≤ 2‖ρ0‖L∞ , and ρε
0 → ρ0 in Lp as ε→ 0, for all p ∈ [1,∞)

By Theorem 12 there exists a nonnegative solution ρε of (E2) with initial datum ρε
0.

The proof of the theorem provides uniform bounds in ε on

Aε(ρε) in L2(0, T,H1(Ω)), ρε in L∞(ΩT ) and ∂tρε in L2(0, T, H̃−1(Ω)).

Since Aε ≥ A and aε ≥ a on [0,∞) uniform bounds on L2(0, T,H1(Ω)) norm of A(ρε)
hold. Therefore there exists w ∈ L2(0, T,H1(Ω)) and a sequence εj converging to 0 such
that

(20) A(ρεj ) ⇀ w (weakly) in L2(0, T,H1(Ω)).
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Note that ρε is a weak solution of (E3) with V = ∇K ∗ ρε. Using the uniform-in-ε
bounds above and that |A(z1)−A(z2)| ≤ |Aε(z1)−Aε(z2)| for all ε > 0 and z1, z2 ≥ 0,
by Lemma 11 there exists C > 0, independent of ε, such that

(21)
∫ T−h

0

∫
Ω
(ρε(x, t+ h)− ρε(x, t)) (A(ρε(x, t+ h))−A(ρε(x, t)))dxdt ≤ Ch

for all h ∈ [0, T ]. To show that the family {ρε} is precompact in L1(ΩT ) it is enough
to show that it satisfies the assumptions of the Riesz-Frechet-Kolmogorov compactness
criterion [7][IV.26]. In particular, it suffices to show:
Claim 1o For all θ > 0 there exists 0 < h0 ≤ θ such that for all ε > 0 and all 0 < h ≤ h0∫ T−θ

0

∫
Ω
|ρε(x, t+ h)− ρε(x, t)|dxdt ≤ θ.

Claim 2o For all θ ∈ (0, T ) there exists 0 < h0 ≤ θ such that for all ε > 0 and all
0 < h ≤ h0 and all i = 1, . . . , N∫ T

0

∫
Ωθ

|ρε(x+ hei, t)− ρε(x, t)|dxdt ≤ θ

where Ωθ = {x ∈ Ω : d(x, ∂Ω) > θ}.

To prove the first claim, we recall that by the L∞ bound of Lemma 5 and the L2

gradient bound there exists M > ‖ρ0‖L1(Ω) such that for all ε ∈ (0, 1)

‖ρε‖L∞(ΩT ) ≤M and ‖A(ρε)‖L2(0,T,H1(Ω)) ≤M.

Consider for 0 < h < θ and γ > 1 the set of times for which ”good” estimates hold:

Eγ(h) :=
{
t ∈ [0, T − θ] : ‖A(ρε(t))‖H1(Ω) ≤M

√
γ, ‖A(ρε(t+ h))‖H1(Ω) ≤M

√
γ,

and
∫

Ω
(ρε(x, t+ h)− ρε(x, t))(A(ρε(x, t+ h))−A(ρε(x, t)))dx < Chγ

}
.

Let Ec
γ(h) = [0, T − θ]\Eγ(h). Note that |Ec

γ(h)| ≤ 3
γ , since each condition cannot be

violated on a set of measure larger than 1/γ. Then by Lemma 8∫ T−θ

0

∫
Ω
|ρε(x, t+ h)− ρε(x, t)|dxdt ≤ TωMγ(Cγh) + 2M

3
γ
.

Set γ = max{12M
θ , 1}. Taking h0 > 0 such that TωMγ(Cγh0) < θ

2 completes the proof.

To show Claim 2o note that for 0 < h < θ and a.e. t ∈ [0, T ]∫ T

0

∫
Ωθ

|A(ρε(x+ hei, t))−A(ρε(x, t))|dxdt ≤ h

∫ T

0

∫ 1

0

∫
Ωθ

|∇(A(ρε)(x+ shei)|dxdsdt

≤ h|Ω|
1
2 ‖A(ρε)‖L2(0,T,H1(Ω)).
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Lemma 7, applied to U = Ωθ × [0, T ], implies that∫ T

0

∫
Ωθ

|ρε(x+ hei, t)− ρε(x, t)|dx ≤ ωs(h|Ω|
1
2M).

The claim follows by taking h0 small enough.

In conclusion, along a subsequence, which we still denote by ρεj ,

(22) ρεj → ρ in L1(ΩT )

for some ρ ∈ L1(ΩT ). Therefore w = A(ρ). Note that, using the Young’s inequality

‖∇K ∗ (ρεj − ρ)‖L1(0,T,L∞(Ω)) ≤ |Ω| ‖∇K‖L∞(RN )‖ρεj − ρ‖L1(ΩT ).

Combining this claim with (22) gives

(23) ρεj (∇K ∗ ρεj ) → ρ(∇K ∗ ρ) in L1(ΩT ).

The boundedness of the left-hand side in L2 furthermore implies that along a subse-
quence

ρεj (∇K ∗ ρεj ) ⇀ ρ(∇K ∗ ρ) in L2(ΩT ).

Therefore we can take the limit as j →∞ in the weak formulation of the equation (E2):
For φ ∈ C∞0 (Ω× (0, T ))∫ T

0

∫
Ω
ρεjφt −∇A(ρεj ) · ∇φ+ ρεj (∇K ∗ ρεj ) · ∇φdxdt = 0.

to obtain that (2) holds. Note also that uniform L∞ bound on ρε and the L1 convergence
of ρεj yield that ρ ∈ L∞(ΩT ). The proof that ρ ∈ C(0, T, H̃−1(Ω)) and ρ(t) → ρ0 in
H̃−1 as t→ 0 is the same as before.

It follows that ρ(t) : [0, T ] → L2(Ω) is continuous with respect to weak L2(Ω) topology.
In particular, it suffices to establish that

∫
Ω ρ(x, s)ψ(x)dx →

∫
Ω ρ(x, t)ψ(x)dx as s → t

for all ψ ∈ L2(Ω). By a density argument it is enough to consider smooth ψ. Finally
for smooth ψ the claim holds since ρ ∈ C(0, T, H̃−1(Ω)).

Since Ω is bounded, ρ(t) is also continuous with respect to weak L1 topology. Let
F (z) :=

∫ z
0 A(s)ds. Lemma 6 and Lemma 10 then imply that t 7→

∫
Ω F (ρ(t)) is con-

tinuous. Lemma 9 then implies that ρ(t) is continuous with respect to L2(Ω) topology.
Using the boundedness of domain, and interpolating with L∞ bound on ρ implies that
ρ ∈ C(0, T, Lp(Ω)) for all p ∈ [1,∞). �
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3. Solution on RN

We now consider the Cauchy problem on RN :

ρt −∆A(ρ) +∇ · [(ρ∇K ∗ ρ)] = 0 on RN × [0, T ]

ρ( · , 0) = ρ0 on RN
(24)

The notion of the weak solution is as in Definition 1, only that it is also assumed that
ρ0 ∈ L1(RN ) and ρ ∈ L∞(0, T, L1(RN )).

Theorem 14. Assume that ρ0 ∈ L1(RN ) ∩ L∞(RN ) and ρ0 ≥ 0. Then there ex-
ists a unique weak solution of (24). Furthermore the solution preserves the integral∫

RN ρ(x, t)dt.

Proof. As there are no new essential estimates needed, we only sketch out the proof.
Let Ωn := B(0, n). Let ρn be the unique weak solutions of (E1) on Ωn with initial
data the restriction of ρ0 to Ωn. Note that the bounds of Lemma 5 and of Lemma
10 are independent of Ωn. These are sufficient to extract a convergent subsequence,
via a diagonal argument: There exist ρ ∈ L∞(RN × [0, T ]) ∩ L2(0, T, L2(RN )) and
w ∈ L2(0, T,H1(RN )) such that

ρn ⇀ ρ in L2(U × [0, T ]) and A(ρn) ⇀ w in L2(0, T,H1(U))

for any compact set U . The estimate in Lemma 11 also does not depend on Ω, however
obtaining compactness in L1, (22), relies on estimates that are domain-size dependent.
Thus we only have ρn → ρ in L1

loc(RN × [0, T ]). That is, nevertheless, sufficient to
establish that w = A(ρ). Furthermore ‖ρ‖L∞(0,T,L1(B(0,n))) ≤ ‖ρ0‖L1(RN ) for every n.
Therefore, by the monotone convergence theorem, ρ ∈ L∞(0, T, L1(RN )). Combining
the L∞ estimates and the fact that ∇K ∈ L1(RN )∩L∞(RN ) is enough to establish that
ρn(∇K ∗ρn) → ρ(∇K ∗ρ) in L1

loc(RN × [0, T ]). Since, as before, ρn(∇K ∗ρn) is bounded
in L2(RN × [0, T ]) we can extract a weakly convergent subsequence in L2 and identify
the limit as ρ(∇K ∗ ρ). This is now enough to establish that ρ is a weak solution and
that ρt ∈ L2(0, T,H−1(RN )).

Uniqueness arguments given in Theorem 4 carry over to RN with minor modifications.
To show the conservation of

∫
RN ρ(x, t)dx consider in the definition of a weak solution

(1) test functions φn ∈ C∞(RN , [0, 1]) supported on B(0, n + 1) and equal to 1 on
B(0, n) and such that their gradient and laplacian are bounded in L∞ uniformly in n.
We use the fact that A(ρ) is in L1(RN × [0, T ]) which follows from A ∈ C1([0,∞))
and ρ ∈ L∞(RN ) ∩ L∞(0, T, L1(RN )). From (1) follows, via integrating in time and
integrating by parts in space, that for 0 ≤ s < t ≤ T∣∣∣∣∫

RN

ρ(t)φndx−
∫

RN

ρ(s)φndx

∣∣∣∣ = ∣∣∣∣∫ t

s

∫
RN

−A(ρ(τ))∆φn − ρ(τ)(∇K ∗ ρ(τ))∇φndxdτ

∣∣∣∣
≤ C

∫ t

s

∫
B(0,n+1)\B(0,n)

A(ρ(τ)) + ρ(τ)dxdτ.
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Taking n→∞ and using monotone convergence theorem on the LHS and the fact that
A(ρ) + ρ ∈ L1(ΩT ) on the RHS completes the proof. �

4. Energy.

We now rewrite the equation in a slightly different form:

(25) ρt = ∇ · (ρ∇(g(ρ)−K ∗ ρ))
where g is smooth on (0,∞), and a (= A′) and g are related by

(26) a(z) = zg′(z)

Let G(z) :=
∫ z
0 g(s)ds. Integration by parts gives A(z) = zg(z)−G(z).

An important quantity associated to the equation (25) is the energy:

(27) E(ρ) :=
∫

Ω
G(ρ)− 1

2
ρK ∗ ρdx.

The variational derivative of E in the direction v ∈ L2, for which
∫
Ω v = 0

DE(ρ)[v] =
〈
δE

δρ
, v

〉
L2(Ω)

=
∫

Ω
(g(ρ)−K ∗ ρ)vdx

Let p := − δE
δρ and flux J = ρ∇p. Then the equation can be written as

ρt = −∇ · J = −∇ · (ρ∇p) = ∇ ·
(
ρ∇δE

δρ

)
If the solution is smooth a simple calculation shows that the energy (27) is dissipated
and

dE

dt
= −

∫
Ω
ρ|∇p|2dx = −

∫
Ω

1
ρ
|J |2dx.

For weak solutions we claim the following:

Lemma 15 (Energy dissipation). Assume (A1) and (K1)-(K2). Let ρ be a weak
solution of (E1) on Ω× [0, T ]. Then for almost all τ ∈ (0, T )

(28) E(ρ(0))− E(ρ(τ)) ≥
∫ τ

0

∫
Ω

1
ρ
|J |2dx

where J = ∇A(ρ)− ρ∇K ∗ ρ.

Proof. Let us regularize the equation as before by considering smooth aε such that
a+ ε ≤ aε ≤ a+ 2ε. Define g and gε using (26) and setting g(1) = gε(1) = 0 Then for
z > 0

g′(z) ≤ g′ε(z) ≤ g′(z) +
2ε
z

for z ≤ 1 g(z) ≥ gε(z) ≥ g(z) + 2ε ln z

for z ≥ 1 g(z) ≤ gε(z) ≤ g(z) + 2ε ln z
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integrating from 0 to z gives

G(z)− 2ε ≤ Gε(z) ≤ G(z) + 2ε(z ln z − z)+

Let ρε be the (smooth) solutions of the regularized equation. Using the smoothness of
ρε one verifies via direct computation:

(29) Eε(ρε(0))− Eε(ρε(τ)) =
∫ τ

0

∫
Ω

1
ρε
|Jε|2dx

We claim that for almost all 0 < τ < T

(30) lim
ε→0

Eε(ρε(τ)) → E(ρ(τ))

From (23) follows that for almost all τ ∈ (0, T ), along a subsequence as ε→ 0

ρε(τ)∇K ∗ ρε(τ) → ρ(τ)∇K ∗ ρ(τ) in L1(Ω).

Thus for almost all τ ∈ (0, T )

(31)
∫

Ω
ρε(τ)∇K ∗ ρε(τ)dx→

∫
Ω
ρ(τ)∇K ∗ ρ(τ)dx.

along subsequence as ε→ 0. Let us show that

(32)
∫

Ω
Gε(ρε(τ))dx→

∫
Ω
G(ρ(τ))dx

for almost all τ . Using the uniform L∞ bound on ρε∣∣∣∣∫
Ω
Gε(ρε(τ))−G(ρε(τ)))dx

∣∣∣∣ ≤ 2ε
∫

Ω
1 + (ρε(τ) ln ρε(τ))+dx ≤ C|Ω|ε.∫

Ω
|G(ρε(τ))−G(ρ(τ))|dx ≤ ‖G‖C1([0,maxε ‖ρε‖L∞ ])‖ρε(τ)− ρ(τ)‖L1(Ω)

which, for almost all τ converges to 0 along a further subsequence in ε. Thus (32) holds,
and combined with (31) implies (30).

Regarding the right hand side of (28), we use the following weak lower-semicontinuity
property, proven in Otto [19][pg. 165-166]: Assume that σε ≥ 0 are in L1(Ωτ ) and fε

are L1 vector fields on Ωτ such that∫
Ωτ

σεφdxdt→
∫

Ωτ

σφdxdt and∫
Ωτ

fε · ξdxdt→
∫

Ωτ

f · ξdx

for all φ ∈ C∞0 (Ωτ ) and all ξ ∈ C∞0 (Ωτ ,RN ). Then

(33)
∫

Ωτ

1
σ
|f |2dxdt ≤ lim inf

ε→0

∫
Ωτ

1
σε
|fε|2dxdt.
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the proof is simple and relies on observation that∫
Ωτ

1
σ
|f |2dxdt = sup

ξ∈C∞
0 (Ωτ ,RN )

∫
Ωτ

2f · ξ − σ|ξ|2dxdt.

The bounds on ρε and Jε that stated in the proof of Theorem 13 imply that along a
subsequence as ε→ 0

ρε ⇀ ρ in L2(Ωτ ) and Jε ⇀ J in L2(Ωτ ,RN ).

Therefore the claim above implies

(34)
∫

Ωτ

1
ρ
|J |2dxdt ≤ lim inf

ε→0

∫
Ωτ

1
ρε
|Jε|2dxdt.

Finally, claims (30) and (34), and observing that (30) holds when τ = 0, imply (28). �

Corollary 16. The claim of Lemma 15 also holds when Ω = RN .

Proof. Let, as in the proof of the existence of weak solutions on RN , ρn be the solutions
of the problem (E1) on Ωn = B(0, n). The available bounds imply that

∇A(ρn) ⇀ ∇A(ρ) and ρnK ∗ ρn ⇀ ρK ∗ ρ in L2(RN × [0, τ ])

along a subsequence, which for simplicity we assume to be the whole sequence. In the
above claim the quantities defined on Ωn have been extended by zero to RN . By the
monotone convergence theorem

(35) E(ρn(0)) → E(ρ(0)) as n→∞.

As in the proof of existence, we have ρn(K ∗ ρn) → ρ(K ∗ ρ) in L1
loc(RN × [0, T ]). Using

a diagonal procedure, for almost all τ ∈ [0, T ], there exist a subsequence nj such that
ρnj (τ) → ρ(τ) a.e. and ρnj (τ)(K ∗ ρnj (τ)) → ρ(τ)(K ∗ ρ(τ)) in L1(B(0, k)) for each
integer k > 0. Thus

lim
k→∞

lim
j→∞

∫
B(0,k)

ρnj (τ)K ∗ ρnj (τ) =
∫

RN

ρ(τ)K ∗ ρ(τ)

We claim that the two limits on the left-hand side commute. The proof is elementary
and relies on the fact that the integrals are monotone in k, and the following uniform
integrability: For every ε > 0 there exist k0, j0 such that for all k > k0 and j > j0

(36)
∫

RN\B(0,k)
ρnj (τ)K ∗ ρnj (τ) < ε

To show this note that using ”mass” conservation∫
RN\B(0,k)

ρnj (τ)K ∗ ρnj (τ) ≤ C

∫
RN\B(0,k)

ρnj (τ) ≤ C

(∫
RN

ρ(τ)−
∫

B(0,k)
ρnj (τ)

)
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Now pick k0 large enough so that
∫
RN\B(0,k0) ρ(τ) <

ε
2C and j0 so that

∫
B(0,k0) |ρnj (τ)−

ρ(τ)|dx < ε
2C for all j > j0, which we can do thanks to L1

loc convergence of ρnj (τ). This
implies (36). Consequently

lim
j→∞

∫
RN

ρnj (τ)K ∗ ρnj (τ) = lim
k→∞

lim
j→∞

∫
B(0,k)

ρnj (τ)K ∗ ρnj (τ) =
∫

RN

ρ(τ)K ∗ ρ(τ).

Note also that since ρn are bounded in L∞(0, T, L2(RN )) for almost all τ > 0 ρnj (τ) ⇀
ρ(τ) along a subsequence in L2(RN ). Since G is convex the mapping u 7→

∫
RN G(u)dx

is weakly lower-semicontinuous with respect to L2(RN ) topology. Combining the two
claims we conclude

lim inf
n→∞

E(ρn(τ)) ≥ E(ρ(τ)).

By Lemma 15

E(ρn(0))− E(ρn(τ)) ≥
∫ τ

0

∫
Ωn

1
ρn

|∇A(ρn)− ρn∇K ∗ ρn|2dx.

The claims we have proven, along with the lower-semicontinuity claim (33) are sufficient
to pass to limit n→∞. �
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