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Abstract: In this paper, we consider distribution solutions to the aggregation
equation ρt + div(ρu) = 0, u = −∇V ∗ρ in Rd where the density ρ concentrates
on a co-dimension one manifold. We show that an evolution equation for the
manifold itself completely determines the dynamics of such solutions. We refer
to such solutions aggregation sheets. When the equation for the sheet is linearly
well-posed, we show that the fully non-linear evolution is also well-posed locally
in time for the class of bi-Lipschitz surfaces. Moreover, we show that if the initial
sheet is C1 then the solution itself remains C1 as long as it remains Lipschitz.
Lastly, we provide conditions on the kernel g(s) = −dV

ds that guarantee the
solution remains a bi-Lipschitz surface globally in time, and construct explicit
solutions that either collapse or blow up in finite time when these conditions fail.

1. Background

Systems with a large number of pairwise interacting particles pervade many
disciplines, ranging from models of self-assembly processes in physics and chem-
istry [21,22,23,29] to models for biological swarming [1,8,16,28] to algorithms
for the cooperative control of autonomous vehicles [32]. A simple example of
these models employs a first order system of ordinary differential equations for
the positions xi(t) ∈ Rd of N particles,

dxi
dt

=
∑
j 6=i

g

(
1
2
|xi − xj |2

)
(xi − xj), 1 ≤ i ≤ N. (1)

The interaction kernel g(s) describes the manner in which particles interact
with one another, and therefore depends on the particular application for the
model. The formal continuum limit of this system then yields the well-known
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Fig. 1. Left: a “soccer ball” steady-state to the ODE model (1). Right: approximation of the
steady state using the co-dimension one continuum model (8), i.e. an approximately spherical
surface with color indicating particle density along the manifold.

aggregation equation

∂ρ

∂t
(y, t) + div(ρ(y, t)u(y, t)) = 0, y ∈ Rd, t ≥ 0,

u(y, t) =
∫

Rd
g

(
1
2
|y − z|2

)
(y − z) ρ(z, t) dz, (2)

for the density ρ of particles.
This equation has received significant attention in recent years, and the ma-

jority of the analysis largely falls into two categories. More classical treatments
focus on densities ρ that are absolutely continuous with respect to Lebesgue
measure, such as those lying in an Lp(Rd) space [6,2,3,4,10,9,14,5]. For densi-
ties that merely define a Borel measure on Rd, such as point masses, ideas from
optimal transport have proven fruitful for demonstrating the well-posedness of
(2) for some classes of interaction kernels [7,19,13,12,20]. However, several re-
cent studies [30,26,15] have found that rings, spheres and more complicated
surface-like states naturally occur in the ODE systems (1) and the full PDE
models. This suggests that a co-dimension one description of (2) might prove
useful for studying such particle distributions (see figure 1). In this context, i.e.
when the density must have support of co-dimension one, even the most basic
well-posedness results do not yet exist. We therefore provide them in this paper.

Specifically, we analyze distribution solutions to (2) that have support home-
omorphic to the (d− 1) sphere Sd−1 ⊂ Rd, and so take the form

ρ(y, t) :=
∫
Sd−1

δ (y − Φ(x, t)) f(x, t) dSd−1(x). (3)
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The map Φ(·, t) : Sd−1 → Rd parametrizes the manifold. The function f(·, t) :
Sd−1 → R is such that f(x, t)dSd−1(x) = ρΦ(x, t)dHΦ(x), where ρΦ(x, t) de-
scribes the density of particles along the manifold and dHΦ(x) denotes the sur-
face measure on the manifold. By (3), we mean that ρ acts as a distribution on
ψ ∈ C∞0 (Rd × R+) as ρ[ψ] =

∫∞
0

∫
Sd−1 ψ(Φ(x, t), t)f(x, t) dSd−1(x)dt. In the

usual manner, we then require that∫ ∞
0

∫
Sd−1

(ψt + 〈u,∇ψ〉) (Φ(x, t), t)f(x, t) dSd−1(x)dt = 0, (4)

u(y) =
∫
Sd−1

g

(
1
2
|y − Φ(w, t)|2

)
(y − Φ(w, t)) f(w, t) dSd−1(w), (5)

hold for all ψ ∈ C∞0 in order for (3) to define a formal distribution solution to
(2). As Φ(x, t) gives a Lagrangian parametrization of the manifold, it evolves
according to

∂Φ

∂t
(x, t) = u(Φ(x, t), t) = (6)∫

Sd−1
g

(
1
2
|Φ(x, t)− Φ(w, t)|2

)
(Φ(x, t)− Φ(w, t)) f(w, t) dSd−1(w).

Combining (4) and (6) with the fact that

∂

∂t
{ψ(Φ(x, t), t)} =

(
ψt +

〈
∂Φ

∂t
,∇ψ

〉)
(Φ(x, t), t),

we discover f must satisfy

0 =
∫ ∞

0

∫
Sd−1

∂

∂t
{ψ(Φ(x, t), t)} f(x, t) dSd−1(x)dt =

−
∫ ∞

0

∫
Sd−1

ψ(Φ(x, t), t)
∂f

∂t
(x, t) dSd−1(x)dt

for all ψ, whence
f(x, t) ≡ f(x, 0). (7)

Therefore, given an initial density

ρ(y, 0) = ρ0(y) =
∫
Sd−1

δ (y − Φ0(w)) f0(w) dSd−1(w),

we formally obtain a distribution solution to (2) by evolving the surface according
to

∂Φ

∂t
=
∫
Sd−1

g

(
1
2
|Φ(x, t)− Φ(w, t)|2

)
(Φ(x, t)− Φ(w, t)) f0(w) dSd−1(w), (8)

if x ∈ Sd−1 and t > 0, together with the initial condition Φ(x, 0) = Φ0(x).
Conversely, provided the integro-differential equation (IDE) (8) has a solution
that results in a sufficiently regular velocity field (6), we can justify the preceding
computations to obtain distribution solutions to the original equation.
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Variants of the IDE (8) appear in numerous contexts. The classical Birkhoff-
Rott equation in two dimensions results from taking g(s) = −(πs)−1, then ro-
tating the resulting velocity field to make it incompressible. Similarly, in [26] the
authors derived a generalization of the two dimensional Birkhoff-Rott equation
directly from the principle of mass conservation. This results in velocity fields
of mixed type that contain both an incompressible contribution and a gradient
contribution. The IDE (8), then, extends their generalized equation to arbitrary
dimensions d ≥ 2 in the case when the incompressible contribution vanishes.
Although we do not consider the fully general case, local well-posedness for two
dimensional mixed kernels does follow from our arguments as well.

Our primary concern insted lies in developing a well-posedness theory for (8).
To this end, we first demonstrate that solutions to (8) exist locally in time when
the initial data Φ0(x) defines a Lipschitz homeomorphism. Specifically, if the
IDE (8) is linearly well-posed we prove that the fully non-linear problem is also
well-posed across the full range of linearly well-posed kernels. We also show that
if Φ0 ∈ C1 then the solution itself remains C1 as long as it remains Lipschitz.
We then address issues regarding continuation and global existence of solutions.
We prove that a unique continutation exists provided Φ and its inverse remain
Lipschitz, and by explicit construction we show that finite time singularities of
each type of may occur. For kernels with an attractive singularity at the origin,
we generalize the results for L∞(Rd) [3] and general Lp(Rd) solutions [4] to
(2) that show finite time singularity occurs if and only if the kernel is Osgood.
Finally, for a subclass of the natural potentials studied in [7] [4] [3] we show that
the solution exists globally when the kernel has a repulsive singularity at the
origin.

To make our hypotheses on the interaction kernel g(s) for these results precise,
we recall that the linear theory from [30,15] shows the solution Φ(x) ≡ Rx is
linearly well-posed only if

g
(
R2(1− s)

)
(1− s2)

d−3
2 ∈ L1([−1, 1]). (9)

For simplicity, we assume the kernel behaves as a power law, g(s) = O(sp), near
the origin, although our arguments apply in a more general context. The linear
well-posedness condition then enforces

p >
1− d

2
. (10)

This suggests the following assumptions on the interaction kernel:

Definition 1. Let g(s) : R+ → R. Then g(s) defines an admissible interac-
tion kernel if g ∈ C1(R+\{0}), and there exist constants C > 0, δ > 0, p > 1−d

2
such that

max{|g(s)|, |sg′(s)|} ≤ Csp ∀ s ∈ (0, δ). (11)

These hypotheses suffice to establish local well-posedness, and are sufficiently
mild to still include many of the kernels that prove relevant for applications.

We shall demonstrate well-posedness of the IDE in the space C0,1(Sd−1) of
Lipschitz functions over the sphere Sd−1, where C0,1(Sd−1) has the usual norm

||Φ||C0,1 := max
Sd−1

|Φ(x)|+ Lip[Φ], Lip[Φ] := sup
x6=w

|Φ(x)− Φ(w)|
|x−w|

. (12)
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To allow for the singularity in g(s) at zero, we restrict attention to initial data
Φ0(x) lying in the subset OM ⊂ C0,1(Sd−1) of all functions where both Lip[Φ] ≤
M and Lip[Φ−1] ≤M ,

OM :=
{
Φ ∈ C0,1(Sd−1) :

1
M
≤ inf

x6=w

|Φ(x)− Φ(w)|
|x−w|

≤ Lip[Φ] ≤M
}
. (13)

This class of initial data proves less restrictive than the requirements on
initial data that appear in related problems. As we enforce regularity in the
kernel g(s) this allows us to relax the regularity requirements on the initial
sheet itself, and this makes our task somewhat easier. In particular, we need not
assume any regularity in addition to boundedness of derivatives along the sheet.
Similar results for vortex patches [17,18] require Hölder regularity in derivatives,
and results for the Birkhoff-Rott equation typically require analyticity [25] or
other additional regularity hypotheses [31]. Proving an existence result for more
singular kernels, such as the Newtonian potential, would therefore require a
different approach than we adopt here, so we make no effort in this direction.
Also in contrast to many studies on the Birkhoff-Rott equation, we consider
compact sheets instead of sheets homeomorphic to the real line. This also causes
our approach to demonstrating existence to differ to a large extent.

The remainder of the paper proceeds as follows: in section 2 we first establish
the necessary estimates on the nonlocal term in the IDE, and this allows us derive
local existence in section 3 using a modified version of simple Picard iteration;
subsection 3.1 addresses issues regarding differentiability of solutions and the
final section addresses questions regarding the long term behavior of solutions;
we finish with some concluding remarks.

2. Elementary Properties and A-Priori Estimates

Like its co-dimension zero counterpart (2), solutions to the IDE (8) exhibit
several conserved quantities. Foremost, it formally expresses conservation of mass
in that

Mρ :=
∫

Rd
ρ(x, t) ≡

∫
Sd−1

f0(x) dSd−1(x) (14)

for all time. Moreover, we have conservation of center of mass∫
Rd

xρ(x, t) =
∫
Sd−1

Φ(x, t) ≡
∫
Sd−1

Φ0(x), (15)

which we assume equals zero throughout the remainder of the paper. Potential
energy also dissipates along solutions. Indeed, let V (s) denote a potential for the
evolution, i.e. that dV

ds = −g(s), and define

EΦ(t) :=
1
2

∫
Sd−1×Sd−1

V

(
1
2
|Φ(x, t)− Φ(z, t)|2

)
f0(x)f0(z) dSd−1(x)dSd−1(z)

A simple calculation then formally yields

d
dt
EΦ(t) = −

∫
Sd−1

∣∣∣∣∂Φ∂t
∣∣∣∣2 . (16)



6 James H. von Brecht, Andrea L. Bertozzi

These statements can be readily justified using the arguments that follow.
We begin by recalling a standard theorem that will prove useful on several

occasions, i.e. the Funk-Hecke formula for spherical harmonics [24]. Our desire
to satisfying the integrability hypothesis for the formula further motivates for
the growth rate (10) on g(s) near the origin.

Theorem 1. (Funk-Hecke Theorem)
Let h(s)(1− s2)

d−3
2 ∈ L1([−1, 1]). Then for any x ∈ Sd−1 and any spherical

harmonic Sl(x) of degree l,∫
Sd−1

h(〈x,w〉)Sl(w) dSd−1(w) =

vol(Sd−2)
(∫ 1

−1

h(s)(1− s2)
d−3
2 Pl,d(s) ds

)
Sl(x),

where Pl,d(s) denotes the Gegenbauer polynomial P ( d2−1)

l (s) from [27] normalized
to Pl,d(1) = 1.

Before turning our attention to estimating the nonlocality in (8), we first
illustrate utilize theorem 1 to construct the simple but important class of exact
spherical solutions to (8). These solutions will later prove useful in determing
how solutions to (8) behave for large times.

Example 1. (Spherical Solutions) Let Φ(x, t) = R(t)x for R(t) > 0 and f0(w) ≡
1. Substituting this expression into (8) yields

dR
dt

x = R(t)
∫
Sd−1

g

(
R(t)2

2
|x−w|2

)
(x−w) dSd−1(w).

The facts that w is a spherical harmonic of degree one and that Pl,d(s) = s
combine with the Funk-Hecke theorem for l = 0, 1 to show

dR
dt

x = vol(Sd−2)R(t)
[∫ 1

−1

g
(
R(t)2(1− s)

)
(1− s)(1− s2)

d−3
2 ds

]
x.

Therefore Φ(x, t) = R(t)x defines a solution to (8) if R(t) solves the ordinary
differential equation

dR
dt

= vol(Sd−2)R(t)
∫ 1

−1

g
(
R(t)2(1− s)

)
(1− s)(1− s2)

d−3
2 ds. (17)

The case l = 0 of theorem 1 also proves useful in establishing the following
two technical lemmas. Their proof constitutes the majority of the effort needed
to establish theorem 2, as they suffice to show the right hand side of (8) is
locally Lipschitz in C0(Sd−1). A combination of Picard iteration and a-posteriori
estimates then yields the theorem. The first lemma estimates expressions of the
form

H(y) :=
∫
Sd−1

h

(
1
2
|y − Φ(w)|2

)
f0(w) dSd−1(w) (18)

for all y ∈ Rd, where we envision h(s) = g(s) or h(s) = sg′(s) so that h satisfies
a hypothesis similar to (11).
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Lemma 1. Let h(s) : R+ → R be locally bounded away from zero, and suppose
∃K > 0, σ > 0, q > 1−d

2 with |h(s)| ≤ Ksq for all s ∈ (0, σ). If Φ(x) ∈ OM then

|H(y)| ≤ C(h, dy,M)||f0||L∞ .
The constant C depends only on h,M and dy := minx∈Sd−1 |y − Φ(x)|, and
increases with both dy and M .

Proof. Fix y ∈ Rd and decompose

H(y) =
∫
|y−Φ(w)|≥

√
2σ

+
∫
|y−Φ(w)|<

√
2σ

:= I + II.

Let x0 denote a minimizer of |y−Φ(x)| over x ∈ Sd−1, so that dy = |y−Φ(x0)|.
Due to the boundedness of h away from zero,

|I| ≤ vol(Sd−1)||h||L∞([σ,2M2+d2y])||f0||L∞(Sd−1).

As for the second integral, the growth hypothesis on h near zero implies that

|II| ≤ K2−q||f0||L∞(Sd−1)

∫
Sd−1

|y − Φ(w)|2q dSd−1(w).

If q ≥ 0 then |II| ≤ K2−q||f0||L∞(Sd−1)(dy + 2M)2qvol(Sd−1), so assume that
q < 0. The facts that |y − Φ(w)| ≥ 1

2 |Φ(x0) − Φ(w)| and that Φ−1 is Lipschitz
with constant M suffice to show

|II| ≤ K2−2q||f0||L∞(Sd−1)M
−2q

∫
Sd−1

(1− 〈x0,w〉)q dSd−1(w).

As q + d−3
2 > −1, the case l = 0 of theorem 1 allows us to compute the last

term,∫
Sd−1

(1− 〈x0,w〉)q dSd−1(w) = vol(Sd−2)
∫ 1

−1

(1− s)q(1− s2)
d−3
2 ds <∞.

ut
The second lemma allows us to differentiate expressions of the form

viΦ(y) :=
∫
Sd−1

g

(
1
2
|y − Φ(w)|2

)
(yi − Φi(w))f0(w) dSd−1(w), (19)

for any y = (y1,y2, . . . ,yd)t ∈ Rd, where the subscript notation viΦ(y) indicates
the possibly changing dependence on Φ(x). A combination of both lemmas then
establishes the required properties of the right hand side of (8) as corollaries.

Lemma 2. Suppose g(s) defines an admissible kernel and f0 ∈ L∞(Sd−1). If
Φ(x) ∈ OM and Ψ(x) ∈ C0,1(Sd−1), then for fixed y ∈ Rd

d
dε

∫
Sd−1

g

(
1
2
|y − Φ(w)− εΨ(w)|2

)
(yi−Φi(w)−εΨ i(w))f0(w) dSd−1(w) |ε=0

=−
∫
Sd−1

[
g

(
1
2
|y − Φ(w)|2

)
Ψ i(w)

+g′
(

1
2
|y − Φ(w)|2

)
〈y − Φ(w), Ψ(w)〉 (yi − Φi(w))

]
f0(w) dSd−1(w).
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Proof. For fixed 1 ≤ i ≤ d and y ∈ Rd consider the quantity

viΦ+εΨ (y)− viΦ(y)
ε

=

1
ε

∫
Sd−1

g

(
1
2
|y − Φ(w)− εΨ(w)|2

)
(yi − Φi(w)− εΨ i(w))f0(w) dSd−1(w)−

1
ε

∫
Sd−1

g

(
1
2
|y − Φ(w)|2

)
(yi − Φi(w))f0(w) dSd−1(w).

Let gε denote the integrand. As g is differentiable away from zero and Φ is
one-to-one it follows that

gε → −
[
g

(
1
2
|y − Φ(w)|2

)
Ψ i(w)+

g′
(

1
2
|y − Φ(w)|2

)
〈y − Φ(w), Ψ(w)〉 (yi − Φi(w))

]
f0(w)

for almost every w ∈ Sd−1. The aim thus becomes to conclude that in fact∫
Sd−1

gε → −
∫
Sd−1

[
g

(
1
2
|y − Φ(w)|2

)
Ψ i(w)+

g′
(

1
2
|y − Φ(w)|2

)
〈y − Φ(w), Ψ(w)〉 (yi − Φi(w))

]
f0(w). (20)

If dy = minSd−1 |y − Φ(w)| > 0, this immediately follows as g ∈ C1(R+ \ {0})
and the dominated convergence theorem. The difficulty comes when y = Φ(x0)
for some x0 ∈ Sd−1. In this case, it suffices show that the gε are uniformly
integrable: for any γ > 0 there exists N > 0 so that

sup
ε

∫
Sd−1

|gε|1{|gε|>N} < γ.

The Vitali convergence theorem then yields the desired result.
To show uniform integrability, let zε := Φ(x0) − Φ(w) − εΨ(w) and z :=

Φ(x0)− Φ(w). For fixed ε let A := {||εΨ ||∞ ≤ |z|2 } and write

gε = gε1A + gε1Sd−1\A := g1
ε + g2

ε

gε =

[
−g
(

1
2
|zε|2

)
Ψ i(w) +

g
(

1
2 |z

ε|2
)
− g

(
1
2 |z|

2
)

ε
zi
]
f0(w).

If w ∈ A then |z| ≤ 2|zε|. To estimate g1
ε , the mean value theorem furnishes

s0 ∈ ( |z|
2

8 , 9|z|2
8 ) with g

(
1
2 |z

ε|2
)
− g

(
1
2 |z|

2
)

= 1
2g
′(s0)(|zε|2 − |z|2). Therefore

|g1
ε | ≤ ||f0||L∞(Sd−1)||Ψ ||L∞(Sd−1)

(∣∣∣∣g(1
2
|zε|2

)∣∣∣∣+ |g′(s0)|5|z|
2

4

)
.
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To estimate g2
ε , since w /∈ A then |z||ε| ≤ 2||Ψ ||∞, so that

|g2
ε | ≤ ||f0||L∞(Sd−1)

(∣∣∣∣g(1
2
|zε|2

)∣∣∣∣ ||Ψ ||∞ +
∣∣∣∣g(1

2
|zh|2

)∣∣∣∣ |z||ε| +
∣∣∣∣g(1

2
|z|2
)∣∣∣∣ |z||ε|

)
≤ 3||f0||L∞(Sd−1)||Ψ ||L∞(Sd−1)

(∣∣∣∣g(1
2
|zh|2

)∣∣∣∣+
∣∣∣∣g(1

2
|z|2
)∣∣∣∣) .

Combining these estimates yields

|gε| ≤ C1

(∣∣∣∣g(1
2
|zε|2

)∣∣∣∣+
∣∣∣∣g(1

2
|z|2
)∣∣∣∣+ |g′(s0)||z|2

)
:= I + II + III.

for some absolute constant C1 that depends only on ||f0||L∞(Sd−1),||Ψ ||L∞(Sd−1).
As a linear combination of uniformly integrable functions is uniformly integrable,
it suffices to show the uniform of I− III individually.

To show the uniform integrability of I, as in the proof of lemma 1 let xε0
denote a minimizer of |Φ(x0)− Φ(w)− εΨ(w)| over w ∈ Sd−1, and decompose∫

{I>N}
I dSd−1(w) ≤

∫
{I>N}∩{|zε|≥

√
2δ}

+
∫
{I>N}∩{|zε|≤

√
2δ}

If |zε| ≥
√

2δ then I ≤ ||g||L∞([δ,(2M+||Ψ ||∞)2]) := K(M, ||Ψ ||∞) whenever |ε| ≤ 1.
When |zε| <

√
2δ, the growth rate of g(s) near zero demonstrates

I ≤ C2−p|zε|2p.

If p ≥ 0 the dominated convergence theorem gives the desired result. If p < 0,
the fact that |zε| ≥ 1

2 |Φ(xε0) + εΨ(xε0)− Φ(w)− εΨ(w)| yields

I ≤ C2−3p|Φ(xε0) + εΨ(xε0)− Φ(w)− εΨ(w)|2p.

Now, as Ψ ∈ C0,1(Sd−1) and Φ(x) ∈ OM , for all ε sufficiently small Φ(x) +
εΨ(x) ∈ O2M as well. Therefore, for |zε| <

√
2δ

I ≤ C2−3p(2M)−2p|xε0 −w|2p = C2−4pM−2p(1− 〈xε0,w〉)p := fM (〈xε0,w〉).

Summarizing the preceding, when N > 0∫
{I>N}

I ≤
∫
{I>N}∩{|zε|≥

√
2δ}

+
∫
{I>N}∩{|zε|≤

√
2δ}

≤ K(M, ||Ψ ||∞)
∫
{K>N}

+
∫
{fM>N}

fM .

By the case l = 0 of theorem 1,∫
{fM>N}

fM = C2−4pM−2pvol(Sd−2)
∫ 1

−1

(1− s)p(1− s2)
d−3
2 1{(1−s)p>N} ds.

Taking N sufficiently large, independently of ε, shows that

sup
ε

∫
Sd−1

∣∣∣∣g(1
2
|zε|2

)∣∣∣∣1{I>N} < γ
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as desired. For II, as Φ(x) ∈ OM , by lemma 1
∫
Sd−1 II ≤ C(g, 0,M) < ∞. By

the dominated convergence theorem,∫
Sd−1

II1{II>N} → 0

uniformly in ε as well. For III, again decompose∫
{III>N}

III dSd−1(w) ≤
∫
{III>N}∩{|s0|≥

√
2δ}

+
∫
{III>N}∩{|s0|≤

√
2δ}
,

and recall that s0 ∈ ( |z|
2

8 , 9|z|2
8 ). As in lemma 1, each term can be dominated by

an integrable function that does not depend on ε, so III is uniformly integrable
as well.

ut

Now, let vΦ(y) : Rd → Rd denote the right hand side of (8) evaluated at an
arbitrary point y ∈ Rd,

vΦ(y) := (v1
Φ(y), . . . ,vdΦ(y))t

with viΦ(y) given by (19). By taking Ψ(x) ≡ −ej for 1 ≤ j ≤ d in lemma 2, we
conclude

[∇vΦ] (y) =
∫
Sd−1

[
g

(
1
2
|y − Φ(w)|2

)
Id+

g′
(

1
2
|y − Φ(w)|2

)
(y − Φ(w))(y − Φ(w))t

]
f0(w) dSd−1(w), (21)

where Id denotes the d × d identity matrix. Applying lemma 1 then shows the
matrix norm ||∇vΦ||2(y) ≤ C(g, g′, dy,M)||f0||∞, for some constant C that
increases with dy. The mean value theorem then yields

Corollary 1. Let Φ(x) ∈ OM . Then for any two points y1,y2 ∈ Rd

|vΦ(y1)− vΦ(y2)| ≤ C(g, g′,max{dy1 , dy2},M)||f0||∞|y1 − y2|. (22)

Similarly, fix y ∈ Rd, Φ, Ψ ∈ C0,1(Sd−1) and suppose that for 0 ≤ ε ≤ 1 the line
Lε := εΨ + (1− ε)Φ ∈ OM . We can then use lemma 2 to deduce

d
dε

viLε(y) = −
∫
Sd−1

[
g

(
1
2
|y − Lε(w)|2

)
(Ψ i(w)− Φi(w))+

g′
(

1
2
|y − Lε(w)|2

)
〈y − Lε(w), Ψ(w)− Φ(w)〉 (yi − Liε(w))

]
f0(w) dSd−1(w)

An application of lemma 1 then shows∣∣∣∣ d
dε

viLε

∣∣∣∣ ≤ C(g, g′, dy,M)||f0||∞max
Sd−1

|Ψ(x)− Φ(x)|,
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where dy = minSd−1 |y − Lε| and the constant C depends only on Lε through
M . For y ∈ Rd fixed, the fundamental theorem of calculus then shows

|viΨ (y)−viΦ(y)| =
∣∣∣∣∫ 1

0

d
dε

viLε(y) dε
∣∣∣∣ ≤ C(g, g′, dy,M)||f0||∞max

Sd−1
|Ψ(x)−Φ(x)|.

We therefore get the following corollary

Corollary 2. Let Φ, Ψ ∈ C0,1 be such that the line Lε := εΨ + (1 − ε)Φ ∈ OM
for all 0 ≤ ε ≤ 1. Then for any y ∈ Rd,

|vΨ (y)− vΦ(y)| ≤ C(g, g′, dy,M)||f0||∞max
Sd−1

|Ψ(x)− Φ(x)|. (23)

The arguments in the proof of 2 also establish the following lemma that
demonstrates continuity of the gradient [∇vΦ](y) of the Eulerian velocity field.
To avoid redundancy, we leave the proof as an exercise for the reader.

Lemma 3. Suppose g(s) defines an admissible kernel and f0 ∈ L∞(Sd−1). If
Φ(x) ∈ OM , then the matrix [∇vΦ](y) given by (21) is continuous as a function
on Rd.

3. Local Well-Posedness

We may now proceed to demonstrate our main result, i.e. local existence for the
IDE (8)—

Theorem 2. (Local Well-Posedness for the IDE) Let g(s) define an admissible
kernel, f0 ∈ L∞ and Φ0(x) ∈ OM/2. Then there exists T = T (g, g′,M, ||f0||∞)
such that the IDE (8) has a solution

Φ(x, t) ∈ C1([−T, T ];C0(Sd−1)) ∩ C([−T, T ];C0,1(Sd−1) ∩ OM ).

If Ψ(x, t) ∈ C([−T ′, T ′];C0,1(Sd−1)) denotes another solution for any T ′ ≤ T ,
then Φ(x, t) ≡ Ψ(x, t) on [−T ′, T ′].

Fix an initial datum Φ0(x) ∈ OM/2 and let Φ(x, t) ∈ C([0, T ];C0,1(Sd−1)).
In the usual manner, define a mapping A[Φ] by

Φ(x, t)→ A[Φ](x, t) := Φ0(x)+∫ t

0

∫
Sd−1

g

(
1
2
|Φ(x, s)− Φ(w, s)|2

)
(Φ(x, s)− Φ(w, s))f0(w) dSd−1(w)ds,

so that it suffices to show this mapping has a fixed point. To this end, we need
to prove the following three propositions regarding the mapping, and may then
proceed to apply straightforward Picard iteration.

Proposition 1. Let Φ0(x) ∈ OM/2 and Lip[Φ − Φ0](t) ≤ min
{
M
2 ,

1
M

}
for all

t ∈ [0, T ]. Then Φ(x, t) ∈ OM for all t ∈ [0, T ].
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Proof. By the triangle inequality, |Φ(x, t)−Φ(w, t)| = |Φ(x, t)−Φ0(x)−(Φ(w, t)−
Φ0(w))+Φ0(x)−Φ0(w)| ≤ Lip[Φ−Φ0](t)|x−w|+ |Φ0(x)−Φ0(w)| ≤M |x−w|.
By the reverse triangle inequality, |Φ(x, t)−Φ(w, t)| ≥ |Φ0(x)−Φ0(w)||x−w|−
Lip[Φ− Φ0](t)|x−w| ≥ ( 2

M − Lip[Φ− Φ0](t))|x−w| ≥ 1
M |x−w|.

ut

Proposition 2. Let Φ(x, t) ∈ OM for all t ∈ [0, T ]. If T = T (g, g′,M, ||f0||∞)
is sufficiently small, then

||A[Φ]− Φ0||C0,1(t) < min
{
M

2
,

1
M

}
.

for all t ∈ [0, T ].

Proof. Set h(x, t) := A[Φ](x, t) − Φ0(x) =
∫ t
0

vΦ(Φ(x, s)) ds. By lemma 1,
|vΦ(Φ(x, s))| ≤ C(g, 0,M)||f0||∞, so that ||h||∞(t) ≤ TC(g, 0,M)||f0||∞. By
corollary 1,

|h(x, t)− h(w, t)| ≤
∫ t

0

|vΦ(Φ(x, s))− vΦ(Φ(w, s))| ds

≤ C(g, g′, 2M,M)||f0||∞
∫ t

0

|Φ(x, s)− Φ(w, s)| ds

≤ C(g, g′, 2M,M)||f0||∞MT |x−w|.

Taking T = T (g, g′,M, ||f0||∞) sufficiently small yields the desired bound for
both maxSd−1 |h(x, t)| and Lip[h](t) for all t ∈ [0, T ].

ut

Proposition 3. Suppose that both ||Φ − Φ0||C0,1 < min
{
M
2 ,

1
M

}
and ||Ψ −

Φ0||C0,1 < min
{
M
2 ,

1
M

}
. Then for T sufficiently small depending only on M ,

sup
t∈[0,T ]

max
Sd−1

|A[Ψ ](x, t)−A[Φ](x, t)| ≤ K sup
t∈[0,T ]

max
Sd−1

|Ψ(x, t)− Φ(x, t)|

for some K < 1.

Proof. We have

|A[Ψ ](x, t)−A[Φ](x, t)| =∣∣∣∣∫ t

0

vΨ (Ψ(x, s))− vΨ (Φ(x, s)) + vΨ (Φ(x, s))− vΦ(Φ(x, s)) ds
∣∣∣∣ ≤∫ t

0

|vΨ (Ψ(x, s))− vΨ (Φ(x, s))| ds+
∫ t

0

|vΨ (Φ(x, s))− vΦ(Φ(x, s))| ds.

As Lip[εΨ + (1 − ε)Φ − Φ0](t) ≤ min
{
M
2 ,

1
M

}
for all 0 ≤ ε ≤ 1, proposition

1 shows that the line Lε := εΨ(·, t) + (1 − ε)Φ ∈ OM . Corollary 1 provides a
sufficient estimate for the first term,∫ t

0

|vΨ (Ψ(x, s))− vΨ (Φ(x, s))| ds ≤

C(g, g′, 2M,M)||f0||∞
∫ t

0

|Ψ(x, s)− Φ(x, s)| ds,



Well-Posedness Theory for Aggregation Sheets 13

whereas corollary 2 provides a sufficient estimate for the second term,∫ t

0

|vΨ (Φ(x, s))− vΦ(Φ(x, s))| ds ≤

C(g, g′, 3M,M)||f0||∞
∫ t

0

max
Sd−1

|Ψ(x, s)− Φ(x, s)| ds.
ut

Straightforward Picard iteration now does the work. Given Φ0(x) ∈ OM/2,
take T = T (g, g′,M, ||f0||∞) sufficiently small as in propositions 2 and 3, and
begin by defining Φ0(x, t) ≡ Φ0(x) for all t ∈ [0, T ]. Then, iteratively set

Φn(x, t) := A[Φn−1](x, t).

Inductively, assume that ||Φn−1 − Φ0||C0,1(t) ≤ min{M2 ,
1
M } and Φn−1(x, t) ∈

OM for all t ∈ [0, T ]. By proposition 2, ||Φn − Φ0||C0,1(t) ≤ min{M2 ,
1
M } for all

t ∈ [0, T ], so that Φn(x, t) ∈ OM as well from proposition 1. Therefore,

sup
[0,T ]

||Φn − Φn−1||∞(t) ≤ K sup
[0,T ]

||Φn−1 − Φn−2||∞(t)

for some K < 1 by proposition 3, yielding a contraction in C([0, T ];C0(Sd−1)).
We therefore have a limit function Φ(x, t) ∈ C([0, T ];C0(Sd−1)) with ||Φn −
Φ||C([0,T ];C0(Sd−1)) → 0. However, we may note that

sup
[0,T ]

||Φn − Φ0||C0,1(t) ≤ min
{
M

2
,

1
M

}
,

i.e. that each Φn lies in a fixed ball in C0,1(Sd−1) with center Φ0(x). As they
converge uniformly to Φ(x, t), we conclude

sup
[0,T ]

||Φ− Φ0||C0,1(t) ≤ min
{
M

2
,

1
M

}
as well. Proposition 3 then demonstrates∣∣∣∣∫ t

0

vΦn(Φn)−
∫ t

0

vΦ(Φ)
∣∣∣∣ ≤ K sup

[0,T ]

||Φn − Φ||∞(t)→ 0,

so that

Φ(x, t) = Φ0(x)+∫ t

0

∫
Sd−1

g

(
1
2
|Φ(x, s)− Φ(w, s)|2

)
(Φ(x, s)− Φ(w, s))f0(w) dSd−1(w)ds

as desired.
This yields a solution Φ(x, t) ∈ C([0, T ];C0(Sd−1)) that lies in OM for each

t ∈ [0, T ]. However, for t1 > t0 writing

Φ(x, t1) = Φ(x, t0) +
∫ t1

t0

vΦ(Φ(x, s)) ds
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and paralleling the proof of proposition 2 demonstrates that in fact Φ(x, t) ∈
C([0, T ];C0,1(Sd−1) ∩ OM ). The relation

∂Φ(x, t)
∂t

= vΦ(Φ(x, t))

and the fact that Φ(x, t) ∈ OM combine to show that ∂Φ
∂t is Lipschitz, by corol-

lary 1. The contraction furnished by proposition 3 shows that Φ(x, t) is the
unique solution that lies in C([0, T ];C0,1(Sd−1)). Finally, each of the preceding
arguments work equally well backward in time. All together, this yields theorem
2.

3.1. Differentiability Properties of Solutions. Fix an arbitrary bi-Lipschitz solu-
tion Φ(x, t) to (8) on [0, T ], and choose M = M(T ) so that Φ(x, t) ∈ OM for all
t ∈ [0, T ]. For any such solution, we aim in this subsection to prove

Theorem 3. Let Φ(x, t) denote a solution to (8) on [0, T ] that lies in OM for all
t ∈ [0, T ]. If DjΦ0(x) exists at x ∈ Sd−1, then DjΦ(x, t) ∈ C([0, T ]) also exists
at x for all t ∈ [0, T ], and it satisfies the linear ordinary differential equation

dDjΦ

dt
(x, t) = [∇vΦ](Φ(x, t))DjΦ(x, t), DjΦ(x, 0) = DjΦ0(x). (24)

In particular, when Φ0(x) ∈ C1(Sd−1) it follows that if Φ(x, t) bi-Lipschitz then
actually Φ(x, t) ∈ C1(Sd−1).

Let x ∈ Sd−1 denote an arbitrary but fixed point on the sphere, and write
x = x(η1, . . . , ηd−1) where (η1, . . . , ηd−1) ∈ Rd−1 denote spherical coordinates.
For fixed 1 ≤ j ≤ d−1 and any |h| > 0 define xhj = x(η1, . . . , ηj +h, . . . , ηd−1) ∈
Sd−1, and for an arbitrary function Ψ(x) : Sd−1 → Rd define the difference
quotient

(Dh
j Ψ)(x) :=

Ψ(xhj )− Ψ(x)
h

.

If the limit of the difference quotient exists as h→ 0 then the jth partial deriva-
tive Dj of Ψ exists at x, and we write

DjΨ(x) := lim
h→0

(Dh
j Ψ)(x).

As Φ(x, t) satifies (8) for t ∈ [0, T ], we can take difference quotients in the
integral form of the equation to find that

(Dh
j Φ)(x, t) = (Dh

j Φ0)(x) +
1
h

∫ t

0

(
vΦ(Φ(xhj , s))− vΦ(Φ(x, s))

)
ds

holds for all t ∈ [0, T ]. The fundamental theorem of calculus then shows that

(Dh
j Φ)(x, t) = (Dh

j Φ0)(x)+∫ t

0

∫ 1

0

[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))(Dh
j Φ)(x, s) dεds.
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As Φ(x, t) ∈ OM for all t ∈ [0, T ], we have that the bound |εΦ(xhj , s) + (1 −
ε)Φ(x, s) − Φ(w)| ≤ 2M holds independent of the values that s and h assume.
By lemma 1, then,

||[∇vΦ]||2(εΦ(xhj , s) + (1− ε)Φ(x, s)) ≤ C(g, g′,M)||f0||∞ (25)

for C some universal constant.
Now, for an arbitrary Ψ(t) ∈ C([0, T ]; Rd) define a linear operator Bh as

Bh[Ψ ](t) =
∫ t

0

∫ 1

0

[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))Ψ(s) dεds. (26)

Due to (25), we conclude that for any t1, t2 ∈ [0, T ]

|Bh[Ψ ](t2)−Bh[Ψ ](t1)| ≤ ||Ψ ||C([0,T ])C(g, g′,M)||f0||∞|t2 − t1|.

The operator Bh therefore maps C([0, T ]; Rd) → C([0, T ]; Rd). Moreover, by
taking t1 = 0 we see that if T ′ ≤ T is sufficiently small, depending only on C,
then the operator Bh maps C([0, T ′]; Rd) → C([0, T ′]; Rd) with operator norm
||Bh||op ≤ 1/2. In particular, Id−Bh is invertible. We therefore have that

(Dh
j Φ)(x, t) = (Id−Bh)−1[(Dh

j Φ0)(x)](t)

for all t ∈ [0, T ′]. Analogously, define the linear operator B : C([0, T ′]; Rd) →
C([0, T ′]; Rd) as

B[Ψ ](t) =
∫ t

0

[∇vΦ](Φ(x, s))Ψ(s) ds. (27)

Note that ||B||op ≤ 1/2 for the same value of T ′ as well. For these operators, we
then have the following lemma:

Lemma 4. Let Bh, B : C([0, T ′]; Rd) → C([0, T ′]; Rd) denote the linear oper-
ators in (26) and (27), respectively. If g ∈ C1 (R+ \ {0}), satisfies (11) and
Φ(x, t) ∈ OM for all t ∈ [0, T ′], then Bh → B as h→ 0 in operator norm.

Proof. Let Ψ(t) ∈ C([0, T ′]; Rd) with ||Ψ ||C([0,T ′]) ≤ 1. Then from the definitions
of the operators Bh and B,

||(Bh−B)[Ψ ]||C([0,T ′]) ≤

C

∫ T ′

0

∫ 1

0

||[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))− [∇vΦ](Φ(x, s))||2 dεds.

By definition of the operator norm, then,

lim
h→0
||Bh −B||op ≤

C lim
h→0

∫ T ′

0

∫ 1

0

||[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))− [∇vΦ](Φ(x, s))||2 dεds.

The matrix [∇vΦ](y) is continuous by lemma 3. This fact combines with the
continuity of Φ itself and the fact that xhj → x to yield

||[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))− [∇vΦ](Φ(x, s))||2 → 0



16 James H. von Brecht, Andrea L. Bertozzi

for all s ∈ [0, T ′] and ε ∈ [0, 1]. The estimate (25) and the dominated convergence
theorem then show

lim
h→0
||Bh −B|| ≤

C

∫ T ′

0

∫ 1

0

lim
h→0
||[∇vΦ](εΦ(xhj , s) + (1− ε)Φ(x, s))− [∇vΦ](Φ(x, s))||2 dεds = 0

as desired.
ut

Returning to the task at hand, we have that the uniform estimates ||Bh||op ≤
1
2 and ||B||op ≤ 1

2 guarantee that both (Id−Bh)−1 and (Id−B)−1 exist. More-
over, by using the power series representations of the inverse operators, the
uniform operator norm estimates and the fact that Bh → B in operator norm
we see that ||(Id − Bh)−1 − (Id − B)−1||op → 0 as well. If DjΦ0(x) exists, we
may define the constant functions Ψh, Ψ ∈ C([0, T ′]; Rd) by Ψh(t) ≡ (Dh

j Φ0)(x)
and Ψ(t) ≡ DjΦ0(x). Lemma 4 then shows

|(Dh
j Φ)(x, t)− (Id−B)−1[Ψ ](t)| = |(Id−Bh)−1[Ψh](t)− (Id−B)−1[Ψ ](t)|

≤ 2||Ψh − Ψ ||C([0,T ′]) + ||(Id−Bh)−1 − (Id−B)−1||op||Ψ ||C([0,T ′])

= 2|(Dh
j Φ0)(x)−DjΦ0(x)|+ ||(Id−Bh)−1 − (Id−B)−1||op|DjΦ0(x)| → 0

as h → 0. In other words, DjΦ(x, t) exists at x as well, and we have the repre-
sentation

DjΦ(x, t) = (Id−B)−1[DjΦ0(x)](t) (28)

Moreover,DjΦ(x, t) is a continuous function in t for all t ∈ [0, T ′]. Pre-multiplying
by (Id−B) in (28) and using the definition (27) of B then shows that DjΦ(x, t)
satisfies the integral equation

DjΦ(x, t) = DjΦ0(x) +
∫ t

0

[∇vΦ](Φ(x, s))DjΦ(x, s) ds (29)

on [0, T ′]. Taking Φ(x, T ′) as inititial data and applying the same argument then
shows that

DjΦ(x, t) = DjΦ(x, T ′) +
∫ t

T ′
[∇vΦ](Φ(x, s))DjΦ(x, s) ds

for t ∈ [T ′, 2T ′], so that (29) actually holds on [0, 2T ′]. Applying the argument
a finite number of times then shows that DjΦ(x, t) ∈ C([0, T ]) and satisfies (29)
on [0, T ]. By the fundamental theorem of calculus, then, (24) holds.

For the last statement in theorem 3, by lemma 3 the equation (24) defines
a linear ODE with coefficients that depend continuously on the parameter x ∈
Sd−1. Its solutions therefore depend continuously on both the parameter x ∈
Sd−1 and on the initial data. As Φ0(x) ∈ C1(Sd−1) the initial data also depends
continuously on x ∈ Sd−1, so that the solution DjΦ(x, t) ∈ C(Sd−1) as desired.
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4. Blowup, Collapse, and Global Existence

In the previous section, we demonstrated that if Φ0(x) ∈ OM
2

then there exists
T = T (g, g′,M, ||f0||∞) such that integral equation (8) has a unique solution
Φ(x, t) on t ∈ [0, T ]. The solution lies in OM for all t ∈ [0, T ] as well. Clearly,
we can take Φ(x, T ) ∈ OM as initial data and then repeat the argument. This
yields a unique solution on some larger time interval [0, T1] with T1 > T , and
this process can continue as long as Lip[Φ](t) and Lip[Φ−1](t) remain finite.
Summarizing, we have the following continuation result:

Theorem 4. Let g and Φ0 satsify the assumptions of theorem 2 and Φ(x, t)
denote the corresponding solution to the IDE (8). If [0, Tf ) denotes the largest
time interval on which Φ(x, t) exists as a bi-Lipschitz solution, then at least one
of

(i) lim sup
t↗Tf

Lip[Φ](t) =∞ (ii) lim sup
t↗Tf

Lip[Φ−1](t) =∞ (iii) Tf =∞ (30)

must hold.

By recalling the class of solutions Φ(x, t) = R(t)x from example 1, we find
simple examples that demonstrate each of (i), (ii) and (iii) can happen in isola-
tion. Indeed, if g(s) = sp for p > 0 the ODE (17) reduces to R′ = CpR

1+2p; the
constant

Cp = vol(Sd−2)
∫ 1

−1

(1− s)1+p(1− s2)
d−3
2 ds

is positive. We readily compute the explicit solution and maximal interval of
existence [0, Tf ) as

R(t) =
(

1
R(0)−2p − 2pCpt

) 1
2p

, Tf =
1

2pCpR(0)2p
, (31)

so that (i) occurs as t↗ Tf while (ii) remains finite. Conversely, suppose g(s) =
−s−p for 0 < p < d−1

2 . Then

Cp = vol(Sd−2)
∫ 1

−1

(1− s)1−p(1− s2)
d−3
2 ds > 0

R(t) =
(
R(0)2p − 2pCpt

) 1
2p , Tf =

R(0)2p

2pCp
(32)

and the solution can collapse to zero in finite time. That is, (ii) occurs at Tf
while (i) remains finite.

As these examples indicate, we must prevent both blowup and collapse in
order to guarantee the solution exists as a bi-Lipschitz surface for all time. It
comes as no surprise that this amounts to having control over the gradient ma-
trix [∇vΦ](y) generated by the Eulerian velocity field vΦ(y), as similar criteria
abound for related active scalar problems. Specifically, it proves both necessary
and sufficient to have ∫ T

0

||∇vΦ||L∞(|y|≤||Φ||∞(t))dt <∞ (33)
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Precisely analogous conditions guarantee existence for related problems, such as
solutions to the Euler equations ([18], Chapter 5) and for the boundary of a
vortex patch written in contour dynamics form ([18], Chapter 8).

Theorem 5. Suppose g(s) defines an admissible kernel and f0 ∈ L∞. Then the
solution Φ(x, t) ∈ C([0, T ];C0,1(Sd−1)) to (8) exists as a bi-Lipschitz surface
past time T if and only if both ||Φ||∞(T ) <∞ and (33) hold.

Proof. Clearly, if Φ(x, t) is bi-Lipschitz on [0, T ′] for T ′ > T then ||Φ||∞(T ) <∞
and M := sup[0,T ] Lip[Φ−1](t) <∞ as well. Recalling from (21) that

[∇vΦ] (y) =
∫
Sd−1

[
g

(
1
2
|y − Φ(w)|2

)
Id+

g′
(

1
2
|y − Φ(w)|2

)
(y − Φ(w))(y − Φ(w))t

]
f0(w) dSd−1(w),

the proof of lemma 1 shows that ||∇vΦ||∞(y, t) ≤ C(M,Dy). The constant C
increases with M and Dy := maxSd−1 |y − Φ(w, t)| and remains finite provided
M and Dy stay bounded. Of course Dy ≤ 2||Φ||∞(t) ≤ 2 sup[0,T ] ||Φ||∞(t) < ∞
provided |y| ≤ ||Φ||∞(t), so that

||∇vΦ||L∞(|y|≤||Φ||∞(t)) ≤ C

(
M, 2 sup

[0,T ]

||Φ||∞(t)

)
<∞

and (33) holds.
For the converse, it suffices to show that both Lip[Φ](T ) and Lip[Φ−1](T )

remain bounded. To this end, for x, z ∈ Sd−1 let ∆(x, z, t) := Φ(x, t) − Φ(z, t).
The fundamental theorem of calculus then yields

1
2
∂

∂t
|∆(x, z, t)|2 =∫ 1

0

〈∆(x, z, t), [∇vΦ](εΦ(x, t) + (1− ε)Φ(z, t))∆(x, z, t)〉 dε. (34)

As |εΦ(x, t) + (1− ε)Φ(z, t)| ≤ ||Φ||∞(t), the relation (34) implies

1
2
∂

∂t
|∆(x, z, t)|2 ≥ −K||∇vΦ||L∞(|y|≤||Φ||∞(t))|∆(x, z, t)|2

for some absolute constant K that depends only on the size of the matrix. By
Gronwall’s inequality

|∆(x, z, 0)|e−K
R t
0 ||∇vΦ||L∞(|y|≤||Φ||∞(s))ds ≤ |∆(x, z, t)|.

Dividing through by |x−w| and taking an infimum gives the estimate

Lip[Φ−1](T ) ≤ Lip[Φ−1
0 ]eK

R T
0 ||∇vΦ||L∞(|y|≤||Φ||∞(s))ds <∞

due to (33). Analogously, the fundamental theorem of calculus and the proof of
lemma 1 combine to show

1
2
∂

∂t
|∆(x, z, t)|2 ≤ C(Lip[Φ−1](t), 2||Φ||∞||(t)).
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Applying Gronwall’s inequality, then dividing by |x−w| and taking a supremum
yields

Lip[Φ](T ) ≤ Lip[Φ0]e
R T
0 C(Lip[Φ−1](s),2||Φ||∞(s)) ds <∞.

The last inequality holds since Lip[Φ−1](t) remains finite on [0, T ] due to the
previous estimate, and since ||Φ||∞(t) remains bounded for all t ∈ [0, T ] by
hypothesis.

ut
Remark 1. From the proof of the previous theorem, we can rephrase the result
to say that the solution Φ(x, t) ∈ C([0, T ];C0,1(Sd−1)) exists as a bi-Lipschitz
surface past time T if and only if both Lip[Φ−1](T ) and ||Φ||∞(T ) remain finite.
This rephrasing generally proves more useful than the statement in theorem 5.

4.1. The Osgood Condition for Locally Attractive Kernels. We first focus our
attention on the case when g(s) has an attractive (i.e., negative) singularity at
the origin, such as g(s) = −s−p. From (32) we know collapse can occur in finite
time, so we wish to characterize precisely when this happens. Earlier studies on
the aggregation equation (2) have shown that the Osgood condition on the kernel
g(s) provides a precise characterization. Indeed, for initial data ρ0 ∈ L∞(Rd) the
Osgood condition proves both necessary and sufficient for ρ to remain in L∞ for
all positive times [3]. For initial data in ρ0 ∈ Lp(Rd) with p > d

d−1 , the Osgood
condition proves necessary and sufficient for global existence as well [4]. For our
co-dimension one distribution solutions, we show that this characterization holds
for the surface equation (8) in this section.

Following [3], we say that the kernel g(s) is Osgood if

lim
ε↓0

∫ 1

ε

1
sg(s)

ds = −∞. (35)

Adapting the arguments from [3] to our setting easily yields the necessity of (35)
for global existence, as we demonstrate in the lemma that follows.
Lemma 5. Suppose g(s) is non-positive and non-decreasing in some neighbor-
hood (0, δ] of the origin and that f0(w) ≥ 0. If (35) fails, then all solutions with
||Φ0||2∞ < δ/2 collapse to the origin in finite time.

Proof. The proof follows exactly as in [3]. As long as Φ(x, t) exists, by continuity
there exists x ∈ Sd−1 with |Φ(x, t)| = ||Φ||∞(t). From the hypotheses on g, f0
and the fact that 〈Φ(x, t), Φ(x, t)− Φ(w, t)〉 ≥ 0 for all w ∈ Sd−1 it then follows
that
∂

∂t
|Φ(x, t)|2 =

2
∫
Sd−1

g

(
1
2
|Φ(x, t)− Φ(w, t)|2

)
〈Φ(x, t), Φ(x, t)− Φ(w, t)〉 f0(w) dSd−1(w)

≤ 2g
(
2|Φ(x, t)|2

) [∫
Sd−1

|Φ(x, t)|2f0(w) dSd−1(w)−〈
Φ(x, t),

∫
Sd−1

Φ(w, t)f0(w) dSd−1(w)
〉]

= 2Mρ|Φ(x, t)|2g
(
2|Φ(x, t)|2

)
≤ 0.
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The last line results from (14),(15) and our assumption that Φ0(x) has zero
center of mass. If (35) fails, the solution to the ODE

dr
dt

= 2Mρrg(2r) r(0) = ||Φ0||2∞ (36)

reaches zero in finite time, whence ||Φ||∞(t) must reach zero in finite time as
well.

ut

As a consequence, in general (35) must hold in order to guarantee that solu-
tions to (8) do not collapse in finite time. We therefore assume (35), and turn
our attention toward demonstrating the sufficiency of the Osgood condition for
global existence. For this it will prove useful to rewrite g(s) in the form

g(s) =
h ((2s)p)

(2s)p
, 0 < p ≤ 1/2, (37)

so that the Osgood condition then reads

lim
ε↓0

∫ 1

ε

1
h(u)

du = −∞. (38)

Following [4], we shall say h(r) defines a natural kernel provided it satisfies the
following regularity, boundedness and monotonicity conditions:

Definition 2. Let g(s) satisfy (37) for some 0 < p ≤ 1/2 if d > 2 and 0 < p <
1/2 if d = 2. We then say h(r) defines a natural kernel if

(H1) h(r) ∈ C1
(
R+ \ {0}

)
(H2) h(r) ∈ L∞(R+)

(H3) h′(r) is monotonic (either increasing or decreasing) near zero

Remark 2. The additional restriction 0 < p < 1/2 if d = 2 arises due to the
integrability constraint (11).

Using the arguments from [4], we establish

Lemma 6. Let h(r) define a natural kernel with h(0) = 0. Then either

(a) min
{
h(r)
r
, h′(r)

}
≥ C0 for some C0 > −∞ and all r ∈ [0, 1], or both

(b1)
h(r)
r
→ −∞ and h′(r)→ −∞ as r → 0+, and

(b2) ∃δ > 0 such that ∀r ∈ (0, δ] h′(r) ≥ h(r)
r
,
h(r)
r

increases, h(r) decreases,

and if δ1 ≤ δ then inf
r≥δ1

h(r)
r

=
h(δ1)
δ1

and inf
r≥δ1

h′(r) = h′(δ1).
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Proof. Suppose first that there exists C1 > −∞ such that

lim inf
r→0+

h(r)
r

> C1.

As h(0) = 0, given any r sufficiently small there exists s < r with

h′(s) =
h(r)
r

> C1.

It then follows from (H3) that limr→0+ h′(r) ≥ C0. Thus h′(r) is bounded from
below in a neighborhood of the origin as well, so (a) holds. Otherwise, there
exists sequences rn → 0+ and sn < rn with

lim
n→∞

h(rn)
rn

= h′(sn) = −∞. (39)

When combined with (H3), this gives both that h′(r) → −∞ and that h′(r)
is increasing on some neighborhood (0, σ] of zero. Clearly h decreases in this
neighborhood as h′ < 0. Moreover, for any r ∈ (0, σ] there exists s < r ≤ σ with

h(r)
r

= h′(s) ≤ h′(r)

as desired. This also gives that d
dr

(
h(r)
r

)
= 1

r

(
h′(r)− h(r)

r

)
≥ 0, so that h(r)

r

increases. Coupled with (39) this shows h(r)
r → −∞, completing the proof of

(b1). Finally, from these statements it follows that h(r)
r and h′(r) are monotonic

in (0, σ] and tend to −∞ as r → 0+, so the remainder of (b2) follows provided
δ ≤ σ is sufficiently small.

ut

Note that if g(s) is Osgood, it follows from (38) that necessarily h(0) = 0.
We can therefore apply lemma 6 to such kernels, and this allows us to provide
a lower bound for the time of collapse of 1/Lip[Φ−1](t) to zero in terms of the
solution to an ODE. When part (a) of the lemma holds, a crude estimate suffices
to demonstrate global existence from this ODE. When (b1) and (b2) hold the
ODE proves more complicated. However, as g(s) is Osgood, the solution to this
ODE still remains positive for all time, and this yields global existence in the
second case.

Lemma 7. Let h(r) define a natural kernel g(s) that is Osgood. Suppose further
that f0(z) ≥ 0. If (a) in lemma 6 holds then the solution Φ(x, t) exists globally
in time.

Proof. By the remark following theorem 5, this follows from a straightforward
upper bound for Lip[Φ−1](t) and ||Φ||∞(T ). For x,w, z ∈ Sd−1 and ε ∈ R let
∆(x,w, t) := Φ(x, t)− Φ(w, t) and

Lε(x,w, z) = εΦ(x, t) + (1− ε)Φ(w, t)− Φ(z, t). (40)
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Using the fundamental theorem of calculus as before shows

1
2
∂

∂t
|∆(x,w, t)|2 =|∆|2

∫ 1

0

∫
Sd−1

[
h(|Lε|2p)
|Lε|2p

(
1− 2p cos2(θε)

)
+

h′(|Lε|2p)2p cos2(θε)
]
f0(z) dSd−1(z)dε, (41)

where θε denotes the angle between Lε and ∆. Let

C0(t) = C0(||Φ||∞(t)) = inf
r∈[0,22p||Φ||2p∞(t)]

min
{
h(r)
r
, h′(r)

}
When (a) holds, it follows from (H1) that C0(t) > −∞ provided ||Φ||∞(t) re-
mains finite. Therefore,

1
2
∂

∂t
|∆(x,w, t)|2 ≥ C0(t)Mρ|∆(x,w, t)|2.

Gronwall’s inequality then yields

|∆(x,w, t)| ≥ |∆(x,w, 0)|eMρ

R t
0 C0(s)ds.

Dividing through by |x−w| and taking an infimum yields

Lip[Φ−1](t) ≤ Lip[Φ−1
0 ]e−Mρ

R t
0 C0(s)ds,

so that Lip[Φ−1](t) remains bounded for all finite times provided ||Φ||∞(t) does.
As h(r) defines a natural kernel, the hypotheses (H2) shows that

∂

∂t
||Φ||∞(t) ≤ K||Φ||1−2p

∞ (t),

for some absolute constant K, so that ||Φ||∞(t) does indeed remain bounded for
all finite time as desired.

ut

Now let us turn to the second case, i.e. that (b1) and (b2) from lemma 6 hold.
For use in the following lemma, let us define the quantity we wish to estimate,
r(t) := 1/Lip[Φ−1](t), and the integral

I(r2p(t)) =
∫ 1

−1

h
(
r2p(t)2−p(1− s)p

)
2−p(1− s)p

(1− s2)
d−3
2 ds. (42)

With these definitions, and taking δ as in lemma 6 part (b2) we can demonstrate

Lemma 8. Let h(r) define a natural kernel g(s) that is Osgood. Suppose further
that f0(z) ≥ 0 and 0 < r(t0) < δ for some t0 ≥ 0. If (b1) and (b2) in lemma 6
holds, then r2p(t) remains bounded below by the solution q(t) to the ODE

dq
dt

= 2p
[
vol(Sd−2)||f0||∞I(q(t)) +Mρh(q(t))

]
, q(t0) = r2p(t0) (43)

for all t ≥ t0.
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Proof. Use the fundamental theorem of calculus as in the first case, define Lε
as in (40) and let f(ε, z) denote the integrand. Then split the resulting integral
(41) into two terms to find∫ 1

0

∫
Sd−1

f(ε, z) dSd−1(z)dε =
∫ 1

0

∫
Sd−1∩{|Lε|2p≤δ1}

+
∫ 1

0

∫
Sd−1∩{|Lε|2p≥δ1}

:=I + II.

For any δ1 ≤ δ with δ as in lemma 6, as h′(|Lε|2p) ≥ h(|Lε|2p)
|Lε|2p and h ≤ 0 it

follows that

I ≥ ||f0||∞
∫ 1

0

∫
Sd−1∩{|Lε|2p≤δ1}

h(|Lε|2p)
|Lε|2p

dSd−1(z).

Let x0 = x0(ε) denote a minimizer of |εΦ(x, t) + (1 − ε)Φ(w, t) − Φ(z, t)| over
z ∈ Sd−1, so that

|Lε| ≥
1
2
|Φ(x0, t)− Φ(z, t)| ≥ r(t)

2
|x0 − z|.

Combining this with the facts that h(r)
r is non-decreasing and that h ≤ 0 then

shows

I ≥22p||f0||∞
∫ 1

0

∫
{|Lε|2p≤δ1}

h
(
r2p(t)2−2p|x0 − z|2p

)
r2p(t)|x0 − z|2p

dSd−1(z)dε ≥

22p||f0||∞
∫ 1

0

∫
{r2p(t)2−2p|x0−z|2p≤δ1}

h
(
r2p(t)2−2p|x0 − z|2p

)
r2p(t)|x0 − z|2p

dSd−1(z)dε.

The case l = 0 of theorem 1 then implies

I ≥ vol(Sd−2)||f0||∞
∫
{(r2(1−s)/2)p≤δ1}

h
(
r2p(t)2−p(1− s)p

)
r2p(t)2−p(1− s)p

(1− s2)
d−3
2 ds.

For II, using the last part of (b2) it follows that h(r)
r ≥

h(δ1)
δ1

for all r ≥ δ1 and

similarly that h′(r) ≥ h′(δ1) ≥ h(δ1)
δ1

provided δ1 ≤ δ. Therefore

II ≥ h(δ1)
δ1

∫ 1

0

∫
Sd−1

f0(z) dSd−1(z)dε = Mρ
h(δ1)
δ1

.

For any time when r2p(t) < δ, the choice δ1 = r2p(t) yields

1
2
∂

∂t
|∆|2 ≥ |∆|2

[
vol(Sd−2)||f0||∞I(r2p(t)) +Mρh(r2p(t))

]
r−2p(t). (44)

An application of Gronwall’s inequality then shows

|∆(x,w, t)|2p ≥ |∆(x,w, 0)|2p exp
(

2p
∫ t

t0

[
vol(Sd−2)||f0||∞I(r2p(s))+

Mρh(r2p(s))
]
r−2p(s) ds

)
.
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Dividing through by |x−w| and taking infimums yields the estimate

r2p(t)/r2p(t0) ≥

exp
(

2p
∫ t

t0

[
vol(Sd−2)||f0||∞I(r2p(s)) +Mρh(r2p(s))

]
r−2p(s) ds

)
(45)

which holds for all t ≥ t0 such that r2p(t) < δ on [t0, t]. Using (45) and a
standard bootstrap argument shows that r2p(t) ≥ q(t) for all such t ≥ t0. Of
course, q(t) < δ for all t ≥ t0 as h ≤ 0 on (0, δ], so that in fact r2p(t) ≥ q(t) for
all t ≥ t0.

ut
The last ingredient we need demonstrates that in the second case, the solution

to (43) remains positive for all time when h(r) defines a natural, Osgood kernel.

Lemma 9. Let h(r) define a natural, Osgood kernel satisfying (b1) and (b2),
and take δ > 0 as in lemma 6. Then the solution Φ(x, t) with initial data Φ0(x)
exists globally in time.

Proof. It suffices to show that I(q(t)) ≥ Ch(q(t)) where C denotes some finite,
positive constant. Indeed, as h(r) defines an Osgood kernel the solution to (43)
then remains positive for all time, whence Lip[Φ−1](t) remains finite for all time
by lemma 8. From (H2) it follows that ||Φ||∞(t) also remains bounded for all
time, and the claim then follows.

To see that I(q(t)) ≥ Ch(q(t)) holds, recall from lemma 6 part (b2) that h(r)
decreases on (0, δ]. As q(t)2−p(1 − s)p ≤ q ≤ δ for s ∈ [−1, 1], it then follows
that

I(q(t)) :=
∫ 1

−1

h (q(t)2−p(1− s)p)
2−p(1− s)p

(1− s2)
d−3
2 ds

≥ 2ph(q(t))
∫ 1

−1

(1− s)
d−3
2 −p(1 + s)

d−3
2 ds.

As p < d−1
2 by hypothesis, the last integral is finite, which gives I(q(t)) ≥

Ch(q(t)) as desired.
ut

We may now encapsulate the previous lemmas into the main result of this
section, i.e. the following theorem demonstrating the equivalence between the
Osgood condition (38) and the global existence of all solutions to the IDE (8)
for the class of natural kernels.

Theorem 6. (Necessary and Sufficient Condition for Global Existence) Let g(s)
satisfy (37), where h(r) defines a natural kernel and h(r) ≤ 0 in a neighborhood
of the origin. Then all solutions to (8) exist globally in time if and only if (38)
holds.

Proof. Suppose first that (38) fails. Then either h(0) < 0 or h(0) = 0. In the
first case, there exists ε > 0 so that

g(s) <
h(0)

2(2s)p
,
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for some p > 0 and all s ∈ [0, ε]. The proof of lemma 5 then shows that all
solutions with ||Φ0||2∞ ≤ ε/2 collapse to the origin in finite time. In the second
case, either (a) or (b1,b2) in lemma 6 holds. If (a) holds then ∃C0 > 0 so that

h(r) ≥ −C0r

for all r in a neighborhood of the origin. This contradicts the assumption that
(38) fails, so both (b1) and (b2) must hold. As a consequence, g(s) is non-negative
and non-decreasing in a neighborhood of the origin. Lemma 5 then applies, so
that all solutions with ||Φ0||∞ sufficiently small must collapse in finite time.

Conversely, if (38) holds then necessarily h(0) = 0. Thus either lemma 7 or
lemma 9 applies, yielding global existence of all solutions in either case.

ut

4.2. Locally Repulsive Kernels. Lastly, we provide a global existence result for
locally repulsive kernels, i.e. when g(s) has a positive singularity near the origin.
As before, we assume

g(s) =
h ((2s)p)

(2s)p
,

for some 0 < p ≤ 1/2 and p < 1/2 if d = 2. We modify the assumtions on h(r)
slightly, in that we replace the monotonicity condition (H3) with a boundedness
condition (H4). We therefore assume

(H1) h(r) ∈ C1
(
R+ \ {0}

)
(H2) h(r) ∈ L∞(R+)

(H4) inf
(0,1)

h′(r) > −∞. (46)

These hypotheses include many kernels that appear in applications, including
the power laws g(s) = s−p for p ≤ 1

2 as well as the ubiquitous Morse potential
[16,11]

g(s) =
e−
√

2s − F e−L
√

2s

√
2s

.

Under these assumptions, we have the following global existence result:

Theorem 7. Let g(s) = h((2s)p)(2s)−p for some 0 < p ≤ 1/2 if d ≥ 3 and p <
1/2 if d = 2. Let h(r) satisfy (46) and f0(w) ≥ 0. If there exists a neighborhood
(0, δ] of the origin on which h(r) ≥ 0, then the solution Φ(x, t) given by theorem
2 exists globally in time.

Proof. Again using the remark following theorem 5, this follows from a straight-
forward upper bound for Lip[Φ−1](t) and ||Φ||∞(T ). For x,w, z ∈ Sd−1 and
ε ∈ R let ∆(x,w, t) := Φ(x, t)− Φ(w, t) and

Lε(x,w, z) = εΦ(x, t) + (1− ε)Φ(w, t)− Φ(z, t).

Then as before it follows that

1
2
∂

∂t
|∆(x,w, t)|2 =|∆|2

∫ 1

0

∫
Sd−1

[
h(|Lε|2p)
|Lε|2p

(
1− 2p cos2(θε)

)
+

h′(|Lε|2p)2p cos2(θε)
]
f0(z) dSd−1(z)dε,
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where θε denotes the angle between Lε and ∆. As h ≥ 0 when |Lε|2p < δ and h′
is bounded below it follows that

1
2
∂

∂t
|∆(x,w, t)|2 ≥ |∆|2

∫ 1

0

∫
Sd−1

[
h(|Lε|2p)
|Lε|2p

(
1− 2p cos2(θε)

)
1{|Lε|2p≥δ}+

h′(|Lε|2p)2p cos2(θε)
]
f0(z) dSd−1(z)dε ≥

|∆|2vol(Sd−1)||f0||∞

(
min

{
inf

r∈(0,22p||Φ||2p∞(t)]
h′(r), 0

}
− ||h||∞

δ

)
.

Using Gronwall’s inequality as before shows that Lip[Φ−1](t) remains finite for
all time provided ||Φ||∞(t) does. However, as in lemma 7 the hypothesis (H2)
shows that

∂

∂t
||Φ||∞(t) ≤ K||Φ||1−2p

∞ (t),

for some absolute constant K, so that ||Φ||∞(t) does remains bounded for all
finite time as desired.

ut

5. Concluding Remarks

This paper provides the basic local in time well-posedness theory for an ag-
gregation sheet, i.e. a solution to the aggregation equation that concentrates
on a co-dimension one manifold. We focused our efforts on the case when the
evolution equation (8) is linearly well-posed, and used the linear well-posedness
condition to demonstrate that nonlinear well-posedness also holds. This condi-
tion enforces regularity in the kernel, and we therefore assumed only a modest
amount regularity for the sheet itself. This contrasts to similar problems in the
linearly ill-posed regime, most notably the Birkhoff-Rott equation, where lo-
cal existence results have been known for some time for analytic sheets in two
and three dimensions [25], and for chord-arc initial data [31] in two dimensions.
Demonstrating local existence of sheet solutions to the aggregation equation (2)
in the ill-posed regime proves an interesting open problem.

Regarding global existence, we showed that for attractive kernels the Osgood
condition (35) determines whether or not solutions collapse in finite time. This
makes a nice connection to the existing literature on the co-dimension zero ag-
gregation equation, where similar results exist [3,4]. For a class of kernels with a
repulsive singularity near the origin we provided a simple global existence result.
While this class includes many kernels that appear in applications, such as the
Morse potential, it fails to capture reasonable examples such as the power laws
g(s) = s−p for p > 1/2. Our current methods for demonstrating global existence
do not apply to such kernels, so we leave the problem of proving global existence
for a broader class of repulsive kernels for future research.
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27. G. Szegö. Orthogonal Polynomials. Amer. Math. Soc., Providence, RI, 4th edition, 1975.
28. Chad M. Topaz and Andrea L. Bertozzi. Swarming patterns in a two-dimensional kine-

matic model for biological groups. SIAM J. on Appl. Math., 65(1):152–174, 2004.



28 James H. von Brecht, Andrea L. Bertozzi

29. Salvatore Torquato. Inverse optimization techniques for targeted self-assembly. Soft Mat-
ter, 5:1157–1173, 2009.

30. James von Brecht, David Uminsky, Theodore Kolokolnikov, and Andrea L. Bertozzi. Pre-
dicting pattern formation in particle interactions. Math. Mod. Meth. Appl. Sci., accepted,
2011.

31. Sijue Wu. Mathematical Analysis of Vortex Sheets. Commun. Pure Appl. Math.,
59(1):1065–1206, 2005.

32. Wen Yang, A.L. Bertozzi, and Xiaofan Wang. Stability of a second order consensus algo-
rithm with time delay. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference
on, pages 2926 –2931, 2008.


	Background
	Elementary Properties and A-Priori Estimates
	Local Well-Posedness
	Blowup, Collapse, and Global Existence
	Concluding Remarks
	Acknowledgements

