
COMMUN. MATH. SCI. c© 2012 International Press

Vol. 10, No. 1, pp. 387–418

DIFFUSE INTERFACE SURFACE TENSION MODELS IN AN

EXPANDING FLOW∗
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Abstract. We consider a diffusive interface surface tension model under compressible flow. The
equation of interest is the Cahn-Hilliard or Allen-Cahn equation with advection by a non-divergence
free velocity field. These are two reduced models which show important properties of the full-scale
surface tension model. We prove that both model problems are well-posed. We are especially
interested in the behavior of solutions with respect to droplet breakup phenomena. Numerical
simulations of 1, 2, and 3D all illustrate that the Cahn-Hilliard model is much more effective for
droplet breakup. Using asymptotic methods we correctly predict the breakup condition for the
Cahn-Hilliard model. Moreover, we prove that the Allen-Cahn model will not break up under certain
circumstances due to a maximum principle.
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1. Introduction

We consider the following three models for studying the influence of flow field and
surface tension on droplet breakup phenomena: the advective Cahn-Hilliard equation

ut+∇·(u~V )=∆K(u), (1.1)

the advective Allen-Cahn equation

ut+∇·(u~V )=−K(u), (1.2)

and the advective Allen-Cahn equation with mass conservation, or the nonlocal ad-
vective Allen-Cahn equation

ut+∇·(u~V )=−K(u)+λu. (1.3)

In these models, ~V is a prescribed velocity field and

K(u)=−ǫ∆u+
1

ǫ
f(u). (1.4)

The variable λ is chosen so that
∫

Ω
u is a constant M . Or, if we ignore the boundary

term,

λ=

∫

Ω
K(u)

M
=

1

ǫ

∫

Ω
f(u)

M
. (1.5)

In full surface tension problems, the ~V is obtained via other equations, but the pro-
posed model problem is simplified by having a prescribed ~V . We consider these
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388 DIFFUSE INTERFACE MODEL IN EXPANDING FLOW

equations in order to understand their properties, which can be applied to coupled
full problems. A comparison of these simplified models has not been studied in the
literature and provides important insight on the behavior of the full problem. In this
section we review some full surface tension models and discuss how the model problem
is derived from them.

1.1. Different surface tension models. There are many numerical methods
that deal with surface tension in two-phase fluids. This problem is known for its
computational stiffness; it contains two different time scales, the small surface tension
time scale, and the convection time scale. Three main algorithms exist for two-
phase fluids. The front tracking method tracks the interface explicitly, yet requires
extensive processing when the interface splits and merges. Since droplet breakup
mainly involves merging and splitting of the interface, it is unsuitable for the need.
The level-set algorithm uses a implicit surface function to track the boundary. The
diffusive interface algorithm uses a phase variable to describe the transition between
materials. These algorithms, and many variants, have been studied both theoretically
and numerically.

The basic level-set model for two immiscible fluids uses a function φ, where φ=0
denotes the boundary between the two fluids. For example, [34] combines the Navier-
Stokes equation for two fluids with a force at the interface:

ρ
∂~V

∂t
+(~V ·∇)~V =−∇p+∇·(2νD)−τκ(φ)∇H(φ)+f. (1.6)

This equation is then coupled with the level set equation for the interface:

φt+∇·(φ~V )=0. (1.7)

In this model, ~V is the velocity field, D is the deformation tensor 1
2 (∇~V +∇~V T )−

1
3∇~V I, p is the pressure and f denotes external force. These parameters are the same

as the original Navier-Stokes model. κ(φ)=∇· ∇φ
|∇φ| is the curvature of the boundary,

τ is the surface tension coefficient, andH is the Heaviside function, or in the numerical
implementation, a smoothed Heaviside function. Equation (1.6) is the Navier-Stokes
equation with a surface tension term κ~nδ(d), where ~n is unit outward normal vector at
the front, d is normal distance to the front, and δ is the Dirac delta function. Recent
models are designed to improve computational speed [35, 33]; see also [28, 13] for the
compressible case.

The original Cahn-Hilliard equation [12] and the Allen-Cahn equation [3] are some
of the most well-known dynamic models for diffuse interface dynamics associated with
surface energies. The Cahn-Hilliard equation can be written as an H−1 gradient
descent for a Ginzburg-Landau free energy E(u):

ut=∆

(

δE(u)

δu

)

, (1.8)

where

E(u)=

∫

(ǫ|∇u|2+ 1

ǫ
g(u)), (1.9)

and g(u) is a double-well potential that characterizes the two phases. It is normally
taken as an even-order polynomial, for example

g(u)=u2(1−u)2, (1.10)
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in which case f(u)=g′(u)=2u(1−u)(1−2u). The Allen-Cahn equation, on the other
hand, is the L2 gradient descent for the same energy:

ut=−
(

δE(u)

δu

)

, (1.11)

Papers such as [31, 2, 14] analyze the convergence and stability of the Cahn-Hilliard
equation.

The combination of Cahn-Hilliard dynamics and fluid mechanics give rise to sev-
eral related models for fluid interfaces. For example, the Navier-Stokes-Cahn-Hilliard
model [10, 11, 19, 21, 40, 25, 1, 15] couples the incompressible fluid mechanics with
a diffuse interface model. One variation of the model for an incompressible fluid (see
[21]) is

ρ

(

∂~V

∂t
+(~V ·∇)~V

)

=−∇p+∇·(2νD)+fu+f, (1.12)

∇· ~V =0, (1.13)

∂u

∂t
+∇·(u~V )=∆K(u), (1.14)

K(u)=
∂g(u)

∂u
−ǫ2∆u. (1.15)

The fu term in Equation (1.12) represent the influence of diffuse interface on the
velocity field, and is different in different models. For example, in [19, 21] we have
fu=−u∇K(u), and in [1] we have fu=∇·( 12 |∇u|2I−∇u⊗∇u). Another variation
of the above model to include compressible or quasi-incompressible fluids is found by
replacing Equation (1.13) with

∂ρ

∂t
+ ~V ·∇ρ=ρ∇· ~V , (1.16)

The additional advection term in Equation (1.14), compared to the original Cahn-
Hilliard, represents the mechanics of fluid flow, which is combined with the Cahn-
Hilliard type surface effect.

1.2. Model problem. The system equations (1.12-1.15) can be studied
numerically, although it is difficult to prove properties of this system due to its coupled
nature. We note that even simpler models have been considered for advection with
interfacial tension [24, 27] in which the dynamics are driven by an Allen-Cahn type
model rather than a Cahn- Hilliard model. A common tool in applied mathematics is
that of developing reduced models for which one can prove rigorous results or perform
asymptotic analysis, in order to understand the behavior of pieces of a more complex
model. Such models may not describe the full physics of the real world problem,
but can provide tremendous insight into the mathematical behavior and also provide
both rigorous and asymptotic results that can be used in the development and testing
of more complex numerical codes. Model problems have a long history in applied
mathematics and we mention a few classical examples that have partially inspired
our choice of problems. For example, the classical Kirchoff elliptical vortex for two
dimensional fluids has been carefully studied under the influence of a fixed strain
velocity field [29, 8], similar to the fixed field considered in this paper, although we
focus on compressible examples as well as incompressible examples. A second example
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is a turbulent transport model that use a fixed background flow in order to derive
renormalization formulas and other statistical properties associated with turbulent
diffusion [4, 5]. Another area of research in which interfacial dynamics is important
is image processing. Many highly nonlinear PDEs have been proposed to address
problems of denoising in image analysis. By combining these PDEs with a nonlinear
transport term (Burgers flux), the second author and Greer were able to obtain some
clear analytical and computational results on singularity formation for these nonlinear
diffusion equations [16]. We note that the combined PDE is not directly used in
image processing, although this model provides significant insight into the expected
dynamics of more complex models that use these diffusions.

Following the ideas above, we choose to study the dynamics of the interface as
defined by the Cahn-Hilliard or Allen-Cahn motion in a fixed prescribed velocity field.
Since the interface is represented by u, we consider a reduced model of Equation (1.14)
with a prescribed velocity field. This gives us the model problem Equation (1.1). We
also use a different scaling for K(u) compared to Equation (1.14), but the scaling is
varied in the literature (e.g. [40, 25, 26]), and the properties we discuss will remain
similar for all scalings. Model problem Equation (1.2) comes in a similar pattern, but
it uses an Allen-Cahn based surface effect rather than a Cahn-Hilliard based surface
effect. Equation (1.3) is based on Equation (1.2). If we integrate the original Allen-
Cahn equation, we can see that it does not automatically conserve mass. Thus, an
additional term λ is often added to the equation for this reason [32]. We can add
a similar term here, but we would like to add λu instead of λ to keep u localized.
These models are also studied in the sharp interface limit [24, 26]. The sharp interface
limit for the Allen-Cahn equation is motion by mean curvature and the sharp interface
limit for the Cahn-Hilliard is the Mullins-Sekerka flow. The analysis of these equations
provide insight to their corresponding sharp interface limit problems.

Properties of ~V play an important role here. When ~V =0 we obtain the original
diffuse interface equation. Our main interest is when ~V is expanding, or general prob-
lems in which ∇· ~V 6=0. We note that the incompressible case is well studied, however
the compressible case less so. For simplicity we choose the Neumann condition ∂u

∂n =0
on ∂Ω. In papers like [11, 21], the velocity field satisfies a Navier-Stokes equation,

thus the velocity field ~V is divergent free. In our situation, ~V is not divergence free.
The flow is expanding where ∇· ~V >0 and contracting where ∇· ~V <0.

In these advective equations, mass conservation acts in a different way due to
boundary condition of the velocity field. For example, if we integrate Equation (1.1),
we would have

(
∫

Ω

u

)

t

+

∫

∂Ω

u~V ·~n=
∫

∂Ω

∇K(u) ·~n. (1.17)

Under a Neumann boundary condition, the right hand side becomes 0. Only when we
exert a no-flow condition ~V ·~n=0 on the boundary can we have mass conservation.
In fact, this no-flow condition would simplify many proofs below. We assume this
is satisfied by having a small layer of ~V that vanishes near the boundary. We also
assume ~V is smooth enough in the following arguments.

In the next section we analyze the basic property and droplet breakup condition
of the advective Cahn-Hilliard equation. Section 3 analyzes the advective Allen-Cahn
equation. Section 4 shows numerical simulation results for both models.
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2. Property of the advective Cahn-Hilliard equation

In this section we prove basic properties of the advective Cahn-Hilliard equation.
We begin with the existence and uniqueness property of the equation, then move on
to the analysis of the breakup condition.

2.1. Existence and uniqueness. The following existence and uniqueness
theorem is similar to that of the original Cahn-Hilliard equation [36]. In the proof
below and related arguments, the symbol C denotes a generic constant.

Theorem 2.1. If g(u) in Equation (1.9) is a polynomial of order 2p, then for every
given u0 in L2(Ω), the Equation (1.1) with u(0)=u0 has a unique solution u that
belongs to C([0,T ];L2(Ω))∩L2(0,T ;H2

0Ω)∩L2p(0,T ;L2p(Ω)), ∀T >0.

The proof for this theorem follows the same steps as the Galerkin method for
proving other equations like the Navier-Stokes equation and original Cahn-Hilliard
equation, with the only difference in the a priori estimate; see [37, 36]. We only
present the different a priori estimates here.

The weak form of Equation (1.1) is

(u′(t),w)+ǫA(u,w)+B(~V ,u,w)+
1

ǫ
(f ′(u)∇u,∇w)=0, ∀w∈H2(Ω), (2.1)

where A(u,w)=(∆u,∆w), B(~V ,u,w)=
∫

Ω
∇·(u~V )w.

Taking w=u we have

1

2

d

dt
|u|2+ǫ|∆u|2+ 1

ǫ
(f ′(u)∇u,∇u)+

1

2
(|u|2,∇· ~V )=0. (2.2)

Since f ′(s)≥ b2ps
2p−2−C,

1

2

d

dt
|u|2+ǫ|∆u|2+ 1

ǫ

∫

Ω

(b2pu
2p−2|∇u|2)≤C|∇u|2+ C

2
|u|2. (2.3)

Thus we can get the upper bound for u in L2(0,T ;H2(Ω)). To get the upper bound
of u in L∞(0,T ;L2(Ω)), we see that

C|∇u|2≤C|u|‖u‖H2(Ω)

≤C|u|(|∆u|+M)

≤ ǫ

2
|∆u|2+C|u|2+CM2, (2.4)

where M =
∫

Ω
u is the total mass. Thus,

d

dt
|u|2+ǫ|∆u|2+

∫

Ω

(b2pu
2p−2|∇u|2)≤C|u|2+CM2. (2.5)

The rest of the proof is similar to [37, 36]. By using the Gronwall inequality we get
an upper bound for u in L∞(0,T ;L2(Ω)). This suffices to show the continuity and
uniqueness.

2.2. Energy estimate. The original Cahn-Hilliard equation has an energy
term that serves as a Lyapunov function:

J(u)=

∫

Ω

ǫ

2
|∇u|2+ 1

ǫ
g(u). (2.6)
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This term can be estimated by multiplying K(u) on both sides of Equation (1.1) and
then integrating by parts. Following the same pattern, we get

J(u)t+(∇·(u~V ),K(u))=−|∇K(u)|2. (2.7)

We can estimate the new term by

(∇·(u~V ),K(u))=(~V ·∇u,K(u))+((∇· ~V )u,K(u)). (2.8)

The first term,

(~V ·∇u,K(u))=−(∇· ~V ,
ǫ

2
|∇u|2+ 1

ǫ
g(u))−ǫ

∫

Ω

(∇u)T∇~V∇u, (2.9)

due to the fact that
∫

Ω

~V ·∇u∆u=

∫

Ω

~V ·(∇·(∇u⊗∇u)− 1

2
∇(|∇u|2))

=

∫

Ω

−∇~V : (∇u⊗∇u)+
1

2
∇· ~V |∇u|2

=

∫

Ω

−(∇u)T∇~V∇u+
1

2
∇· ~V |∇u|2. (2.10)

The right-hand side of Equation (2.9) is bounded from below by −2||∇~V ||L∞J(u).
The second term of Equation (2.8) is bounded by

((∇· ~V )u,K(u))≥−ǫ

(

1

2

∫

u2∆∇· ~V −
∫

|∇u|2∇· ~V
)

− ||∇· ~V ||L∞

ǫ

∫

|uf(u)|

≥−C(J(u)+ |u|22). (2.11)

Putting everything together, we have

J(u)t≤C(J(U)+ |u|22), (2.12)

which, using Gronwall’s inequality and the bound of |u|22 above, gives

J(u)t≤ exp(Ct)J(u0)+C. (2.13)

We can see that the energy of u is bounded at every finite time interval [0,T ], and
increases at most exponentially.

2.3. Droplet breakup. When the the external flow field is sufficiently large,
the advective Cahn-Hilliard model exhibits droplet breakup as illustrated in Figure
2.1. Similar phenomena have been observed in numerous reaction-diffusion systems;
see for example [30, 22], [20] and references therein. In this section we perform a
detailed study of the breakup phenomenon for the advective Cahn-Hilliard model in
one dimension. We recall the one dimensional case of Equation (1.1):

ut+(V (x)u)x=Kxx; K=−εu′′+
1

ε
f(u). (2.14)

We choose a specific form of f(u) in our discussion:

f(u)=2u(1−u)(1−2u). (2.15)

Other forms of f(u) follow a similar discussion. In [30], Nishiura and Ueyema proposed
a set of conditions for the occurrence of self-replication in reaction-diffusion models.
Roughly stated, they are:
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1. The disappearance of the steady state due to a fold-point (or saddle-node)
bifurcation.

2. The existence of the so-called dimple-eigenfunction at the threshold, which is
responsible for the initiation of the breakup process.

3. The steady state is stable on one side of the fold point and is unstable on the
other.

The importance of these conditions is that the breakup of a droplet can be under-
stood in terms of the analysis of the steady state solution of Equation (2.14) which
satisfies

(V (x)u)x=Kxx, K=−εu′′+
1

ε
f(u). (2.16)

The breakup analysis for Equation (2.14) is very similar to [22], where the Brussela-
tor and other reaction-diffusion systems having mesa-type structures were shown to
exhibit self-replication. For simplicity, we will only consider a special case

V (x)=
V0

ε
x, (2.17)

and get the following asymptotic result:

Result 2.2. Consider Equation (2.14) in the limit ε≪1, with V (x) given by Equation
(2.17), and with even initial conditions for u. For a given mass M =

∫∞

−∞
udx, let

Vc=
Vc0

M2
(2.18)

where Vc0≈1.326 is a constant whose precise value is given below in Equation (2.31).
If V <Vc then there exists a steady state u(x,t)=u(x) in the form of a droplet. If
V >Vc, no such steady state exists. As V is slowly increased past Vc, the droplet will
split in the middle and breakup into two droplets.

The derivation of this result consists of an analytic verification of the Nishiura-
Ueyema Conditions 1 and 2. Due to space limitations, we omit the verification of
Condition 3 but refer the reader to [22] where Condition 3 is proved for a similar
model.

Verification of Nishiura-Ueyema Condition 1. We seek a steady state so-
lution u(x) which is even. It then follows that K is also even and, upon integrating
Equation (2.16) on the interval [0,x], we obtain

Kx=
V0

ε
xu.

We now change variables K= 1
εw to obtain a system

wx=V0xu; −ε2uxx+f(u)=w. (2.19)

Since we assumed that u is even, we consider only the half-line x≥0; the boundary
conditions become

u′(0)=0=u′(∞);

∫ ∞

0

u=M/2, (2.20)
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Fig. 2.1. Snapshots of temporal dynamics of Equation (2.16) with V given by Equation (2.17).
Here, ε=0.01 and the mass of the droplet is taken to be M =

∫∞

−∞
udx=0.8. The parameter V0 is

slowly increased in time according to the formula V0=0.001t.

Fig. 2.2. The bifurcation structure of the the steady state Equation (2.19, 2.20) with ε=
0.01, M =0.8; V0 is plotted vs. u(0). The solid curve represents the numerical solution to the full
system; the dotted curve is the asymptotic formula (2.29). The coordinates of the fold point are
u(0)=0.79, V0=2.18. The inserts show the profile of u(x) for selected points along the bifurcation
curve as indicated.

where M is a given total mass of u. Since the time-dependent PDE Equation (2.14)
conserves the mass of u, M is also the initial mass of u(x,t) at t=0.

We will construct a solution to Equation (2.19, 2.20) for which u(x) has a sharp
interface located at some position x= l>0 with u∼0 for x>l. Some typical such
profiles for u(x) are shown in Figure 2.2. Such a solution has a transition layer
consisting of the interface near x= l and an outer region to the left of x= l. In the
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transition layer, we rescale the space variable

x= l+εy; u(x)=U(y); w(x)=W (y)

to obtain

Wy ∼ ε2V0yU.

To leading order we have Wy ∼0, so that W ∼W0 is constant. We then obtain an
ODE for U :

Uyy+f(U)−W0=0. (2.21)

The interface corresponds to a heteroclinic orbit of the ODE (2.21) which connects the
two saddle equilibria of Equation (2.21). Such a heteroclinic connection exists if and

only if
∫ U+

U−

[f(U)−W0]dU =0, where U± are the equilibria points that satisfy f(U±)−
W0=0 with U+ 6=U−. Using f(u)=2u(1−u)(1−2u), this yields U+=1, U−=0, and
W0=0; the explicit solution for U(y) is then given by

U(y)=
1

2

(

1−tanh(y/
√
2)
)

,

with

U(+∞)=0; U(−∞)=1.

In the outer region away from the interface, to leading order we have

f(u)∼w, 0≤x<l. (2.22)

Substituting Equation (2.22) into Equation (2.19) we obtain

du

dx
=xV0

u

f ′(u)
; u(l)=1. (2.23)

The boundary condition is obtained from matching to the outer solution, u(l)=
U(−∞)=1. The solution to Equation (2.23) is given by

V0

2
x2=

∫ u

u0

f ′(s)

s
ds; x<l, (2.24)

where u0=u(0). Thus we obtain the following relationship between l and u0,

V0

2
l2=G(u0), (2.25)

where

G(u0) :=

∫ 1

u0

f ′(s)

s
ds=−6u2

0+12u0−2lnu0−6.

It remains to relate l to M. Since u∼0 to the right of the interface, the mass of
u is asymptotically given by

M

2
∼
∫ l

0

u(x)dx, (2.26)
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Fig. 2.3. Right side: Bifurcation diagram A vs. U(0) for the core problem (2.41). The solid
curve is the numerical solution to Equation (2.41); dashed lines represent the asymptotics for large
A as given by equations (2.43,2.42). Left: the solution profiles with U(0), A as indicated.

where we ignored the O(ε) contribution to the mass from the interface. Writing
Equation (2.24) as

x2=
2

V0
(G(u0)−G(u))

and substituting into Equation (2.26) we obtain

M

2
∼
(

2

V0

)1/2∫ 1

u0

u
d

du

√

G(u0)−G(u)du (2.27)

∼
(

2

V0

)1/2{
√

G(u0)−
∫ 1

u0

√

G(u0)−G(u)du

}

, (2.28)

so that

V0∼
1

M2
8

(

√

G(u0)−
∫ 1

u0

√

G(u0)−G(u)du

)2

. (2.29)

Next, note that G(1)=0 and G′(u0)=−f ′(u0)/u0; in particular G(u0) attains a max-
imum at um which satisfies f ′(um)=0:

um :=
3+

√
3

6
=0.78868. (2.30)

It follows that the solution to the outer problem (2.23) only exists if um<u(0)<1.
In terms of M , the critical threshold for existence is obtained by substituting u0=um

into Equation (2.29); namely Vc=
Vc0

M2 where the constant Vc0 is given by

Vc0 :=8

(

√

G(um)−
∫ 1

um

√

G(um)−G(u)du

)2

≈1.32606. (2.31)

This shows the existence of the fold-point for V0 as given by Result 2.2.
Verification of Nishiura-Ueyema Condition 2. Here, we follow closely an

analogous derivation in [22]. The key is to demonstrate that when V0 is close to the
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threshold value Vc, an additional boundary layer in the shape of an inverted spike
forms at the center of the droplet. To see this, suppose that V0 is sufficiently close to
Vc so that near x=0, we may expand

u(x)∼um+δu1(x), w∼f(um)+δ2w1+ ...; δ≪1. (2.32)

The small parameter δ will be related to ε below. The equation for w1 then becomes

δ2w1x∼V0xum,

so that

w1(x)∼w1(0)+δ−2V0um

2
x2. (2.33)

The consistency condition for Equation (2.33) is that x/δ≪∞; this will be satisfied
below. We now expand in Taylor series,

f(u)−w∼−w1(0)δ
2− V0um

2
x2+u2

1

f ′′(um)

2
δ2, (2.34)

where we recall that f ′(um)=0. Substituting Equations (2.33, 2.34) into Equation
(2.19) we obtain

ε2u1xx−u2
1

f ′′(um)

2
δ2+w1(0)δ

2+
V0um

2
x2=0. (2.35)

To determine the right scaling for δ, rescale

x=αz, u1(x)=U(z)

so that Equation (2.35) becomes

Uzz−
(

f ′′(um)

2

δ2α2

ε2

)

U2+

(

V0um

2

α4

ε2

)

z2+w1(0)
δ2

ε2
α2=0. (2.36)

We now choose α,δ so that Equation (2.36) becomes

Uzz =U2−z2−A, (2.37)

i.e.

α := ε1/2
(

V0um

2

)−1/4

; δ := ε1/2
(

V0um

2

)1/4(
f ′′(um)

2

)−1/2

, (2.38)

A :=
2w1(0)

f ′′(um)
. (2.39)

Matching with the outer solution, in the limit z→∞ we impose the boundary condi-
tion uxxε

2≪1, or Uzz ∼0. Thus the boundary conditions for Equation (2.37) become

Uz(0)=0; U ∼ z as z→∞. (2.40)

The Equations (2.37) and (2.40) together comprise the core problem which fully de-
scribes the growth of the inverted spike at the origin. The scaling α=O(ε1/2) quan-
tifies the width of the the core spike in terms of the O(ε) interface width. This
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core problem is identical to the core problem for the Brusselator and other reaction-
diffusion systems; we refer the reader to [22] for details. For convenience, we state
the main result about Equations (2.37, 2.40) as derived in [22]:

Lemma 2.3 (From [22], Theorem 2). Consider the core problem

Uzz =U2−z2−A; Uz(0)=0; U ∼ z as z→∞. (2.41)

There exists a constant Ac such that Equation (2.41) has precisely two monotone
solutions for A>Ac and no monotone solutions when A<Ac.

When A≫1, Equation (2.41) admits two monotone solutions U±(z) with the
following uniform asymptotic expansions:

U+(z)∼
√

A+z2, with U+ (0)∼
√
A; (2.42)

U−(z)∼
√

A+z2
(

1−3sech2
(

A1/2z√
2

))

, with U+ (0)∼−2
√
A. (2.43)

For any monotone solution of Equation (2.41), let s=U(0) and consider the curve
A=A(s). Then A(s) has a unique (minimum) critical point at s=sc, A=Ac. More-
over, define

Φ(z)=
∂U(z;s)

∂s
|s=sc .

Then Φ(z)>0 for all z≥0 and Φ→0 as z→∞. Numerically, Ac=−1.46638, sc=
−0.61512.

The bifurcation diagram of A vs. U(0) and some steady states is given by Figure
2.3.

–0.02

0.02

0.04

0.06

–1 –0.5 0.5 1

Fig. 2.4. The shape of the the eigenfunction corresponding to the zero eigenvalue at the fold
point of the bifurcation diagram for Equation (2.19,2.20) with ε=0.01, M =0.8. The parameter
V0=2.18 is chosen to be at the fold point.

In particular, the profile U− describes the shape of the finger within the boundary
layer at the center of the droplet, which is responsible for the initiation of the splitting
process. Similarly, as was shown in [22], the linearized problem at the fold point has a
zero eigenvalue; the corresponding eigenfunction is given by φ=∂u/∂ [u(0)]. Moreover,
∫

φ=0 due to mass conservation. As explained in [22], it follows from Lemma 2.3 that
φ has precisely one positive root; its profile is shown in Figure 2.4. This proves that
criterion 2 of Nishiura-Ueyema conditions is satisfied. This concludes the derivation
of our result.

We use two methods to verify the droplet breakup condition from Result 2.2. We
take ε=0.01 and we let V0 be a slowly varying parameter in time, according to the
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formula V0=0.001t. Using the initial condition

u(x,0)=
1

2

(

1−tanh

( |x|−0.4

0.01
√
2

))

, (2.44)

we then numerically compute the solution to the full system (1.1). Droplet breakup is
observed at about t=1982 or V0≈1.982 as shown in Figure 2.1. The initial conditions
Equation (2.44) correspond to M =0.8. The formula (2.18) for Vc then yields Vc=
1.32606
0.82 =2.07, which compares favorably with the numerical result.

Next, we computed the bifurcation diagram of the steady state Equations (2.19,
2.20); this is shown in Figure 2.2. To compute the diagram, we gradually changed u(0)
from 1 down to 0.5; then for each given u(0), we used Maple’s numerical boundary
value problem solver to compute the corresponding value of V0. In this way, the fold
point was found at u(0)=0.79, with the corresponding V0=2.18. This agrees very
well with the asymptotic result Vc=2.07 as well as Equation (2.30), um=0.7887.

In higher dimensions, similar result can be deducted for the radially symmetric
case. In fact, it is only necessary to modify Equation (2.16) slightly:

(

d

dr
+(n−1)

1

r

)

(V (r)u)=

(

d

dr
+(n−1)

1

r

)

Kr;

K=−ε

(

d

dr
+(n−1)

1

r

)

ur+
1

ε
f(u). (2.45)

The asymptotic solution would be the same as Equation (2.24), but the relationship

between l andM becomeM
∫ l

0
Crn−1u(r)dr instead where C is the volume of the n−1

dimensional unit sphere. Thus, the relationship Equation (2.18) becomes Vc=
Vc0

M2/n

in n dimensions.

3. Property of the advective Allen-Cahn equation

In this section we prove the existence, uniqueness and maximum principles for the
advective Allen-Cahn equation and the advective nonlocal Allen-Cahn equation. The
maximum principle shows that the droplet breakup will not appear in many cases.

3.1. Existence and uniqueness. The existence and uniqueness for the
advective Allen-Cahn equation can be done similarly to that of the advective Cahn-
Hilliard equation. However, a different method must be used for the advective nonlocal
Allen-Cahn equation with mass conservation due to the extra nonlocal term. A semi-
group method is used to show finite time existence of the solution, then a maximum
principle analysis gives the bound of the λ in the non-local term.

Theorem 3.1. For dimension n=1,2,3, if g(u) in Equation (1.9) is a polynomial

of order 2p, then Equations (1.2) and (1.3) with initial value u0∈W
3
2
,2(Ω) have a

unique solution u∈C1([0,T ];C2(Ω)), ∀T >0.

The proof contains two parts. The first part follows a similar process to that used
in [6, 18], which involves using their following propositions.

Proposition 3.2. Consider the equation

ut=Au+N(u), (3.1)

where A is the generator of a holomorphic semigroup S(t) of bounded linear operators
on a Banach space X. Suppose that ||S(t)||≤M0 for some constant M0>0 for all t>
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0. Under these hypotheses the fractional powers (−A)−α can be defined for 0≤α<1
and (−A)α is a closed linear operator with domain Xα=Domain((−A)α) dense in X.
Let N(u) be locally Lipschitz, i.e. for each bounded subset of U there exists a constant
CU such that

||N(u1)−N(u2)||≤CU ||u1−u2||α, ∀u,v∈U, (3.2)

then given u0∈X, there exists a finite time interval [0,t) and a unique solution u
with u(0)=u0 on the time interval and the solution can be continued uniquely on a
maximal interval of existence [0,T ∗). Moreover, if T ∗<∞ then limt→T∗ ||u(t)||α=∞.

Proposition 3.3. Assume A and N same as above, suppose u is a solution of
the equation on (0,T ], then if γ <1, t→ut(t)∈Xγ is locally Hölder continuous for
t∈ (0,T ], with ||ut||α≤Ctα−γ−1.

Lemma 3.4. Assume A and N are as above. If ||N(u)||≤C(t)(1+ ||u||α), then the
unique solution exists for all times.

In Equation (1.3), we can take A= ǫ∆ on the domain of H2(Ω) functions with
Neumann boundary condition, 1>α> 3

4 , X=L2(Ω) and

N(u)=−∇·(u~V )− 1

ǫ
f(u)+λu. (3.3)

We have Xα⊃W
3
2
,2(Ω)∩L∞(Ω). Thus, we can estimate the three terms of N(u1)−

N(u2) individually.

||∇·(u1
~V )−∇·(u2

~V )||L2 ≤||~V ||L∞ ||∇u1−∇u2||L2 + ||∇· ~V ||L∞ ||u1−u2||L2

≤C||u1−u2||H1

≤C||u1−u2||Xα . (3.4)

Since f is a polynomial of order 2p−1 we have

f(u1)−f(u2)=(u1−u2)h(u1,u2), (3.5)

where h is a polynomial of order 2p−2.

||f(u1)−f(u2)||L2 ≤||u1−u2||L2 ||h(u1,u2)||L∞

≤C||u1−u2||L2(||u1||2p−2
L∞ + ||u2||2p−2

L∞ )

≤C||u1−u2||Xα(||u1||2p−1
Xα + ||u2||2p−1

Xα ), (3.6)

and

||u1

∫

Ω

f(u1)−u2

∫

Ω

f(u2)||L2

≤||u1||L2 ||f(u1)−f(u2)||L1 + ||u1−u2||L2 ||f(u2)||L1

≤||u1−u2||L1 ||u1||L2 ||h(u1,u2)||L∞ +C||u1−u2||L2 ||u2||2p−1
L2p−1

≤C||u1−u2||Xα ||u1||L∞(||u1||2p−2
L∞ + ||u2||2p−2

L∞ )+C||u1−u2||Xα ||u2||2p−1
L∞

≤C||u1−u2||Xα ||(||u1||2p−1
Xα + ||u2||2p−1

Xα ). (3.7)

We can apply Proposition 3.2 from here and get a unique solution in u∈D(A). Then,
since ∇u∈W 1,2(Ω)⊂L6(Ω), we have Au=N(u)− du

dt ∈L6(Ω). This implies ∇u∈
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W 1,6(Ω), which is Hölder continuous. This in turn shows u∈C2+δ(Ω) for some δ>0.
The local Lipschitz condition for Equation (1.2) is similar.

This proposition shows a maximum interval of existence [0,Tmax) for the advective
Allen-Cahn equations. To show global existence, we need maximum principle below
to show a bound for λ and f(u), then we can directly apply Lemma 3.4 using the fact
that

||∇·(u~V )||L2 ≤C||u||H1 ≤C||u||Xα . (3.8)

3.2. Maximum principle analysis. The maximum principle-like analy-
sis works only for the advective Allen-Cahn equation, since it is second-order and
parabolic. The advective Cahn-Hilliard equation, on the other hand, is of fourth-
order and thus does not possess the maximum principle.

Theorem 3.5. For Equation (1.2) with any velocity field, or Equation (1.3) with

expanding flow ∇· ~V ≥0, there exists a value uM such that, if initial value u0(x)∈
[0,uM ] in Ω and satisfies the condition of Theorem 3.1, then u(x,t)∈ [0,uM ] for all t.

For Equation (1.3) with a general flow, 0≤u(x,t)≤max(exp(− inf(∇· ~V )t),1)uM .

If we set û(x,t)=expξtu(x,t), then Equation (1.2) becomes

ût=expξt(ǫ∆u−∇u · ~V −u∇· ~V − 1

ǫ
f(u)+ξu), (3.9)

and Equation (1.3) becomes

ût=expξt(ǫ∆u−∇u · ~V −u∇· ~V − 1

ǫ
f(u)−λu+ξu). (3.10)

For the advective Allen-Cahn Equation (1.2), we can simply take ξ close to 0.
Since g(u) is a double-well potential, f(u)<0 when u<0. We can deduce that there
is no interior negative minimum. Similarly, there is no interior maximum larger than
1. Thus, if the initial value is within [0,1], so is the solution.

For the advective nonlocal Allen-Cahn Equation (1.3) it becomes a little more
complicated. Within any time interval [0,T], λ is bounded, so we can take a proper ξ
in Equation (3.10) to use the maximum principle. Thus, û has no negative minimum
within any interval (0,T]. If initial value is nonnegative, so is the solution.

The positive side is more tricky. If u takes its maximum value umax on the
interior and ∇· ~V ≥0, then at that point we have 1

ǫ f(umax)+λumax<0. On the

other hand, due to the definition of λ Equation (1.5), we know that λ=− 1
ǫ
f(u)
u

for some u∈ [0,umax]. This means that f(umax)
umax

< f(u)
u for some u∈ [0,umax]. Since

f(u)
u is an even-ordered polynomial, there exists an uM >0 so that f(umax)

umax
≥ f(u)

u
for all umax≥uM and u≤umax. Thus, if the initial value is smaller than uM , so
is the solution. For example, if we take double-well potential g(u)=u2(1−u)2, then

uM =1.5. For a general flow, we take ξ=inf(∇· ~V ) in Equation (3.10). With a similar
analysis, u≤uM when û takes its maximum, hence the result.

For the advective Cahn-Hilliard Equation (1.1), the maximum principle analysis
does not work. In fact, there are cases when it fails: the solution becomes negative
even when the initial value is not; see numerical results in Figure 4.5, Figure 4.13,
and Figure 4.15.

In the simple 1D case, we can show the following fact:
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Theorem 3.6. If u satisfies Equation (1.2) or (1.3), u(x,0)≥0 and bounded,
ux(x,0)≤0 on Ω, and Vxx(x)≥0, then ux(x,t)≤0 for all t.

Note that, if we expect a symmetric condition, i.e. V is odd and u is even, and
u(x,0) takes its only maximum value at x=0, then ux(0,t)=0 and we can apply this
theorem on Ω∩ [0,∞). Thus for any t, u(x,t) takes the maximum value at x=0, and
the droplet breakup does not occur.

To prove this, we see that Equation (1.2) leads to

(ux)t=(ux)xx−V (ux)x−(2Vx+f ′(u))ux−Vxxu, (3.11)

and Equation (1.3) leads to

(ux)t=(ux)xx−V (ux)x−(2Vx+f ′(u)+λ)ux−Vxxu. (3.12)

Since 2Vx+f ′(u) and λ are bounded, Vxxu≥0, we can use a process similar to
that above to show that no positive maximum can be achieved in the interior of Ω.
Thus ux(x,t)≤0 for all t. When Vxx is not nonnegative, breakup may occur. See
Figure 4.11 and Figure 4.12.

In higher dimensions, it is easy to consider the case of radially symmetric data.
General results require a more detailed analysis, but this analysis is suffice to show
that an Allen-Cahn type equation is unsuitable for the model of droplet breakup.

Theorem 3.7. Suppose u satisfies Equation (1.2) or (1.3) on a n-dimensional sphere
around 0, u(~x,0)≥0 bounded and radially symmetric, and ur(~x,0)≤0 on Ω, where

ur is the directional derivative of u in the direction of ~x. If ~V (~x)=V (|~x|) ~x
|~x| and

r2Vrr(r)+(n−1)rVr(r)−(n−1)V (r)≥0 for any r, then ur(~x,t)≤0 for all t.

We can prove this by taking w= rn−1ur, so that Equation (1.2) gives

wt=wrr−
(

n−1

r
−V

)

wr−(2Vr+f ′(u))w−rn−3(r2Vrr+(n−1)rVr−(n−1)V )u.

(3.13)
Using the same method as that of 1D case, we can show that no positive maximum
exist under given condition. Thus, w≥0 for all ~x and t, which is equivalent to ur≥0.
When n=1, the condition on ~V would be the same as in the 1D Theorem 3.6.

4. Numerical simulation

4.1. Algorithm. In this section we present numerical simulations in 1, 2,
and 3D. We compare some of the results with the theory from previous sections.
Specifically, we focus on different behaviors when the strength of the velocity field
changes, and different droplet breakup conditions for different models. All of our
numerical results are consistent with the theories in previous sections.

The Cahn-Hilliard equation poses numerical challenges due to the stiffness of both
the 4th-order term and the nonlinear term. Thus many algorithms, both linear and
nonlinear, have been proposed to solve it, for example the finite element method [7]
and semi-implicit discretization [38, 39, 9]. In this paper we apply a simple semi-
implicit splitting scheme [38] on the fourth-order term of the advective Cahn-Hilliard
Equation (1.1). The equation can be written as

un+1−un

∆t
+∇·(un~V )=−∆(ǫ∆(Aun+1+(1−A)un)− 1

ǫ
f(un)), (4.1)
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Fig. 4.1. The Stability graph for the 1D advective Cahn-Hilliard Equation (1.1) using the
scheme in (4.1). The cross shape indicates the stable cases for both A=1 and A=2, the circle
represents the stable case for A=2 but the unstable case for A=1, the triangle shape indicate
unstable case for A=2. The X-axis and Y-axis represent the time step ∆t and the maximum value
of velocity field Vmax respectively.

Fig. 4.2. The convergence graph for the 1D advective Cahn-Hilliard Equation (1.1) using the
scheme in (4.1). Error=|u∆x,∆t(t)−u∆x,∆t/2(t)|. The x-axis is the value of ∆t. ∆x is 10/2048 for
the crosses and 10/4096 for the circles. Note that the rightmost cross is an unstable situation. For
∆x=10/4096 the instability will not be visible until a larger t. The error converges to 0 at order 1.

where the advection term is discretized by the upwind scheme. The parameter A is
chosen as 1 in the implementation. Equations (1.2) and (1.3) are discretized as

un+1−un

∆t
+∇·(un~V )= ǫ∆(Aun+1+(1−A)un)− 1

ǫ
f(un) (4.2)
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Fig. 4.3. The convergence graph for the 1D advective Cahn-Hilliard Equation (1.1) using the
scheme in (4.1). Error=|u∆x,∆t(t)−u∆x/2,∆t(t)|. The x-axis is the value of N =10/∆x. ∆t is

1×10−6 for the crosses and 5×10−7 for the circles. Note that the error converges to 0 at order 1.

Fig. 4.4. The advective Cahn-Hilliard equation does not breakup with V0=400, at time 0 and
20×10−4 respectively.

and

un+1−un

∆t
+∇·(un~V )= ǫ∆(Aun+1+(1−A)un)− 1

ǫ
f(un)+λu, (4.3)

respectively.
The stability condition now is related to ~V and the value of A. For example, the

graph of stability of the advective Cahn-Hilliard equation related to time step ∆t and
the maximum norm of ~V is shown in Figure 4.1. ∆x has some insubstantial effects on
the stability, but not so much as a CFL condition would require. In fact, the coefficient
of un+1 is I+∆tǫ∆2, and is on the order of (∆x)−4 when ∆x is small. This is of

a higher order than the advective term ~V ·∇un, thus providing the main constraint
for stability. This stability condition with V =0 is consistent with similar results for
the plain Cahn-Hilliard equations as in [17].Reference [9] shows that a scheme of this
kind would have an error of O(C∆t), but the constant C would be very large. With

the additional advection term, C becomes related to Vmax= ||~V ||L∞ , and thus when

Vmax increases, a smaller time step would be required. Moreover, when ~V is not very
large, the most important constraint on ∆t comes from the stability of the original
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Fig. 4.5. The advective Cahn-Hilliard equation breakup with V0=600, at time t=0, 5×10−4,
15×10−4, and 20×10−4 respectively.
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Fig. 4.6. Threshold for Cahn-Hilliard. Dots are simulation data, and the line is an inverse
quadratic curve V0M2=1.326.

Cahn-Hilliard equation. Using A=2 instead of A=1 largely increases the maximum
time step required for stability.

To get a clear view of the convergence result, we consider the limit of ∆x→0 and
∆t→0 individually and plot an example of the graphs of |u∆x,∆t(t)−u∆x,∆t/2(t)|
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Fig. 4.7. The advective Allen-Cahn equation when V is small, V0=10, at time t=0, 0.1, 0.2,
and 0.3 respectively.

Fig. 4.8. The advective Allen-Cahn equation when V is large, V0=30, at time t=0, 0.1, 0.2,
and 0.3 respectively.

and |u∆x,∆t(t)−u∆x/2,∆t(t)| in Figures 4.2 and 4.3 respectively. Here u∆x,∆t(t) is the
solution at time t for grid size ∆x and time step ∆t. In both of these figures, we
solve for 1 dimension advective Cahn-Hilliard equation where ~V =600x, ǫ=0.01, and
A=1 in a [−5,5] interval with initial value of u(0)=χ[−0.3,0.3]. We run the solution
through t=0.002.
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Fig. 4.9. The advective nonlocal Allen-Cahn equation when V is small, V0=3.0, at time t=0
and 0.2 respectively.

Fig. 4.10. The advective nonlocal Allen-Cahn equation when V is large, V0=10, at time t=0,
0.1, 0.2, and 0.3 respectively.

4.2. 1D result: the advective Cahn-Hilliard equation. We begin from
the basic 1D case where u(x,0)=χ[−α,α] and ~V =V0x. The value of V0 is tuned to show
different types of solutions. The parameter ǫ is taken to be 0.01, and g(u)=u2(1−u)2.
α is taken as 0.3. We run the simulation on the interval [−5,5] with 2048 grid points.
The time step is taken to be ∆t=1×10−6, with 5000 time steps in total. The result
of the advective Cahn-Hilliard Equation (1.1) contains two different types of solutions

when ~V changes. When ~V is small, the solution develops a dimple in the middle, then
stops, and does not break up further. When ~V is large, the solution eventually breaks
up, and the smaller droplets continue to move apart; see Figure 4.4 and Figure 4.5.

The threshold value of V0 is drawn on Figure 4.6, depending on the initial size of
the droplet. The curve is an inverse quadratic curve of V0M

2=1.326, which fits the
prediction of Equation (2.18).

4.3. 1D result: the advective Allen-Cahn equation. As ~V increases,
two different types of result appear for Equation (1.2). When ~V is small, the solution

develops towards a constant given by the solution of V0u+
1
ǫ f(u)=0. When ~V is large

and the above equation does not have a solution, the solution expands and decreases
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Fig. 4.11. The advective nonlocal Allen-Cahn equation when the initial value has an insubstan-
tial dent near the origin, V0=5.0, at t=0, 0.25, 0.35, and 0.45 respectively.

Fig. 4.12. The advective nonlocal Allen-Cahn equation when V is not linear, see text for the
formula of V , at t=0, 0.2, 0.25 and 0.30 respectively.

towards zero. The threshold is not related to α at all; see Figure 4.7 and Figure 4.8.
Most numerical parameters are the same as that of the Cahn-Hilliard case: α is taken
as 0.3, the simulation is on the interval [−5,5] with 2048 grid points. ǫ=0.01. The
difference is in the time step and the strength of velocity field. In the graphs shown,
∆t=0.001, and the values of V0 are 10.0 and 30.0 respectively.

4.4. 1D result: the advective nonlocal Allen-Cahn equation. Under
the same setting, the advective nonlocal Allen-Cahn Equation (1.3) has two different
types of results when V0 changes. The threshold values of V0 are listed in Table 4.4.
When Ω is smaller, these two thresholds also decrease. When ~V is small, the solution
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Value of α Threshold of V0

0.5 7
0.2 18

Table 4.1. Threshold for the advective nonlocal Allen-Cahn equation

decreases and settles into a non-constant steady state depicting a single droplet. When
~V is large, the solution decays to a small constant consistent with mass conservation;
see Figure 4.9 and Figure 4.10. The numerical parameters are the same as in the
previous subsection. α is taken as 0.3. The simulation is on interval [−5,5] with 2048
grid points. ǫ=0.01. Time step ∆t=0.001, and the values of V0 in the results shown
are 3.0 and 10.0 respectively.

This represents a typical Allen-Cahn solution that does not show droplet breakup.
The reason comes from the maximum principle, which was explained in Theorem 3.5.
However, if the initial value is non-monotone, things become different. Even a small
concavity at the origin leads to a completely different evolution. In Figure 4.11 we
take ~V (x)=5x, but the initial value is taken as 1 in [−0.5,−0.01)∪(0.01,0.5], 0.99 in
[−0.01,0.01], and 0 otherwise. The solution shows a breakup.

Another situation of droplet breakup involves a different velocity field ~V . Figure
4.12 is the result for the case when V =V0(x− 1

100x
2), V0=5.0 where x≥0 and ex-

panded as an odd function to x<0. Note that this velocity field does not satisfy the
condition of Theorem 3.6; see Figure 4.12.

4.5. 2D result. Since the 1D case shows interesting results, it is natural to
perform simulations in higher dimensions where we have additional geometry. We
tried two different cases for 2D results, respectively under an expanding velocity field
and a sheer flow. The velocity field is prescribed as

~V (x,y)=(V0x,V0y) (4.4)

for the expanding case, where V0 is 2000 for the advective Cahn-Hilliard equation
cases and 10 for the advective nonlocal Allen-Cahn equation cases. The velocity field
is

~V (x,y)=(0,−V0x) (4.5)

for the sheer flow, where V0 is 10000 for the advective Cahn-Hilliard equation and
100 for the advective nonlocal Allen-Cahn equation. The advective Cahn-Hilliard
equation and the advective nonlocal Allen-Cahn equation are both tested for these
cases. For all cases, we solve the equation in the region [−1,1]× [−1,1] with 128×128
mesh size, and ǫ=0.01. For the expanding flow, we test two cases with different
initial values. The initial value for the first case is 1 on [−0.3,0.3]× [−0.3,0.3] and
0 otherwise. In the second case the initial value is 1 on a circle of radius 0.3 and 0
otherwise. For the sheer flow, the initial value is 1 on [−0.1,0.1]× [−0.1,0.1] and 0
otherwise.

The time step is 1×10−6 for the advective Cahn-Hilliard equation and 1×10−4

for the advective Allen-Cahn equation. These parameters are chosen to emphasize
the difference in their breakup phenomena; see Figure 4.13 to Figure 4.18.

Similar to the 1D case, the advective Cahn-Hilliard equation has a droplet
breakup, while the advective nonlocal Allen-Cahn equation does not. Comparatively,
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Fig. 4.13. The advective Cahn-Hilliard equation breakup under a 2D expanding flow with a
square initial value at t=0, 2.5×10−4, 5.0×10−4, 7.5×10−4 respectively. V0=2000.

Fig. 4.14. The advective nonlocal Allen-Cahn equation result under a 2D expanding flow with
a square initial value at t=0, 0.02, 0.04, 0.06 respectively. V0=10.

the Cahn-Hilliard model shows a surface tension based breakup while Allen-Cahn
model fails to do so in all cases.

4.6. 3D result. For the 3D case, we used a parallel machine in the National
Energy Research Scientific Computing Center (NERSC) to solve the problem. Due
to the complexity of the problem, an operator splitting scheme is used. Instead of
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Fig. 4.15. The advective Cahn-Hilliard equation breakup under a 2D expanding flow with
radially symmetric initial value at t=0, 1.5×10−4, 1.7×10−4, 2.0×10−4 respectively. V0=2000.

Fig. 4.16. The advective nonlocal Allen-Cahn equation result under a 2D expanding flow with
radially symmetric initial value at t=0, 0.02, 0.04, 0.06 respectively. V0=10.

solving Equation (4.1) directly, every time step is split into an advection step

u∗−un

∆t
+∇·(un~V )=0, (4.6)

and Cahn-Hilliard (or Allen-Cahn, respectively) step

un+1−u∗

∆t
=−∆(ǫ∆(Aun+1+(1−A)u∗)− 1

ǫ
f(u∗)). (4.7)
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Fig. 4.17. The advective Cahn-Hilliard equation breakup under a 2D sheer flow at t=0, 0.0008,
0.001 and 0.0012 respectively. V0=10000.

Fig. 4.18. The advective nonlocal Allen-Cahn equation result under a 2D sheer flow at t=0,
0.02, 0.04 and 0.06 respectively. V0=100.

The operator splitting and advection step are done by an ALE-AMR code [23]. The
Cahn-Hilliard step is solved by a specifically written finite element package.

The simulation is run on a [0,1]3 grid, with initial value being 1 on [0.35,0.65]3

and 0 elsewhere. ǫ is still 0.01. The velocity field is prescribed as

~V (x,y,z)=(V0(x−0.5),V0(y−0.5),V0(z−0.5)). (4.8)

where V0=10000.0. The time step is 2×10−7, and ǫ=0.01.
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Fig. 4.19. The advective Cahn-Hilliard equation breakup under a 3D expanding flow at time
t=0, 0.3×10−4, 0.4×10−4, 0.5×10−4, 0.8×10−4, and 1.5×10−4 respectively.

Fig. 4.20. The advective nonlocal Allen-Cahn equation’s result under a 3D expanding flow at
time t=0, 0.5×10−5, 1.0×10−5, and 1.5×10−5 respectively.
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Fig. 4.21. The advective Cahn-Hilliard equation breakup under a 2D expanding flow with noise
of strength 0.01 in the initial value. It has a similar structure to that without noise. V0=2000,
snapshots are taken at time t=0, 2.5×10−4, 5.0×10−4 and 7.5×10−4 respectively.

Fig. 4.22. The advective nonlocal Allen-Cahn equation breakup under a 2D expanding flow with
noise of strength 0.01 in the initial value. Without noise, it will not break up. V0=10, snapshots
are taken at t=0, 0.02, 0.04, 0.06 respectively.

The advective Cahn-Hilliard equation has a droplet breakup similar to that of
2D case. The advective nonlocal Allen-Cahn equation simply performs a droplet
expansion and then merges into the background or stops expanding, depending on
the velocity field and droplet size; see Figure 4.19 and Figure 4.20.

4.7. Noise. The advective Allen-Cahn equation is more susceptible to noise
compared to the advective Cahn-Hilliard equation. For the advective Allen-Cahn
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Fig. 4.23. The advective Cahn-Hilliard equation breakup under a 2D expanding flow with
continual noise over time. Symmetry is broken under this noise strength. V0=2000, snapshots are
taken at time t=0, 1.0×10−4, 2.0×10−4, 3.0×10−4, 5.0×10−4 and 8.0×10−4 respectively.

equation, even small noise in the initial value would lead to quite different behavior
in terms of droplet breakup. However, the advective Cahn-Hilliard equation requires
much stronger noise, or noise over time to make the result change. With strong enough
noise, the droplet breakup shows some irregularity and breaks symmetry. Figure 4.21
and 4.22 have the same setting as Figure 4.13 and 4.14, except for a Gaussian noise
of strength 0.01 added on the initial value. Figure 4.23 and 4.24, on the other hand,
adds a Gaussian noise every time step.

5. Conclusion

In this paper we focus on the properties and numerical simulation of the Cahn-
Hilliard and Allen-Cahn equations with advection of a prescribed compressible flow.
We have shown existence and uniqueness properties, and breakup conditions for both
equations. For the advective Cahn-Hilliard equation, the droplet breakup condition
is studied using a formal asymptotic analysis. Breakup will happen when the velocity
field is large enough, and the threshold strength varies inverse quadratically with
droplet size. For the advective Allen-Cahn equation, the breakup condition is studied
using a maximum principle analysis. Breakup will not happen in this case without
some kind of perturbation. Numerical results are provided in one, two, and three space
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Fig. 4.24. The advective Cahn-Hilliard breakup under a 3D expanding flow with continual noise
over time at time t=0, 0.3×10−4, 0.4×10−4, 0.5×10−4, 0.8×10−4, and 1.5×10−4 respectively.
Symmetry is broken under this noise strength.

dimensions, with various initial conditions and different kinds of background flow. We
also test numerical simulations with noise. The theoretical breakup condition fits well
with the numerical condition.

Eventually we need to simulate the droplet breakup phenomenon with surface
tension. Thus, for the future work it is necessary to couple this model with other
compressible fluid models. It is important to consider the impact of the phase field
variable on the velocity field itself, and see how this model works within the full
problem.
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