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Inpainting of Binary Images Using the Cahn-Hilliard Equation
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Abstract— Image inpainting is the filling in of missing or damaged
regions of images using information from surrounding areas. We outline
here the use of a model for inpainting based on the Cahn-Hilliard
equation, which allows for fast, efficient inpainting of degraded text,
as well as super-resolution of high contrast images.

Index Terms—Image inpainting, super-resolution, binary images,
Cahn-Hilliard equation
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I. INTRODUCTION

MAGE inpainting is the filling in of damaged or missing regions

of an image with the use of information from surrounding
areas. In its essence, it is a type of interpolation. Its applications
include restoration of old paintings by museum artists, and removing
scratches from photographs.

The pioneering work of Bertalmio et. al. [1] introduced image
inpainting for digital image processing. Their model is based on
nonlinear partial differential equations, and is designed to imitate
the techniques of museum artists who specialize in restoration.
In particular, they focused on the principle that good inpainting
algorithms should propagate sharp edges in surrounding areas into the
damaged parts that need to be filled in. This can be done, for instance,
by connecting contours of constant grayscale image intensity (called
isophotes) to each other across the inpainting region (see also Masnou
and Morel [2]), so that gray levels at the edge of the the damaged
region get extended to the interior continuously. They also impose
the direction of the isophotes as a boundary condition at the edge of
the inpainting domain.

In subsequent work with Bertozzi [3], they realized that the
nonlinear PDE introduced in [1] has intimate connections with two
dimensional fluid dynamics through the Naiver-Stokes equation. In-
deed, it turns out that the steady state problem originally proposed in
[1] is equivalent to the inviscid Euler equations from incompressible
flow, in which the image intensity function plays the role of the
stream function in the fluid problem. The natural boundary conditions
for inpainting are to match the image intensity on the boundary of
the inpainting region, and also the direction of the isophote lines
(V). For the fluid problem this is effectively a generalized ‘no-
slip” boundary condition that requires a Navier-Stokes formulation,
introducing a diffusion term. This analogy also shows why diffusion
is required in the original inpainting problem. In practice nonlinear
diffusion (as in Perona-Malik [4], ROF [5]) works very well to avoid
blurring of edges in the inpainting.

A different approach to inpainting was proposed by Chan and
Shen [6]. They introduced the idea that well-known variational image
denoising and segmentation models can be easily adapted to the
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inpainting task by a simple modification. In particular, these models
often include a fidelity term that keeps the solutions close to the given
image. By restricting the effects of the fidelity term to the complement
of the inpainting region, Chan and Shen showed that very good image
completions can be obtained. The principle behind their approach can
be summarized as follows: variational denoising and segmentation
models all have an underlying notion of what constitutes an image.
In the inpainting region, the models of Chan and Shen reconstruct
the missing image features by relying on this built-in notion of what
constitutes a natural image.

The first model introduced by Chan and Shen used the total varia-
tion based image denoising model of Rudin, Osher, and Fatemi [5] for
the inpainting purpose. This model can successfully propagate sharp
edges into the damaged domain. However, because of a regularization
term, the model exacts a penalty on the length of edges, and thus the
inpainting model cannot connect contours across very large distances.
Another caveat is that this model does not continuously extend the
direction of isophotes across the boundary of the inpainting domain.
However, for an interesting application of this method, see Kang,
Chan, and Soatto [7].

Subsequently, Kang, Chan, and Shen [8] introduced a new vari-
ational image inpainting model that addressed the caveats of the
total variation based one. Their model is motivated by the work of
Nitzberg, Mumford, and Shiota, [9] and includes a new regularization
term that penalizes not merely the length of edges in an image, but
the integral of the square of curvature along the edge contours. This
allows both for isophotes to be connected across large distances, and
their directions to be kept continuous across the edge of the inpainting
region.

Following in the footsteps of Chan and Shen, Esedoglu and Shen
[10] adapted the Mumford-Shah image segmentation model [11] to
the inpainting problem for grayscale images. They utilized Ambro-
sio and Tortorelli’s elliptic approximations [12] to the Mumford-
Shah functional. Gradient descent for these approximations leads to
parabolic equations with a small parameter € in them; they represent
edges in the image by transition regions of thickness e. These
equations have the benefit that highest order derivatives are linear.
They can therefore be solved rather quickly. However, like the total
variation image denoising model, the Mumford-Shah segmentation
model penalizes length of edge contours, and as a result does
not allow for the connection of isophotes across large distances in
inpainting applications.

In order to improve the utility of the Mumford-Shah model in
inpainting, Esedoglu and Shen introduced the Mumford-Shah-Euler
image model that, just like the previous work of Kang, Chan, and
Shen [8], penalizes the square of the curvature along an edge contour.
Following previous work by March [13], they then used a conjecture
of De Giorgi [14] to approximate the resulting variational problem
by an elliptic one. The resulting gradient descent equations are fourth
order, nonlinear parabolic PDEs with a small parameter in them.

More recently, Grossauer and Scherzer [15] have used the complex
Ginzburg-Landau equation in a technique for inpainting grayscale
images. This method assigns the real part u of a complex quantity
w = u + v to be the grayscale values of the image. The complex
quantity w is then forced by their algorithm to reside on a circle of
radius 1, centered at the origin, in the complex plane. The complex
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Ginzburg-Landau equation then leads to a coupled system to be
solved for u and v, respectively.

II. THE MODIFIED CAHN-HILLIARD EQUATION INPAINTING
MODEL

Our idea is that a much simpler class of models exist that still
has many of the desirable properties of the model introduced in [10],
but for which there are very fast computational techniques available.
In particular, we show that in the case of high-contrast or binary
images, a slightly modified Cahn-Hilliard equation allows us to obtain
inpaintings as good as the ones in previous papers, but achieves them
much more rapidly. This faster method is a result of both a new
simplified PDE model and the use of fast solvers for such a model.

Let f(&), where Z = (x,y), be a given image in a domain §2, and
suppose that D C  is the inpainting domain. Let u(Z,t) evolve in
time to become a fully inpainted version of f(Z) under the following
equation:

Ut =

- AEdu- SW@) A -w W)
where

. fo if 7€ D,
A7) = {)\O if 7 € Q\ D,

The function W () is a nonlinear potential with wells corresponding
to values of w that are taken on by most of the grayscale values.
In the examples considered here, we use binary images in which
most of the pixels are either exactly black or white. In this binary
case, W should have wells at the values u = 0 and u = 1.
In the examples presented in this document we use the function
W (u) = u?(u — 1)?, however other functions could be used. We
assume that the image function u(Z,t) takes on grayscale values
in a domain Q. and satisfies periodic boundary conditions on 0f2.
Alternatively, Neumann boundary conditions could be used, or any
boundary conditions for which one can use fast solvers for the
equation (see discussion below). Equation (1) is what we will call
the modified Cahn-Hilliard equation, due to the added fidelity term
@) (f — u).

The role of ¢ in equation (1) is important. In the original Cahn-
Hilliard equation, ¢ serves as a measure of the transition region
between two metals in an alloy, after heating and reaching a steady
state. Applied to image processing, € is a measure of the transition
region between the two grayscale states — for example between the
black and white of printed text.

Another important feature of this new idea is that fast solvers
exist for the numerical integration of the Cahn-Hilliard equation and
similar diffuse interface equations. To date no such solvers have been
applied to these problems in the context of imaging applications,
and we believe that this synergistic combination of a simpler PDE-
based method and a state-of-the-art fast solver provides significant
improvement over the previous state-of-the-art (see section IV).

Here we demonstrate how to implement this idea using a specific
fast solver known as convexity splitting [16], [17]. However, other fast
solvers might be used with good performance. Convexity splitting
involves dividing up the energy functional for the equation into two
parts — a convex energy plus a concave energy. The part of the
Euler-Lagrange equation derived from convex portion is then treated
implicitly in the numerical scheme, while the portion derived from
the concave part is treated explicitly.

Under the right conditions, convexity splitting for gradient flow-
derived equations can allow for an unconditionally gradient stable
time-discretization scheme, which means arbitrarily large time steps

can be taken. Vollmayr-Lee and Rutenberg [17] have more recently
refined the conditions under which stability is applicable.

The new modified Cahn-Hilliard equation is not strictly a gradient
flow. The original Cahn-Hilliard equation (equation (1) with A = 0)
is indeed a gradient flow using an H ' norm for the energy

€ 1 R
B = / ~|Vul> + =W (u) d7, 2)
qQ 2 €
while the fidelity term in equation (1) can be derived from a gradient
flow under an L? norm for the energy

Ao/ (f —u)’dz. 3)
Q\D

But in total, the modified Cahn-Hilliard equation is neither a gradient
flow in H~' nor L% However, the idea of convexity splitting, one
for the Cahn-Hilliard energy in equation (2) and one for the energy
E> in equation (3), can still be applied to this problem with good
results.

For example, one can split E as

Ey =

By = By — Eig 4
where
C -
By = / E|Vu|2—6-—1|u|2 dz Q)
o 2 2
and
1 C R
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A possible splitting for Es is

Ey = Fo1 — Eax @)
where
C R
Exn = / 72|u|2 dz ®)
Q\D
and
_ 2, 02 0
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For the splittings discussed above, the resulting time-stepping
scheme is:

L = V(B - Bl) V(B - BR) (10)
where V ;-1 and V2 represent gradient descent with respect to the
H ™Y inner product, and L? inner product, respectively. This translates
to a numerical scheme of the form

W )875_ (%) +eA* TN (E) — CL AW (Z) + Cou” T (Z)
= AW W (@) + A (@) — " (@)

—ClAun(f) —|—C’2u”(f) (1D

The constants C; and C'> are positive, and need to be chosen large
enough so that the energies F11, Ei2, F21, and E22 are convex.
C1 should be comparable to %, while C2 should be comparable to

Ao. Numerical tests have shown that with these choices the scheme
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(11) becomes unconditionally stable. Equation (11) is then solved for
u"T(F), given u" (&), by way of a two-dimensional Fast-Fourier-
Transform method. We present some examples below in which we
indicate precise values of At, C;, A\, and ¢ used to perform the
inpainting.

Finally we mention that one can perform inpainting across larger
regions by considering a two-step method. The inpainting is done
first with a larger €, which results in topological reconnection of
shapes with edges smeared by diffusion. The second step then uses
the results of the first step and continues with a much smaller value
of ¢ in order to sharpen the edge after reconnection. In practice such
a two-stage process can result in inpainting of a stripe across a region
that is over ten times the width of the stripe, without any a priori
knowledge of the location of the stripe.

III. EXAMPLES

The modified Cahn-Hilliard equation lends itself particularly well
to the inpainting of simple binary shapes, such as stripes and circles.
Moreover, its applicability can be extended to achieve inpainting of
objects composed of stripes and circles, i.e., roads or text. Below
and on the next page, we show several examples of the method and
its performance. All examples were performed on a Linux desktop
system using a Pentium 4 processor, and programmed in MATLAB.

A. Inpainting of a double stripe

(a) (b) (©

Fig. 1. (a) Initial data (inpainting region in gray). (b) Intermediate state
at t = 50. (c) steady state at ¢ = 700. (Gap distance is 30 units, Image
domain is 128x128).

Above in figure 1, we see the two-step process at work to inpaint
two stripes. The gray region in figure 1(a) denotes the inpainting
region. We begin running the modified Cahn-Hilliard equation with
a large value of ¢ (= .8), and at ¢ = 50 we reach a steady state.
We then switch to a small value of € (= .01), using the result from
figure 1(b) as initial data. The final result is reached at ¢ = 700 and
is shown in figure 1(c). In this test, At was set to 1, A = 50, 000,
C1 =300, and C2 = 150, 000.

B. Inpainting of a cross

(a) (b) (©

Fig. 2. (a) Initial data of cross (inpainting region in gray). (b)
Intermediate state at ¢ = 300. (c) Steady state at ¢ = 1000. (Image
domain is 128x128, stripe width is 20 units, initial gap distance is 50
units).

In figure 2(a), the gray region denotes the “gap”, or region to be
inpainted. As with the stripes, the modified Cahn-Hilliard equation
is run to steady state for a large value of ¢ (= .8), resulting in figure
2(b) at t = 300. This data is then used as initial data for the modified
Cahn-Hilliard equation with e (= .01) set to a small value. The final
result is a completed cross at ¢ = 1000. The parameters were set as
At =1, A =100, 000, C; = 300, and C3 = 3.

C. Inpainting of a Sine Wave

(b)

© (@)
Fig. 3. Inpainting a sine wave. (Image domain is 128x128).

Figure 3 shows how the modified Cahn-Hilliard equation may be
applied to the inpainting of simple road-like structures. In figure 3(a),
an incomplete sine wave is shown. In figure 3(b), the sine wave is
artificially “fattened” by expanding each white point’s area radially by
a factor of 3. This is done in order to give the modified Cahn-Hilliard
equation sufficient boundary conditions to do effective inpainting.

In figure 3(c), the gray area represents the inpainting region. The
remaining white and black portions of the image are thus outside the
inpainting region, and essentially held fixed in place by the fidelity
term of the modified Cahn-Hilliard equation (1). The two-step method
was then used to inpaint the sine wave. Figure 3(d) shows the finished
result.

The initial value of ¢ was taken to be .8, and then at t = 200 this
was switched to a value of ¢ = .01. The final inpainting result was
taken at ¢ = 4000 (which corresponds to a time of 24 seconds real
processing time). The parameters were set as: At = 1, C; = 300,
and Cy = 3.

D. Inpainting of a Road

Figure 4(a) shows a satellite image of a road passing through a
forest in Washington state. After a simple thresholding of grayscale
values, the visible pieces of the road are shown as the white regions
in figure 4(b). The gray area in figure 4(b) represents the inpainting
region, which was found by creating a circle about each established
point of the road, the radius of which was chosen to be the maximum
estimated gap length between existing portions of the road.

Note also that each thresholded white point of the road has been
expanded in radius, as was done for the sine wave in figure 3(b). In
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(b)

(©

Inpainting of an obscured road. (Image domain is 128x128).

Fig. 4.

the original satellite photo, the road actually has an average width
of about 1 pixel, making it very difficult to establish meaningful
boundary conditions for the inpainting problem.

In figure 4(c), steady state has been reached using the modified
Cahn-Hilliard equation, via the aforementioned two-step process. The
result in (c) is too thick, but if a centerline extraction is performed,
and the resulting centerline overlaid on the initial satellite photo, we
arrive at an estimation of the path of the road through the trees as
shown in figure 4(d). Note that the result in figure 4(d) does not
continue the road to the top of the satellite photo. This is due to a
lack of data for the road in that region, as exemplified by figure 4(b).

The initial value for € was .8, which was switched at ¢ = 100 to
€ = .005. The final result was taken at ¢ = 500 (which corresponds
to 6 seconds of processor time). The parameters were: At = 1,
A = 1,000,000, Cy1 = 30,000, and C2 = 3.

Much more efficient inpainting, akin to what was accomplished
for the sine wave in figure 3 could be done, if a smaller inpainting
region could be determined. For example, the reason that figure 4(c)
displays such a poor representation of a road is due to the inpainting
region literally being too wide (the gray portion of figure 4(b)). If
we could come up with an inpainting region similar to that in figure
3(c), much better approximations to the road could be accomplished,
possibly negating the need for centerline extraction.

E. Recovery of Text

In figure 5(a), several lines obscure some Arabic writing. Using
these obstructing lines as the inpainting region, the modified Cahn-
Hilliard two-step scheme can inpaint the occluded parts of the writing.
The initial value for ¢ was .08. At ¢t = 100, £ was switched to .01.
The program was then run to 1000 time steps. At was set to 1, the
fidelity constant A was set to 50,000,000, C'; was set to 10,000, while
C5 was set to 3A. The final inpainting result is shown in figure 5(b).

In figure 6(a), graffiti is written over the UCLA logo. Using the
graffiti as the inpainting region, the modified Cahn-Hilliard equation
inpaints the missing logo parts by the two-step method. Until ¢ = 50,
a large value of £ (= .8) is used. At ¢t = 50, € is switched to a small
value (= .005). The final result in figure 6(b) is the completed logo,
looking no worse for wear after its encounter with graffiti. At was

(b)

Recovery of damaged text. (Image domain was 128x128).

("

N~ ..J-f’

Fig. 5.

‘Ul

(b)

Fig. 6. Recovery of damaged text. (Image domain was 256x256).

set to 1, the fidelity constant A was set to 50,000,000, C; was set to
15,000, while C> was set to 3\.

FE. Super-resolution

The modified Cahn-Hilliard equation can also be used for the
purposes of super-resolution of text. Latin writing is shown in figure
7(a), of size 64X64. Figure 7(b) shows the text enlarged by 3X using
MATLAB’s "nearest-neighbor” algorithm.

First, the white region of figure 7(b) is subsampled to provide initial
data for inpainting. Next, the modified Cahn-Hilliard algorithm runs
until t = 40 using a very large fidelity constant, A = 50, 000, 000,
and very small € (=.005).

After t = 40, X is set equal to zero, and the ordinary Cahn-Hilliard
equation is allowed to run on the text. This allows for the smoothing
of jagged parts of the text that appeared after magnification (figure
7(b)). Figure 7(c) and 7(d) show the results at ¢ = 350 and ¢ = 450
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(a)

(d)
Fig. 7. Super-resolution of text. Magnification 3X. Original size 64x64.

respectively. Throughout this test, C'1 was set to 300, C2 was set
to 150,000,000, and € was set to .005. This particular test used a
constant value of e.

IV. COMPARISON WITH OTHER METHODS

One of the chief benefits of using the modified Cahn-Hilliard
(mCH) equation to do inpainting are the fast numerical techniques
available for its solution. To quantitatively determine how much faster
this makes the modified Cahn-Hilliard equation than other binary
inpainting techniques, a series of comparison tests were run.

The methods we tested against were the Curvature Driven Diffu-
sion (CDD) inpainting model of Chan and Shen [18], the Euler’s
Elastica (EE) inpainting model of Chan, Kang, and Shen [8], and the
Mumford-Shah-Euler (MSE) inpainting model of Esedoglu and Shen
[10].

Each method was tested on two examples — inpainting a 3/4 circle,
and inpainting a disconnected stripe. All tests were run on the same
system used in section III (with the exception that the EE method
was programmed in C++).

3 circle

1 Disconnected stripe

Fig. 8. Inpainting data for comparison tests.
inpainting regions.

Gray color denotes

A. Graphic Results

Figures 9 and 10 show the performance of each inpainting method
on the circle and stripe tests, respectively. As can be seen in figure
9, CDD requires random data to begin inpainting the circle (CDD?).
The EE method fared well on the circle test with zero initial data

CDD! MSE! mCH!

CDD? MSE? mCH?

Fig. 9. Results for the circle inpainting test. ! — zero initial data assumed
in inpainting region. > — random initial data assumed in inpainting region.

CDD! MSE! mCH!
CDD? MSE? mCH?
Fig. 10. Results for the stripe inpainting test. ! — zero initial data assumed

in inpainting region. > — random initial data assumed in inpainting region.

in the inpainting region (EE'), but became mired when the test was
started with random data there (EE?).

The MSE and mCH methods, however, had no strict preference
for the initial data in the inpainting region. Results were the same
whether random or zero initial data was assumed (MSE 12 mCH l’2).

B. Tabulated Results
Tables I and II show the timing results for each method. These are
the correct times for the graphical results shown in figures 9 and 10.

TABLE I
COMPARISON TESTS, INPAINTING REGION SET TO ZERO

Inpainting Time (seconds)
Method - -
Circle Stripe
CDD >5,400 >5,400
EE" >18,000 >18,000
MSE 45 24
mCH 24 6

* 30X30 grid used. All others 128X128.

V. CONCLUSION

We have shown how the Cahn-Hilliard equation can be modified
to achieve fast inpainting of binary imagery. This modified Cahn-
Hilliard equation can be applied to the inpainting of simple binary
shapes, text reparation, road interpolation, and super-resolution. The
two-step process we employ, described at the end of section 11, allows
for effective inpainting across large unknown regions. Although it is
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TABLE II
COMPARISON TESTS, INPAINTING REGION SET TO RANDOM DATA

Inpainting Time (seconds)
Method - -
Circle Stripe
CDD >270 >270
EE" >1,800 >1,800
MSE 300 30
mCH 24 5

" 30X30 grid used. All others 128X128.

generally desired for the end-user to specify the inpainting domain,
this method can be used for interpolating simple roads and other
situations where a user-defined inpainting region is not feasible.

This method assumes zero data in the inpainting region. The two-
step process then channels the solution toward the desired steady state
in a repeatable process. Although at least one undesirable steady state
may be possible mathematically, the method steers away from this
by first achieving a very rough but wide-ranging inpainting, and then
using this state as initial data for a subsequent inpainting with sharp
transitions between white and black regions.

In the context of binary image inpainting, the modified Cahn-
Hilliard equation has displayed a considerable decrease in com-
putation time when compared with other inpainting methods. Fast
numerical techniques available for the Cahn-Hilliard equation also
allow for larger data sets to be processed, greatly aiding the speed
of computation.
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