
Environmental Boundary Tracking and Estimation
Using Multiple Autonomous Vehicles

Zhipu Jin and Andrea L. Bertozzi

Abstract— In this paper, we develop a framework for envi-
ronmental boundary tracking and estimation by considering the
boundary as a hidden Markov model (HMM) with separated
observations collected from multiple sensing vehicles. For each
vehicle, a tracking algorithm is developed based on Page’s
cumulative sum algorithm (CUSUM), a method for change-
point detection, so that individual vehicles can autonomously
track the boundary in a density field with measurement noise.
Based on the data collected from sensing vehicles and prior
knowledge of the dynamic model of boundary evolvement, we
estimate the boundary by solving an optimization problem, in
which prediction and current observation are considered in the
cost function. Examples and simulation results are presented
to verify the efficiency of this approach.

Index Terms— Boundary tracking and estimation, hidden
Markov model, change-point detection, CUSUM, optimization.

I. INTRODUCTION

Monitoring environmental boundaries has been an interest-
ing topic for many years due to scientific and public safety
applications. Examples include monitoring poisonous oil
spills, harmful algae blooms, wild fire spreading, temperature
and salinity distribution in the ocean, and hazardous weather
conditions such as hurricanes and tropical storms.

There are many cases in which it is difficult to get
global images of the boundary we are interested in from
remote sensing technology. Two examples are transparent
chemical spills and underwater “dead-zones” generated by
algae blooms. In recent years, a considerable amount of
work has been reported on using mobile sensing vehicles
for environmental monitoring. Barat and Rendas [1] use
single autonomous underwater vehicle (AUV) with a profiler
sonar to detect the boundaries between distinct benthic
regions. Kemp et al. [2] propose a simple algorithm for
multiple AUVs surveillance that only requires concentration
measurements. This algorithm has been tested on Caltech’s
multi-vehicle wireless testbed [3], [4]. Bertozzi et al [5]
design a centralized collective motion algorithm based on
the “snake algorithm” in image processing to detect and
track algae blooms, where each agent needs to measure the
concentration gradient.

Coordination among multiple sensing vehicles is also a
related research area. Clark and Fierro [6] try to detect and
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surround a dynamic perimeter using a group of nonholo-
nomic robots equipped with collision avoidance controllers.
Zhang and Leonard [7] use four robots to compose a
formation so that the gradient at the formation center can
be measured in a density field. Susca et al. [8] propose
a distributed coordination algorithm in which each vehicle
tracks the boundary individually and communicates with its
nearby neighbors. Vertices are generated uniformly along the
boundary based on certain metric and a polygon is generated
to approximate the boundary.

In this paper, we treat those mobile vehicles as an “ob-
server” in which each vehicle can autonomously track the
boundary with or without coordinating with others. The out-
puts of this “observer” are separated and noisy observations
collected from vehicles. Assuming that there exists certain
“hidden” relationship behind those separated data, which
governs the dynamics of the boundary evolvement, and we
need to reveal this relationship so that the boundary can
be accurately tracked and estimated. This idea is inspired
by hidden Markov model (HMM) in [9] and interactive
Bayesian filters in [10].

Our contribution includes two parts: First, we propose a
revised tracking algorithm for a single vehicle based on [2],
where CUSUM filters are embedded so that each vehicle can
track the boundary even with noisy measurements. CUSUM
is an efficient change-point detection method which can
quickly detect small drifts in the parameters for random
process [11], [12], [13], [14]. Second, assuming that the
boundary can be approximated with an ellipse, we formulate
the boundary estimation problem as an optimization problem.
Finding the optimal ellipse parameters can be done by com-
bining a priori prediction and measurements from sensing
vehicles with additional noise. This is a first step towards a
general framework using spatio-temporal nonlinear filtering
for pattern recognition in environment monitoring.

The remainder of this paper is organized as follows: In
Section II, we develop a tracking algorithm for a single
vehicle by using CUSUM filters to process noisy measure-
ments. CUSUM filters generate a binary signal, which is
used as a navigation signal in each sensing vehicle. We then
propose a framework to estimate the boundary based on
separated observations in Section III. Assuming the boundary
can be approximated by an ellipse and its parameters evolve
according to Markov models, we show how to estimate those
parameters by solving an optimization problem. Section IV
is devoted to examples and simulation results that verify the
efficiency of this approach. Finally, conclusions and future
work are summarized in Section V.



II. TRACKING ALGORITHM WITH SINGLE VEHICLE

Assume an environmental boundary can be described by
a density field in 2-D Euclidian space. The density function
is a mapping

d(x) : R
2 → R (1)

where x is the location and d(x) is the density value. The
boundary is defined by a level set

Ω = {x ∈ R
2 | d(x) = B} (2)

where B is the density threshold. In order to simplify the
problem, we assume that d(x) ∈ C1 and all level sets are
smooth, i.e, Ω is continuous. Also, we assume that d(x) > B
if x is inside Ω and d(x) < B if x is outside. Suppose each
vehicle has a sensor which can measure the density field as

z(k) = d(x(k)) + v(k) (3)

where k is the time, v(k) is the sensor noise with zero mean,
and z(k) is the density measurement. Moreover, we assume
that the speed of the vehicle is a constant, V , and we can
control its orientation, θ, by

θ(k + 1) = θ(k) + u(k). (4)

Perhaps the simplest tracking algorithm for a single vehi-
cle is the one used in [2], where the vehicle keeps turning in
one direction when it is inside the boundary and in another
direction when it is outside, i.e.,

u(k) =

⎧⎨
⎩

+ω when z(k) > B
0 when z(k) = B
−ω when z(k) < B.

(5)

where ω > 0. It is similar to the bang-bang control strategy
except that ω is not necessarily the maximum value for
the control law. Figure 1 shows a simple diagram of the
vehicle’s trajectory between two consecutive crossing points.
This algorithm works well except for a few drawbacks.

• With large crossing angle θc, the tracking becomes very
inefficient. The plot at the top of Figure 2 shows an
example.

• When the noise v(k) is large, it may turn the wrong
way and fail to track the boundary.

• It may fail to cover the whole boundary when the
boundary has narrow bottlenecks [2].

Boundary

Trajectory

θc

θref

Δθ

Fig. 1. Geometry analysis between two consecutive crossing points.

In this section, we propose an control strategy with non-
linear filters to overcome the first two issues. The crossing
angle θc may change a lot when a sensing vehicle tracks
a boundary. Suppose the vehicle crosses the boundary at

time t1 and t2, consecutively. Based on the time difference
t̃ = t2 − t1, we know the angle change Δθ = t̃ω and define
the control law at t2 to be

u(t2) =
{

(t̃ · ω − 2θref)/2 when z(k) > B
−(t̃ · ω − 2θref)/2 when z(k) < B

(6)

where θref is a pre-set reference. Figure 2 shows that the
efficiency can be improved, although there are still difficul-
ties where the boundary has sharp turns. Obviously, Equation
(6) depends on an accurate record of crossing times. When
noise v(k) is not negligible, false records may be taken near
the boundary and make Equation (6) useless. Thus, we need
filters to attenuate the noise and record the crossing moments.
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Fig. 2. Tracking a boundary. The blue curve is the boundary and the black
curve is the trajectory of a sensing vehicle. Top: without angle correction.
Bottom: with angle correction.

Assume v(k) is given by Gaussian white noise with zero
mean and covariance R > 0. Thus z(k) is a random process
with the same covariance and the mean value is E[z(k)] =
d(x(k)). Suppose the vehicle crosses the boundary at time t1
and E[z(k)] drifts from below B to above B. The filter takes
z(k) as the input and outputs a time t̃ > t1, which is the time
that the filter believes the crossing happened. The detection
delay is defined as Δ = t̃−t1. Another performance metric is
the probability of making a false record. A good filter should
have a small Δ while keeping the false record probability
low. This kind of problem is called a change-point detection
problem in statistics analysis society. CUSUM is one of the
most powerful methods for change-point detection and is
especially good for small or linear drifts [11], [13].

For each vehicle, we employ two independent CUSUM
filters to detect crossing times from outside to inside and



form inside to outside, respectively. Equation (7) describes
the main part of the first filter, called the “high-side filter”.
When the mean value increases above B, U(k) quickly
increases due to the accumulation of the measurements.
When U(k) > Ū , an accumulation threshold we can define,
the filter believes that E[z(k)] > B and outputs the time k.
For discrete-time, it is still an open problem to analytically
identify the tradeoff between the delay and the probability
of a false record even with a Gaussian distribution and
linear drifts. There are two parameters: “dead-zone” cu and
threshold Ū . Simply speaking, the value of cu determines
the speed of the accumulation. A smaller cu means the
accumulation increases faster but false records are more
likely. The value of Ū affects the delay. A larger Ū means
false records are less likely but delays are larger. The same
property holds for the second filter, called the “low-side
filter”, which is described in Equation (8).

U(k) =
{

0 k = 0
max(0, z(k) − B − cu + U(k − 1)) k > 0

(7)

L(k) =
{

0 k = 0
min(0, z(k) − B + cl + L(k − 1)) k > 0

(8)
Combining the outputs of those two filters, we have a

record of crossing times {t1, t2, · · · } and we can easily
generate a binary signal b(k) if a correct initial condition
can be obtained. Let b(k) = 1 when the vehicle is inside the
boundary and b(k) = 0 when the vehicle is outside. Then the
conditions on z(k) in Equation (5) and (6) can be replaced
by conditions on b(k).
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Fig. 3. Diagram for single vehicle tracking with CUSUM filters.

Figure 3 shows the feedback control diagram for a single
vehicle in which the local decision is made based on CUSUM
filters, high level commands, and possible coordination with
other vehicles if possible. (In this paper, we will not discuss
the coordination issue.) Figure 4 shows an example in which
a vehicle tracks a straight line with noisy density measure-
ments. The parameters for vehicle include the speed V = 2,
updating rate is 10KHz, and turning rate ω = 2×10−4. For

CUSUM filters, we choose cu = 0.1, cl = 0.1, Ū = 500,
and L̄ = −500. The density field linearly increases along
Y axis. The boundary that the vehicle tries to follow is
Y = −1. Clearly, the raising edges of the high-side filter
and falling edges of the low-side filter are good indicators
for boundary crossings. In this particular case, we set upper
limits on the absolute values of U(k) and L(k) as Ū and L̄,
respectively. This cutoff explains the square wave appearance
of the CUSUM outputs.
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Fig. 4. Tracking a straight line with CUSUM filters.

Considering the stability of the tracking algorithm (5) and
(6) with respect to detection delay Δ, it can be proved easily
that, except the first detection delay, the algorithm can keep
tracking a straight line if the detection delay

Δ < (π − θref )/ω.

III. BOUNDARY ESTIMATION USING MULTIPLE

VEHICLES

Suppose we have N vehicles tracking a boundary at
the same time and there is no coordination among those
vehicles. Assume we can observe the vehicles’ positions as
{y1(k), · · · , yN (k)} at time k.

yi(k) = xi(k) + wi(k) (9)

where xi(k) is the real position of vehicle i and wi(k) is the
observation noise, which is Gaussian with zero mean and
covariance qi. Those positions are separated. If we do not
have any dynamic model for the boundary evolvement, the
best estimate we have for the boundary is a certain geometry
shape based on those position data, for example, the inscribed
polygon in [8].

However, for most environmental boundaries, we do have
certain model parameters s(k) to describe the dynamics
of the density field. We assume that the timescale of the
motion of sensing vehicles is much faster than that of the
density field so that the vehicles can track the boundary.



An approximate boundary Ω̂ is generated based on s(k).
For simplicity, we assume that s(k) evolves according to
a Markov chain model and we formulate the boundary
estimation problem as a hidden Markov model (HMM).

{
s(k) = Q · s(k − 1)
Ω̂(k) = g(s(k))

(10)

where Q is the transition matrix and g(·) is a function that
maps s(k) to the corresponding boundary Ω̂. The observa-
tions are defined by

Y (k) = X(k) + W (k) (11)

where Y = [y1, · · · , yN ]′, X = [x1, · · · , xN ]′, and W =
[w1, · · · , wN ]. The goal is to find the best estimate of s(k)
given Y (k). But the challenge is how to find a direct mapping
between Ω̂ and Y (k) given that each vehicle tracks the
boundary autonomously.

One of the conventional approaches for state estima-
tion in HMM is recursive Bayesian method, in which the
distribution p

(
s(k)|Y (k)

)
is first predicted from p

(
s(k −

1)|Y (k − 1)
)

and p
(
s(k)|s(k − 1)

)
, and then corrected by

the measurement likelihood p
(
Y (k))|s(k)

)
. In our case, it is

hard to determine p
(
Y (k))|s(k)

)
because we do not have a

deterministic relationship between s(k) and X(k). Instead of
the probabilistic approach, we recast the estimation problem
as an optimization problem. The optimization problem is

mins̄(k)

(
s̃(k) − s̄(k)

) · Π−1 · (s̃(k) − s̄(k)
)T

+
∑N

i=0 ‖h
(
Ω̂(s̄(k)), yi(k)

)‖2/qi

(12)

where s̄(k) is the estimate of s(k), s̃(k) is the one-step
prediction based on s̄(k − 1), function h(·, ·) calculates the
distance from Ω̂ to yi(k), and matrix Π is a weight matrix
that balances the predictions and the measurements.

For simplify, we assume that a 2-D boundary is approxi-
mated by an ellipse with parameters s = (a, b, c1, c2) where
(c1, c2) is the center and (a, b) are semi-major and semi-
minor axes. For any point x = (x1, x2) ∈ Ω̂(a, b, cx, cy), we
have

(x1 − c1)2

a2
+

(x2 − c2)2

b2
= 1. (13)

Parameters (c1, c2) evolve according to a random walk as

(c1(k), c2(k)) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(c1(k − 1) + δc1 , c2(k − 1)) with probability λ1

(c1(k − 1) − δc1 , c2(k − 1)) with probability λ2

(c1(k), c2(k) + δc2) with probability λ3

(c1(k), c2(k) − δc2) with probability λ4

(c1(k), c2(k)) with probability λ5

(14)
where

∑5
i=1 λi = 1 and δc1 and δc1 are the step sizes in

different directions.
The semi-major axis a has three changing patterns: expan-

sion, shrinkage, and sustenance. So let a evolve according
to

a(k) = a(k − 1) + η1 · δ1 (15)

where η1 ∈ {−1, 0, 1} and δ1 is another step size. After
every M steps, η1 changes its value by randomly choosing

one of three possible values with equal probability. The same
random process holds for semi-minor axis b as well with η2

and δ2.
Thus, the prediction

s̃(k) =
(
ã(k), b̃(k), c̃1(k), c̃2(k)

)
(16)

is calculated according to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ã(k) = ā(k − 1) + η̄1δ1

b̃(k) = b̄(k − 1) + η̄2δ2

c̃1(k) = c̄1(k − 1) + λ1−λ2∑
λi

· δc1

c̃2(k) = c̄2(k − 1) + λ3−λ4∑
λi

· δc2

(17)

where η̄1 and η̄2 are updated every M steps based on the
differences between ā(k) and ā(k−1), and b̄(k) and b̄(k−1),
respectively.

The function h(·, ·) is defined as the distance from any
point x to the ellipse Ω̂, i.e.,

h(s, x) = min ‖x − z‖2 (18)

for all z ∈ Ω̂(s).
For N vehicles, some of the vehicles may be “lost”, i.e.,

they have not detected any boundary crossings after turning
in a compete circle, and we set qi = ∞ so that yi does
not affect the cost function. Moreover, we add an additional
constraint for the optimization problem (12) based on b(k).
If b(k) = 1, yi should be inside Ω̂, i.e.,

(
yi −

[
c̄1

c̄2

] )
·
[

ā
b̄

]−1

·
(
yi −

[
c̄1

c̄2

] )T

< 1. (19)

Otherwise, yi is outside and the norm is bigger than 1.
By adding the prediction term in the cost function, we

actually implement the “correction” step by solving this
optimization problem. The only problem left is how to find
the matrix Π. In this paper, we assume that it is constant and
is defined by

Π =

⎡
⎢⎢⎣

qa

qb

qc1

qc2

⎤
⎥⎥⎦ (20)

where qa is the average error covariance on the boundary
generated by the randomness of a. The other covariances,
qb, qc1 , and qc2 , are defined in the same way. Of course
this is not accurate since even though those parameters may
change independently, their contributions to the position error
on the boundary may be correlated. Note this form is just an
approximation. The value of qa can be calculated as

qa =
1
2π

∫ 2π

0

2
9

(
ε21 + ε22 − ε1ε2

)
dτ (21)

where

ε1 =
∥∥∥

[
c1 + (a + δ1) cos(τ)

c2 + b sin(τ)

]
−

[
c1 + a cos(τ)
c2 + b sin(τ)

] ∥∥∥
2

(22)
and



ε2 =
∥∥∥

[
c1 + (a − δ1) cos(τ)

c2 + b sin(τ)

]
−

[
c1 + a cos(τ)
c2 + b sin(τ)

] ∥∥∥
2
.

(23)
The value of qb can be calculated in the same way. For

qc1 and qc2 , the distributions of errors are shown in Table I
and the covariance can be calculated easily.

TABLE I

DISTRIBUTION OF ERRORS GENERATED BY c1 AND c2

Error distribution for c1

Error δc1 0 −δc1

Probability λ1 λ3 + λ4 + λ5 λ2

Error distribution for c2

Error δc2 0 −δc2

Probability λ3 λ1 + λ2 + λ5 λ4

IV. EXAMPLES AND SIMULATION RESULTS

In this section, we present some simulation results. Sup-
pose we have an dynamic ellipse. Parameters c1 and c2

evolve according to Equation (14) with λ1 = λ2 = λ3 =
λ4 = λ5 = 1/5 and σc1 = σc2 = 0.004. For a and b,
the steps are σ1 = 0.01, σ2 = 0.015, and M = 100. We
use five sensing vehicles to track the ellipse. The motion
parameters for vehicles are V = 0.1 per step and ω = 0.4.
Each vehicle starts from a random initial position outside
the ellipse. Its initial orientation is set towards the initial
center of the ellipse. Each vehicle runs the tracking algorithm
discussed in Section II right after it crosses the boundary for
the first time.

Assume we have synchronized observation Y (k) at each
time k. The position noise wi associated with each vehicle
has unit covariance qi = 1. We estimate the ellipse by solving
the optimization problem listed in Equation (12). Figure 5
shows how the estimates evolve. The estimates of semi-major
and semi-minor axes are consistent to the real values quiet
well. Figure 6 shows the result in which, if we omit the first
term in Equation (12), i.e., estimating the ellipse only based
on the current observations. It appears to be random due to
the noise. Also, Figure 7 and 8 show some snapshots for
the estimation where the blue curve is the real ellipse, the
red dashed curve is the estimate, the black dots shows the
positions of the sensing vehicles in the last 40 steps (from
black decay to grey), and the red stars are the observations
at current time. In order to make those pictures clean, we do
not show the sensing data for the density field. The CUSUM
filters eliminate the impacts of density sensing noises so that
each vehicle can track the ellipse very well.

Since we do not update Π, the result is sensitive to the
initial value of s̃. There are two issues we have not answer
yet. First, the solution of the optimization problem may
be not unique if the number of sensing vehicles is small.
Second, we have not discuss the stability issue, which needs
a better way to determine Π. However, even with this simple
prediction strategy, the estimation result is still improved.
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Fig. 5. Estimates on parameters with prediction.
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Fig. 6. Estimates on parameters without prediction.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we discuss environmental boundary tracking
and estimation problem. We propose a tracking algorithm
for individual vehicles where only the density measurements
are needed. The measurement noise is processed by CUSUM
filters and an orientation correction mechanism is employed
to improve the performance. Moreover, as the first step
towards a general framework on boundary estimation with
separated measurements, we assume the boundary is defined
by certain boundary parameters that we then estimate from
observations by solving an optimization problem. Simulation
results are presented to verify the efficiency of this approach.

There are several issues that should be addressed in future
work. First, using more sophisticated models, such as spline
theory, to approximate the boundary may be valuable. Sec-
ond, better choices of the matrix Π should be investigated.
An updating algorithm based on Bayesian theory, such as

Π(k) =

⎡
⎢⎢⎣

qa

qb

qc1

qc2

⎤
⎥⎥⎦ + Π(k − 1) (24)

where Π represents how close s̄(k) is to the real parameters,
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Fig. 7. Snapshots for estimating an ellipse with prediction.
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is a good target for us to work towards. Third, the dynamics
and motion patterns of individual vehicles definitely are
crucial to determining the distribution p(Y (k))|s(k)). Also,
the single vehicle tracking algorithms can be improved with
more advanced interpolation and estimation methods. Last,
but not least, coordination and cooperation among vehicles
should help with boundary estimation by making the motion
of vehicles more predictable.
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