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Inpainting of Binary Images Using
the Cahn–Hilliard Equation

Andrea L. Bertozzi, Selim Esedoḡlu, and Alan Gillette

Abstract—Image inpainting is the filling in of missing or damaged regions
of images using information from surrounding areas. We outline here the
use of a model for binary inpainting based on the Cahn–Hilliard equation,
which allows for fast, efficient inpainting of degraded text, as well as super-
resolution of high contrast images.

Index Terms—Binary images, Cahn–Hilliard equation, image inpainting,
super-resolution.

I. INTRODUCTION

Image inpainting is the filling in of damaged or missing regions of
an image with the use of information from surrounding areas. In its
essence, it is a type of interpolation. Its applications include restora-
tion of old paintings by museum artists, and removing scratches from
photographs.

The pioneering work of Bertalmio et al. [1] introduced image in-
painting for digital image processing. Their model is based on non-
linear partial differential equations, and imitates the techniques of mu-
seum artists who specialize in restoration. They focused on the prin-
ciple that good inpainting algorithms should propagate sharp edges into
the damaged parts that need to be filled in. This can be done, for in-
stance, by connecting contours of constant grayscale image intensity
(called isophotes) to each other across the inpainting region (see also
Masnou and Morel [2]), so that gray levels at the edge of the the dam-
aged region extend continuously into the interior. They also impose the
direction of the isophotes as a boundary condition at the edge of the in-
painting domain. In subsequent work with Bertozzi [3], they realized
that the method in [1] has intimate connections with 2-D fluid dynamics
through the Navier–Stokes equation. Indeed, the steady-state equation
proposed in [1] is equivalent to the inviscid Euler equations from in-
compressible flow, in which the image intensity function plays the role
of the stream function in the fluid problem. The natural boundary con-
ditions for inpainting are to match the image intensity on the boundary
of the inpainting region, and also the direction of the isophote lines
(r?I). For the fluid problem, this is effectively a generalized “no-slip”
boundary condition that requires a NavierStokes formulation, intro-
ducing a diffusion term. This analogy also shows why diffusion is re-
quired in the original inpainting problem. In practice, nonlinear diffu-
sion [4], [5] works very well to avoid blurring of edges in the inpainting.

A different approach to inpainting was proposed by Chan and Shen
[6]. They introduced the idea that well-known variational image de-
noising and segmentation models can be adapted to the inpainting task
by a simple modification. These models often include a fidelity term
that keeps the solutions close to the given image. By restricting the ef-
fects of the fidelity term to the complement of the inpainting region,
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Chan and Shen showed that very good image completions can be ob-
tained. The principle behind their approach can be summarized as fol-
lows: variational denoising and segmentation models all have an un-
derlying notion of what constitutes an image. In the inpainting region,
the models of Chan and Shen reconstruct the missing image features
by relying on this builtin notion of what constitutes a natural image.
The first model introduced by Chan and Shen used the total variation
based image denoising model [5]. This model can successfully prop-
agate sharp edges into the damaged domain. However, because of a
regularization term, the model exacts a penalty on the length of edges,
and, thus, the inpainting model cannot connect contours across very
large distances. Another caveat is that this model does not continuously
extend the direction of isophotes across the boundary of the inpainting
domain.

Subsequently, Chan et al. [7] introduced a new variational image
inpainting model that addressed the caveats of the total variation based
one. Their model is motivated by the work of Nitzberg et al.[8] and
includes a new regularization term that penalizes not merely the length
of edges in an image, but the integral of the square of curvature along
the edge contours. This allows both for isophotes to be connected across
large distances, and their directions to be kept continuous across the
edge of the inpainting region.

Following in the footsteps of Chan and Shen, Esedoḡlu and Shen
[9] adapted the Mumford–Shah image segmentation model [10] to the
inpainting problem for grayscale images. They utilized Ambrosio and
Tortorelli’s elliptic approximations [11] to the Mumford–Shah func-
tional. Gradient descent for these approximations leads to parabolic
equations with a small parameter " in them; they represent edges in
the image by transition regions of thickness ". These equations have
the benefit that highest order derivatives are linear. They can, there-
fore, be solved rather quickly. However, like the total variation image
denoising model, the Mumford–Shah segmentation model penalizes
length of edge contours, and as a result does not allow for the con-
nection of isophotes across large distances in inpainting applications.

In order to improve the utility of the Mumford–Shah model in
inpainting, Esedoḡlu and Shen introduced the Mumford–Shah–Euler
(MSE) image model that, just like the previous work of Kang et al.
[7], penalizes the square of the curvature along an edge contour.
Following previous work by March [12], they then used a conjecture
of De Giorgi [13] to approximate the resulting variational problem
by an elliptic one. The resulting gradient descent equations are fourth
order, nonlinear parabolic PDEs with a small parameter in them.

More recently, Grossauer and Scherzer [14] have used the complex
Ginzburg–Landau equation in a technique for inpainting grayscale
images. This method assigns the real part u of a complex quantity
w = u + iv to be the grayscale values of the image. The complex
quantity w is then forced by their algorithm to reside on a circle of
radius 1, centered at the origin, in the complex plane. The complex
Ginzburg–Landau equation then leads to a coupled system to be solved
for u and v, respectively.

All of the above methods are PDE-based methods. With regard to
other kinds of methods for binary inpainting, the closest in spirit are
those based on spline continuation of the edges [15], [16]. This ap-
proach is very fast for simple regions and the complexity of the al-
gorithm depends on the number of edges involved in the inpainting
problem. In contrast, our PDE-based method is O(NlogN), regard-
less of the complexity of the image, where N = n � n is the number
of pixels in a square region surrounding the inpainting domain. The log
correction is due to the use of the FFT for solving an implicit equation.

II. MODIFIED CAHN–HILLIARD EQUATION INPAINTING MODEL

Our idea is that a much simpler class of models exist that still has
many of the desirable properties of the model introduced in [9], but for
which there are very fast computational techniques available. In par-
ticular, we show that in the case of high-contrast or binary images, a

slightly modified Cahn–Hilliard equation allows us to obtain inpaint-
ings as good as the ones in previous papers, but achieves them much
more rapidly. This faster method is a result of both a new simplified
PDE model and the use of fast solvers for such a model.

Let f(~x), where ~x = (x; y), be a given image in a domain 
, and
suppose that D � 
 is the inpainting domain. Let u(~x; t) evolve in
time to become a fully inpainted version of f(~x) under the following
equation:

ut = �r2
"r2

u�
1

"
W

0(u) + �(~x)(f � u) (1)

where

�(~x) =
0 if ~x 2 D

�0 if ~x 2 
 nD:

The function W (u) is a nonlinear potential with wells corresponding
to values of u that are taken on by most of the grayscale values. In the
examples considered here, we use binary images in which most of the
pixels are either exactly black or white. In this binary case, W should
have wells at the values u = 0 and u = 1. In the examples presented
in this document, we use the function W (u) = u2(u � 1)2; how-
ever, other functions could be used. We assume that the image function
u(~x; t) takes on grayscale values in a domain 
 and satisfies periodic
boundary conditions on @
. Alternatively, Neumann boundary con-
ditions could be used, or any boundary conditions for which one can
use fast solvers for the equation (see discussion below). Equation (1)
is what we will call the modified Cahn–Hilliard equation, due to the
added fidelity term �(~x)(f � u).

The role of " in (1) is important. In the original Cahn–Hilliard equa-
tion, " serves as a measure of the transition region between two metals in
an alloy, after heating and reaching a steady state. Applied to image pro-
cessing," is a measure of the transition region between the two grayscale
states – for example between the black and white of printed text.

Another important feature of this new idea is that fast solvers exist
for the numerical integration of the Cahn–Hilliard equation and similar
diffuse interface equations. To date, no such solvers have been applied
to these problems in the context of imaging applications, and we believe
that this synergistic combination of a simpler PDE-based method and
a state-of-the-art fast solver provides significant improvement over the
previous state-of-the-art (see Section IV).

Here, we demonstrate how to implement this idea using a specific fast
solver known as convexity splitting [17], [18]. Convexity splitting de-
composes the energy functional into two parts—a convex energy plus a
concave energy. Then one evolves the gradient flow for the Euler–La-
grange equation using a semi-implicit timestep in which the convex part
of the energy is implicit and the concave part explicit. Under the right
conditions, this convexity splitting results in an unconditionally stable
time-discretization scheme, allowing for arbitrarily large time steps.
Vollmayr-Lee and Rutenberg [18] have recently refined the conditions
under which stability is applicable for the original Cahn–Hilliard equa-
tion.

The new modified Cahn–Hilliard equation is not strictly a gradient
flow. The original Cahn–Hilliard equation [(1) with � = 0] is indeed a
gradient flow using an H�1 norm for the energy

E1 =



"

2
jruj2 +

1

"
W (u) d~x (2)

while the fidelity term in (1) can be derived from a gradient flow under
an L2 norm for the energy

E2 = �0

nD

(f � u)2d~x (3)
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but, in total, the modified Cahn–Hilliard equation is neither a gradient
flow in H�1 nor L2. For a discussion of Cahn–Hilliard and gradient
flows inH�1, see Taylor and Cahn [19]. However, the idea of convexity
splitting, one for the Cahn–Hilliard energy in (2) and one for the energy
E2 in (3), can still be applied to this problem with good results.

For example, one can split E1 = E11 � E12 where

E11 =



"

2
jruj2 +

C1

2
juj2 d~x and (4)

E12 =



�
1

"
W (u) +

C1

2
juj2 d~x: (5)

Note that �E12 is not strictly concave; however, in practice, one can
chooseC1 so that it is concave over the range of values of u empirically
observed in the simulation. Likewise, we can rewrite E2 = E21�E22

where

E21 =

nD

C2

2
juj2 d~x and (6)

E22 =

nD

��0(f � u)2 +
C2

2
juj2 d~x: (7)

For the splittings discussed above, the resulting time-stepping
scheme is

un+1 � un

�t
= �rH (En+111 �En12)�rL (En+121 �En22) (8)

where rH and rL represent gradient descent with respect to the
H�1 inner product, and L2 inner product, respectively. This translates
to a numerical scheme of the form

un+1 � un

�t
+ "r4un+1 � C1r

2un+1 + C2u
n+1

=r2 1

"
W 0(un) + �(~x)(f(~x)� un)� C1r

2un + C2u
n: (9)

The constants C1 and C2 are positive; they must be large enough
so that E11, E12, E21, and E22 are convex for the range of u in the
simulation. In practice, C1 is comparable to 1=", while C2 is compa-
rable to �0. Numerical tests show that with these choices the scheme
(9) is unconditionally stable. Equation (9) for un+1 then involves only
constants and the Laplace operator applied to the new time level. On
a square domain, with periodic or Neumann boundary conditions, one
can solve this efficiently using a pseudospectral method based on a fast
Fourier transform [20], [21]. The main idea is that the operators applied
to un+1 have the same eigenfunctions as the FFT and, thus, are diago-
nalizable using this decomposition. We present some examples below
and state the parameters used for �t, Ci, �, and ".

Finally, we mention that one can perform inpainting across larger
regions by considering a two-step method. The inpainting is done first
with a larger ", which results in topological reconnection of shapes
with edges smeared by diffusion. The second step then uses the results
of the first step and continues with a much smaller value of " in order
to sharpen the edge after reconnection. In practice such a two-stage
process can result in inpainting of a stripe across a region that is over
ten times the width of the stripe, without any a priori knowledge of the
location of the stripe.

III. EXAMPLES

The modified Cahn–Hilliard equation lends itself particularly well
to the inpainting of simple binary shapes, such as stripes and circles.

Fig. 1. (a) Initial data (inpainting region in gray). (b) Intermediate state at t =
50. (c) Steady state at t = 700 (gap distance is 30 units, image domain is
128� 128). Total CPU time 11.5 s. �t = 1, � = 50000, C = 300, and
C = 150000.

Fig. 2. (a) Initial data of cross (inpainting region in gray). (b) Intermediate
state at t = 300. (c) Steady state at t = 1000 (image domain is 128� 128,
stripe width is 20 units, initial gap distance is 50 units). Total CPU time 15.6 s.
�t = 1, � = 100000, C = 300, and C = 3�.

Moreover, its applicability can be extended to achieve inpainting of ob-
jects composed of stripes and circles, i.e., roads or text. We show sev-
eral examples performed on a Linux desktop system using a Pentium
4 processor, and programmed in MATLAB.

A. Inpainting of a Double Stripe

Fig. 1 shows a two-step process. The gray region in Fig. 1(a) denotes
the inpainting region. We begin with " (= :8), and at t = 50 we reach
a steady state, shown in Fig. 1(b). We then switch to a small value of "
(= :01), using the result from Fig. 1(b) as initial data. The final result
at t = 700 and is shown in Fig. 1(c).

B. Inpainting of a Cross

In Fig. 2(a), the gray region denotes the inpainting region. As with
the stripes, the modified Cahn–Hilliard equation is run to steady state
for a large value of " (= :8), resulting in Fig. 2(b) at t = 300. This data
is then used as initial data for the modified Cahn–Hilliard equation with
" (= :01) set to a small value. The final result is a completed cross at
t = 1000.

C. Inpainting of a Sine Wave

Fig. 3 shows how the modified Cahn–Hilliard equation may be ap-
plied to the inpainting of simple road-like structures. In Fig. 3(a), an
incomplete sine wave is shown. In Fig. 3(b), the sine wave is artificially
“fattened” by expanding each white point’s area radially by a factor of
3. This is done in order to give the modified Cahn–Hilliard equation
sufficient boundary conditions for effective inpainting. In Fig. 3(c), the
gray area represents the inpainting region. The remaining white and
black portions of the image are, thus, outside the inpainting region,
and essentially held fixed in place by the fidelity term of the modified
Cahn–Hilliard (1). The two-step method was then used to inpaint the
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Fig. 3. Inpainting a sine wave. (a) Initial data. (b) Expansion of white points by
factor of 3. (c) Gray area denotes inpainting region (d) Final result at t = 4000,
CPU time of 35.1 s (image domain is 128� 128). �t = 1, C = 300, and
C = 3�.

sine wave. Fig. 3(d) shows the final result. The initial value of " was
taken to be.8, and then at t = 200, this was switched to a value of
" = :01. The final inpainting result was taken at t = 4000.

D. Inpainting of a Road

Fig. 4(a) shows a satellite image of a road passing through a forest in
Washington state. After a simple thresholding of grayscale values, the
visible pieces of the road are shown as the white regions in Fig. 4(b).
The gray area in Fig. 4(b) represents the inpainting region, which was
found by creating a circle about each established point of the road, the
radius of which was chosen to be the maximum estimated gap length
between existing portions of the road. Note that each thresholded white
point of the road has been expanded in radius, as for the sine wave in
Fig. 3(b). In the original satellite photo, the road actually has an average
width of about 1 pixel, making it very difficult to establish meaningful
boundary conditions for the inpainting problem.

In Fig. 4(c), the steady-state has been reached using the modified
Cahn–Hilliard equation, via the aforementioned two-step process. The
result in (c) is too thick, but the resulting centerline, overlaid on the
initial satellite photo, shows, in Fig. 4(d), a close an estimation of the
path when overlayed on the original photograph. The initial value for
" was.8 and was switched at t = 100 to " = :005. The final result was
taken at t = 500. Much more efficient inpainting, as in in Fig. 3, could
be done with a more precise estimation of the inpainting region.

E. Recovery of Text

In Fig. 5(a), several lines obscure some Arabic writing. Using these
obstructing lines as the inpainting region, the modified Cahn–Hilliard
two-step scheme can inpaint the occluded parts of the writing. The ini-
tial value for " was.08. At t = 100, " was switched to.01. The program
was then run to 200 time steps and the result is shown in Fig. 5(b).

Fig. 4. Inpainting of an obscured road. (a) Original photograph. (b) Thresh-
olding for road pixels, expansion of road pixels by factor of 3. Gray inpainting
region is the union of circles of radius R centered on the road pixels where R
is the maximum gap between consecutive road pixels. (c) Inpainting result at
t = 500, 8.5 s of CPU time. �t = 1, � = 1000000, C = 30000, and
C = 3�. (d) Centerline of inpainting region, superimposed on original photo-
graph (image domain is 128� 128).

Fig. 5. Recovery of damaged text. (Image domain was 256� 256). �t = 1,
� = 50000000, C = 10000, C = 3�, CPU time is 22.4 s at t = 200,
shown above.

In Fig. 6(a), graffiti is written over the UCLA logo. Using the graf-
fiti as the inpainting region, We restore the image using the two-step
method. Until t = 100, a large value of " (= :8) is used. At t = 100,
" is switched to a small value (= :003). The final result in Fig. 6(b) is
the restored logo.
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Fig. 6. Recovery of damaged text. (Image domain is 256� 256). �t = 1,
� = 50000000, C = 15000, C = 3�, CPU time is 13.25 s at t = 120,
shown above.

Fig. 7. Super-resolution of text. Magnification 3�. Original size 64� 64.
Total CPU time is 17.4 s. C = 300, C = 150000000,�t = 1.

F. Super-Resolution

The modified Cahn–Hilliard equation can also be used for the pur-
poses of super-resolution of text. This application has been studied by
other PDE-based methods [3], [22], as well as by many other classes
of algorithms (e.g., [23]), and, thus, it is natural to consider here. Latin
writing is shown in Fig. 7(a), of size 64� 64. Fig. 7(b) shows the text
enlarged by 3� using MATLAB’s “nearest-neighbor” algorithm. First,
the white region of Fig. 7(b) is subsampled to provide initial data for in-
painting. Next, the modified Cahn–Hilliard algorithm runs until t = 40

using a very large fidelity constant, � = 50000000, and very small
" (= :005). After t = 40, � is set equal to zero, and the ordinary
Cahn–Hilliard equation is allowed to run on the text. This allows for
the smoothing of jagged parts of the text [Fig. 7(b)]. Fig. 7(c) and (d)
show the results at t = 350 and t = 450, respectively.

Fig. 8. Inpainting data for comparison tests. Gray color denotes inpainting re-
gions.

Fig. 9. Results for the circle inpainting test. – zero initial data assumed in
inpainting region. – random initial data assumed in inpainting region.

IV. COMPARISON WITH OTHER METHODS

One of the chief benefits of using the modified Cahn–Hilliard (mCH)
equation to do inpainting are the fast numerical techniques available for
its solution. To quantitatively determine how much faster this makes
the modified Cahn–Hilliard equation than other PDE inpainting tech-
niques, a series of comparison tests were run. The methods we tested
against were the curvature driven diffusion (CDD) inpainting model
of Chan and Shen [24], the Euler’s elastica (EE) inpainting model of
Chan et al. [7], and the MSE inpainting model of Esedoḡlu and Shen
[9]. Each method was tested on two examples – inpainting a 3/4 circle,
and inpainting a disconnected stripe. All tests were run on the same
system used in Section III (with the exception that the EE method was
programmed in C++).

A. Graphic Results

Figs. 9 and 10 show the performance of each inpainting method on
the circle and stripe tests, respectively. As can be seen in Fig. 9, CDD
requires random data to begin inpainting the circle (CDD2). The EE
method fared well on the circle test with zero initial data in the in-
painting region (EE1), but became mired when the test was started
with random data there (EE2). The MSE and mCH methods, however,
had no strict preference for the initial data in the inpainting region. Re-
sults were the same whether random or zero initial data was assumed
(MSE1;2, mCH1;2).
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Fig. 10. Results for the stripe inpainting test. – zero initial data assumed in
inpainting region. – random initial data assumed in inpainting region.

TABLE I
COMPARISON TESTS, INPAINTING REGION SET TO ZERO

* 30� 30 grid used. All others 128� 128.

TABLE II
COMPARISON TESTS, INPAINTING REGION SET TO RANDOM DATA

* 30� 30 grid used. All others 128� 128.

B. Tabulated Results

Tables I and II show the timing results for each method. These are
the correct times for the graphical results shown in Figs. 9 and 10.

V. CONCLUSION

We have shown how the Cahn–Hilliard equation can be modified to
achieve fast inpainting of binary imagery. This modified Cahn–Hilliard
equation can be applied to the inpainting of simple binary shapes,
text reparation, road interpolation, and super-resolution. The two-step
process we employ, described at the end of Section II, allows for effec-
tive inpainting across large unknown regions. Although it works best
when the end-user to specifies the inpainting domain, this method can
also be used for interpolating simple roads and other situations where

a user-defined inpainting region is not feasible. Through a two-step
process, the method can inpaint across large gaps in a repeatable way.
Although multiple solutions, including broken connections, may be
possible mathematically, the method can find a continuous solution
by first performing very diffuse but continuous connection, and then
using this state as initial data for a subsequent inpainting with sharp
transitions between white and black regions.

In the context of binary image inpainting, the modified
Cahn–Hilliard equation has displayed a considerable decrease in
computation time when compared with other PDE-based inpainting
methods. Fast numerical techniques available for the Cahn–Hilliard
equation also allow for efficient computation with relatively large
datasets.
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