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Abstract Transience of spatio-temporal clusters of residential burglary is well doc-
umented in empirical observations, and could be due to finite size effects anecdotally.
However a theoretical understanding has been lacking. The existing agent-based
statistical models of criminal behavior for residential burglary assume deterministic
time steps for arrivals of events. To incorporate random arrivals, this article intro-
duces a Poisson clock into the model of residential burglaries, which could set time
increments as independently exponentially distributed random variables. We apply
the Poisson clock into the seminal deterministic-time-step model in [M. B. Short, M.
R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi, and L. B.
Chayes, Math. Models Methods Appl. Sci., 18, (2008), pp. 1249-1267]. Introduction
of the Poisson clock not only produces similar simulation output, but also brings in
theoretically the mathematical framework of the Markov pure jump processes, e.g.,
a martingale approach. The martingale formula leads to a continuum equation that
coincides with a well-known mean-field continuum limit. Moreover, the martingale
formulation together with statistics quantifying the relevant pattern formation leads
to a theoretical explanation of the finite size effects. Our conjecture is supported by
numerical simulations.
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1 Introduction

Crime is an unfortunate aspect of modern life that takes place in every major urban
area. In the past ten years quantitative scientists have been working in the burgeon-
ing area of crime modeling and prediction (e.g. [3, 4, 28, 29, 46, 48, 52, 55, 57,
61, 62, 63, 67, 71, 72, 73, 74, 75, 76, 77, 81, 83, 84]). Crime is not uniformly
distributed in space and time but rather exhibit spatio-temporal aggregates of crim-
inal occurrences that are referred to as crime “hotspots”. The first model to quan-
tify such patterns is an agent-based human environment interaction model assuming
deterministic time steps (DTS Model [76]). Follow-up works show that such sim-
ple models can exhibit both crime displacement and crime suppression in the pres-
ence of police activity [74, 73]. In all these works finite size effects were observed:
discrete simulations show both transient and stationary hotspots, while continuum
simulations show only stationary hotspots. As criminal number decreases, discrete
simulations exhibit more transience, and crime population is finite size actually in
real life. Therefore, a deeper understanding of these effects is relevant to real crime
statistics [61, 28]. Moreover, the DTS Model [76] assumes deterministic-time ar-
rivals of events, however, criminals act randomly in reality. Models setting random
arrivals are called for.

In this work, with the application of a Poisson clock to the DTS Model [76],
the time increments are made into independently exponentially distributed random
variables. Introduction of the Poisson clock not only exhibits similar simulation
output, but also brings in theoretically the mathematical framework of Markov pure
jump processes and interacting particle systems ([14, 47, 49, 50, 51]).

The Poisson clock is the basic element to build a Poisson point process, which is
particularly suitable to model random arrivals. Poisson point process is one of the
most studied and used point processes in probability and in more applied disciplines
such as biology, economics, and physics (see e.g. [2, 5, 13, 18, 27, 65]). Normally
independent Poisson clocks are assumed for each agent. Nevertheless assuming a
uniform Poisson clock is helpful here, as it is more computationally efficient. More-
over, a martingale approach for the Markov pure jump processes is applicable. The
martingale formulation is a useful tool to analyze both statistical and stochastic as-
pects of the model, and expresses the model as the summation of two components:
a predictable or deterministic component and a stochastic or unpredictable compo-
nent. As far as we know this is the first time that the stochastic component of the
model is mathematically demonstrated.

The deterministic component serves as a continuum model that is parallel to the
discrete one. The continuum Poisson-clock model turns out to be the same as the
continuum DTS Model [76]. More importantly, the martingale formulation leads
to a theory for the finite size effects thanks to the demonstration of the stochastic
component. To quantify pattern formation for the finite size effects, we construct
statistics to measure the degree of hotspot transience. These statics could be ap-
plied to general pattern formation problems. We find that a scaling property of the
stochastic component with varying criminal population is the key to the theory of
finite size effects. As the total criminal population decreases, the stochastic compo-
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nent increases while the deterministic component remains fixed. We conjecture that
this is the mechanism behind the finite size effects. Our conjecture is supported by
numerical simulations. The study is also in line with the scaling of initial data of hy-
drodynamic limit approximations for interacting particle systems ([24]). In general
the initial total particle number is assumed to increase as the lattice grid decreases
so that the initial density remains fixed. This has been treated so far as merely a
technicality and is rarely explored analytically nor computationally. However in the
applications the details are important because the real world is of finite size.

The article is organized as follows. In Section 2, the discrete Poisson-clock model
is introduced (Section 2.1) and the martingale formulation is established (Section
2.2). Based on the formulation a continuum model is derived (Section 2.3). The
finite size effects are analyzed in Section 3. Statistics are constructed to quantita-
tively measure the degree of hotspot transience (Section 3.1). A theory of the finite
size effects is explored (Section 3.2). Section 4 is about future works. The Appendix
shows the derivation of the martingale formulation.

2 Poisson-clock model

2.1 Discrete model

The discrete Poisson-clock model is the same as the DTS Model [76], with the only
exception of introduction of the Poisson clock.

2.1.1 Introduction of the Poisson clock

The discrete model consists of two components — the stationary burglary sites and
a collection of burglar agents jumping from site to site. We assume the domain
to be D := [0,L]× [0,L] with the periodic boundary conditions1. The lattice grid
over D has spacing ` = 1/N, N ∈ N. The grid points are denoted as s = (s1,s2),
s1 = `,2`, · · ·,L, s2 = `,2`, · · ·,L. The collection of all the grid points is denoted as
S `. Attached to each s ∈ S ` is a pair (n`s(t), A`

s(t)) representing the number of
criminal agents and attractiveness at site s at time t. The attractiveness stands for the
burglar’s beliefs about the vulnerability and value of the target site. We also assume
that A`

s(t) consists of two parts, a dynamic term and a static background term

A`
s(t) = B`

s(t)+A0`s. (1)

Here A0`s is not necessarily uniform over the lattice grids. The dynamic term
B`

s(t) represents the component associated with repeat and near-repeat victimiza-

1 With minor changes we can also consider e.g. the Dirichlet boundary conditions, which is more
realistic.
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tion, which will be discussed shortly. The initial data are given as (n`s(0),B
`
s(0)) =

(n0`s,B0`s).
We assume that the Poisson clock advances according to a Poisson process with

rate D`−2, D an absolute constant independent of `. On average, the time increment
δ t is the inverse of the rate

δ t ∼=
`2

D
. (2)

This is analogous to the Brownian scaling used in the DTS Model [76]. Suppose
that the clock advances at time t−. At time t, the system gets updated as follows:

Step 1. Every agent chooses to burglarize with the probability

p`s(t) = 1− e−
A`s(t−)`2

D ∼= A`
s(t
−)δ t, (3)

where s is his current location. This implies that burglary events occur roughly ac-
cording to a Poisson process with the rate A`

s(t
−).

Step 2. If an agent chooses to burglarize, he will be immediately removed from
the system (representing the criminal fleeing with his trophy). If he chooses not to,
he will jump from site s to one of the neighboring sites, say k, with the probability
proportional to the attractiveness of the target site

q`s→k(t) =
A`

k(t
−)

T `
s (t−)

, (4)

where T `
s (t) := ∑ s′

s′∼s
A`

s′(t), and s′ ∼ s indicates all of the neighboring sites of s.

Step 3. The attractiveness field gets updated according to the repeat and near-
repeat victimization and the broken-windows effect. These concepts in criminology
and sociology have all been empirically observed [8, 25, 33]. The “broken win-
dows” theory argues that the visible signs of past crimes are likely to create an
environment that encourages further illegal activities [83]. The so-called repeat and
near-repeat events refer to the phenomenon that residential burglars prefer to return
to a previously burglarized house and its neighbors [23, 39, 40, 41, 75]. The repeat
victimization is modeled by letting B`

s depend upon previous burglary events at site
s. The attractiveness increases if a burglary event occurred on that site, and this in-
crease has a finite lifetime. Let E`

s (t) be the total number of burglary events that
occurred at site s within this time step, then the repeat victimization can be modeled
as

B`
s(t) = B`

s(t
−)

(
1− ω`2

D

)
+θE`

s (t), (5)

where ω and θ are absolute constants setting the speed of the decay and measuring
the strength of the repeat victimization effect. The near-repeat victimization and
broken windows effects are modeled by allowing B`

s to spread in space from each
house to its neighbors. To accomplish this, we modify (5) to read
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B`
s(t) =

[
B`

s(t
−)+

η

4
`2

∆
`B`

s′(t
−)
](

1− ω`2

D

)
+θE`

s (t), (6)

where η ∈ (0,1) is an absolute constant that measures the significance of neighbor-
hood effects, and ∆ ` is the discrete spacial Laplace operator associated to the lattice
grid, namely

∆
`B`

s(t) = `−2

∑
s′

s′∼s

B`
s′(t)−4B`

s(t)

 .

Step 4. Let Γ be an absolute constant indicating the growth rate of criminal
population. At each site with probability Γ `2/D, a new agent will be replaced. We
assume that ` is small enough such that Γ `2/D < 1.

Figure 2.1.1 presents a visual summary of the above steps in the form of a flow
chart.

Current	system	state

Step	4.	place	criminals	
at	rate	𝛾

Step	1.	calculate	burglary	
probability	ps (t) ; store	ns(t-)As	(t-)

Step	2.	calculate	qs→𝒌 (t)
move	to	selected	site	

Step	2.	remove	burglar	
from	grid

Step	3.	calculate	Bs (t) via	Eq.	(2.6)	
using	ns(t-)As	(t-) stored in	Step	1.

do	not	burgle burgle

Up
da
te
	v
ar
ia
bl
es

ℓ ℓ ℓ

ℓ

ℓ

ℓ ℓ

Flowchart summarizing the discrete model.

The spatially homogeneous equilibrium solutions are the same as in the DTS
Model [76]. For simplicity from now on we always assume that A0`s ≡ A0. Then the
homogeneous equilibrium values can be deduced as

B̄ =
θΓ

ω
, n̄` =

Γ `2

D
(

1− e−
`2Ā
D

) ∼= Γ

Ā
. (7)

where Ā = B̄+A0,
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2.1.2 Numerical simulations

To compare the Poisson-clock model and the DTS Model [76], we perform simu-
lations of the attractiveness field A`

s(t) in Figs. 1-3,. The parameters are mostly the
equivalent of the parameters used to create the plots for the DTS Model [76] in Fig.
3, [76], and the same behavioral regimes are observed:

(1) Spatial homogeneity. In this regime, A`
s(t) does not vary essentially in time

or in space. Very few visible hotspots, that is, the accumulation of A`
s(t) in time and

in space, appear in the process.
(2) Dynamic hotspots. In this regime, hotspots form and are transient.
(3) Stationary hotspots. In this regime, hotspots will form and stay more or less

stationary over time.
For all the simulations, the spatially homogeneous equilibrium value of the dy-

namic attractiveness B̄ in (7) serves as a midpoint, and is shaded in green. A color
key is given in the figures to document the false color map for the attractiveness. All
the simulations were run with L = 128, `= 1, ω = 1/15, A0 = 1/30, and the initial
criminal number at each site n0`s is set be n̄` on average2. In Figs. 1(c), 1(d), 3(a),
and 3(b), we set Γ = 0.0019q, θ = 5.6/q, q = 1, 10, 100, and 1000, respectively.
The same is true of Figs. 2(c), 2(d), 3(c), and 3(d). As q increases, (7) implies that
the initial criminal population and the criminal replacement rate both increase while
the initial attractiveness field remains fixed.

Specific to the Poisson-clock model (Figs. 1(a), 1(b), 2(a), 2(b), and 3), we set
D= 100. Specific to the DTS Model [76] (the remaining figures), we set δ t = 1/100.
Specific to the cases with zero hotspot formation (Figs. 1, Figs. 3(a) and (b)), we set
η = 0.2 and B0`s ≡ B̄ for every s ∈S . Specific to the cases with hotspot formation
(the remaining figures), η is set to be 0.03, and B0`s is set to be B̄ on every site except
for 30 grid points randomly chosen a priori each gets increased by 0.002.

The same finite size effects as in the DTS Model [76] are observed, that is, the
degree of hotspot ’transience’ seems to depend on the total criminal population.
The regimes of transient hotspots seem to appear associated with low or vanish-
ing criminal numbers and low numbers of events, while the regimes of stationarity,
including the stationary hotspots or homogeneity regimes, occur more likely with
large numbers of criminals and burglary events.

2.2 Martingale formulation

For every t, we define
(
B`(t),n`(t)

)
:= {

(
B`

s(t),n
`
s(t)
)

: s ∈S `}, and similarly we
can define the stochastic processes n`(t), A`(t), p`(t) and E`(t). associated with the
Poisson-clock model. For f ` := { f `s : s ∈S `} and g` := {g`s : s ∈S `}, we define
the discrete inner product and Lp norm over the lattice S `:

2 More precisely, the criminal agents are assumed to be uniformly (randomly) distributed over the
128×128 grids, while ∑s∈S ` n0`s = 1282n̄`.
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Fig. 1 Plot of the attractiveness A`
s(t) for the discrete Poisson-clock model and the DTS Models

[76]. For both models, The initial conditions (at t = 0) and parameters are taken to be A0 = 1/30,
B0`s ≡ B̄, n0`s ∼= n̄`, L = 128, `= 1, ω = 1/15, and η = 0.2. Specific to the Poisson-clock model (a)
and (b), we set D = 100, Γ = 0.0019q, θ = 5.6/q, q = 1 in (a), and q = 10 in (b). Specific to the
DTS Model [76] (c) and (d), we set δ t = 1/100, Γ = 0.0019q, θ = 5.6/q, q = 1 in (c), and q = 10
in (d). (b) and (d) show the spatially homogeneous regimes. (a) and (c) show the dynamic hotspot
regimes.
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Fig. 2 Plot of the attractiveness A`
s(t) for the discrete Poisson-clock model and the DTS Model

[76]. For both models, The parameters and initial conditions (at t = 0) are taken to be L = 128,
`= 1, ω = 1/15, η = 0.03, A0 = 1/30, n0`s ∼= n̄`, and B0` is set to be B̄ except for sites with slight
perturbations. Specific to the Poisson-clock model (a) and (b), we set D = 100, Γ = 0.0019q,
θ = 5.6/q, q = 1 in (a), and q = 10 in (b). Specific to the DTS Model [76] (c) and (d), we set
δ t = 1/100, Γ = 0.0019q, θ = 5.6/q, q = 1 in (c), and q = 10 in (d). (b) and (d) show the spatially
homogeneous regimes. (a) and (c) show the dynamic hotspot regimes.
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Fig. 3 Plot of the attractiveness A`
s(t) for the discrete Poisson-clock model. For both regimes, the

initial conditions (at t = 0) and parameters are taken to be A0 = 1/30, n0`s ∼= n̄`, L = 128, ` = 1,
ω = 1/15, and D = 100. Specific to the spatially homogeneous regime (a) and (b), we set B0` ≡ B̄,
η = 0.2, Γ = 0.0019q, θ = 5.6/q, q = 100 in (a), and q = 1000 in (b). Specific to the dynamic
hotspot regime (c) and (d), we set η = 0.03, B0` to be B̄ except for sites with slight perturbations,
Γ = 0.0019q, θ = 5.6/q, q = 100 in (c), and q = 1000 in (d).
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〈
f `,g`

〉
:= `2

∑
s∈S `

f `s g`s,
∣∣∣ f `∣∣∣

p
:=

(
`2

∑
s∈S `

∣∣∣ f `s ∣∣∣p
)1/p

, p≥ 1.

Let φ ` = {φ `
s : s ∈S `} be an arbitrary stationary scalar field, we define〈(

B`(t),n`(t)
)
,φ `
〉

:=
(〈

B`(t),φ `
〉
,
〈

n`(t),φ `
〉)

. (8)〈(
B`(t),n`(t)

)
,φ `
〉

is a Markov pure jump process with state space R2. Hence a
martingale approach is applicable (e.g. [14, 15, 44, 51, 79]). The martingale for-
mulation of the process can be derived based on the infinitesimal parameters. The
components of the infinitesimal mean vector and diagonal components of the in-
finitesimal covariance matrix of

〈(
B`(t),n`(t)

)
,φ `
〉

are denoted as follows:
infinitesimal mean for attractiveness G `

1
(〈(

B`(t),n`(t)
)
,φ `
〉)

,

infinitesimal mean for criminal distribution G `
2
(〈(

B`(t),n`(t)
)
,φ `
〉)

,

infinitesimal variance for attractiveness V `
1
(〈(

B`(t),n`(t)
)
,φ `
〉)

,

infinitesimal variance for criminal distribution V `
2
(〈(

B`(t),n`(t)
)
,φ `
〉)

.

Thus we have the following martingale formulation for
〈(

B`(t),n`(t)
)
,φ `
〉
:

Theorem 2.1 For each fixed `, before the possible blow-up time, the stochastic pro-
cess

〈(
B`(t),n`(t)

)
,φ `
〉

can be written as

〈
B`(t),φ `

〉
=

〈
B0`,φ `

〉
+
∫ t

0
G `

1

(〈(
B`(s),n`(s)

)
,φ `
〉)

ds

+M `
1

(〈(
B`(t),n`(t)

)
,φ `
〉)

,〈
n`(t),φ `

〉
=

〈
n0`,φ `

〉
+
∫ t

0
G `

2

(〈(
B`(s),n`(s)

)
,φ `
〉)

ds

+M `
2

(〈(
B`(t),n`(t)

)
,φ `
〉)

.

(9)

where M `
i
(〈(

B`(t),n`(t)
)
,φ `
〉)

, i = 1, 2, are martingales starting at t = 0 as zeros,
whose variances can be characterized by the infinitesimal variances:

Var
(
M `

i

(〈(
B`(t),n`(t)

)
,φ `
〉))

=
∫ t

0
E
[
V `

i

(〈(
B`(s),n`(s)

)
,φ `
〉)]

ds, (10)

where i = 1,2. Moreover for the infinitesimal means and variances we have

G `
1

(〈(
B`(t),n`(t)

)
,φ `
〉)

=

〈(
1− ω`2

D

)
ηD
4

∆
`B`(t)−ωB`(t)+Dθ`−2 p`(t)n`(t),φ `

〉
, (11)
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G `
2

(〈(
B`(t),n`(t)

)
,φ `
〉)

= `2
∑

s∈S `

D`−2

A`
s(t) ∑

s′
s′∼s

n`s′(t)
(
1− p`s′(t)

)
T `

s′(t)
−n`s(t)

+Γ

φ
`
s , (12)

V `
1

(〈(
B`(t),n`(t)

)
,φ `
〉)

=
`2

D

(
G `

1

(〈(
B`(t),n`(t)

)
,φ `
〉))2

+Dθ
2
〈

n`(t)p`(t)(1− p`(t)),
(

φ
`
)2
〉
, (13)

V `
2

(〈(
B`(t),n`(t)

)
,φ `
〉)

=
`2

D

(
G `

2

(〈(
B`(t),n`(t)

)
,φ `
〉))2

+ `2
Γ

(
1− Γ `2

D

)∣∣∣φ `
∣∣∣2
2

+D
〈

n`(t)
(

1− p`(t)
)
, p`(t) f `(t)+g`(t)

〉
, (14)

where

f `s (t) =

∑
s′

s′∼s

φs′
A`

s′(t)
T `

s (t)


2

, g`s(t) = `2
∑
s′

s′∼s

A`
s′(t)

T `
s (t)

 ∑
s′′

s′′ 6=s′
s′′∼s

∇
`
s′→s′′φ

`
s′

A`
s′′(t)

T `
s (t)


2

.

(15)

Here ∇`
s′→s′′φ

`
s′ denotes the discrete directional derivative from s′ pointing towards

s′′, that is, ∇`
s′→s′′φ

`
s′ =

(
φ `

s′ −φ `
s′′
)
/`.

The proof of Theorem 2.1 is in the Appendix.

2.3 Continuum model

The martingale formulation (9) implies that the process
〈(

B`(t),n`(t)
)
,φ `
〉

is char-
acterized by infinitesimal means and variances. The former gives the expected be-
havior and the latter the variance of the trajectories of the evolution. Thus the pro-
cess can be viewed as the sum of differential equations and random fluctuations.
From (13) and (14) we infer that the infinitesimal variances have a lower order of
magnitude than `, that is:
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V `
1

(〈(
B`(t),n`(t)

)
, φ

`
〉)

∼=
`2

D

(
G `

1

(〈(
B`(t),n`(t)

)
, φ

`
〉))2

+ `2
θ

2
〈

n`(t)A`(t),
(

φ
`
)2
〉

∼=O(`2), (16)

V `
2

(〈(
B`(t),n`(t)

)
, φ

`
〉)

∼=
`2

D

(
G `

2

(〈(
B`(t),n`(t)

)
,φ `
〉))2

+ `2
Γ

∣∣∣φ `
∣∣∣2
2

+D`2
〈

n`(t),
1
D

A`(t) f `(t)+g`(t)`−2
〉

∼=O(`2). (17)

Thus for ` small, it is reasonable to set the continuum version of the differential
equations as a continuum model. Let n(x, t), A(x, t), and B(x, t), x ∈ D be the con-
tinuum versions of n`s(t), A`

s(t), and B`
s(t), we have

∂B
∂ t

=
ηD
4

∆B−ωB+θnA,

∂n
∂ t

=
D
4

∇ ·
(

∇n− 2n
A

∇A
)
−nA+Γ ,

n(0) = n0,B(0) = B0.

(18)

We note that (18) and the continuum DTS Model [76] ((3.2) and (3.5) in [76]) are
the same. The derivation of (18) is similar to that of the hydrodynamic limit of
interacting particle systems [19, 30, 44, 45, 69, 70, 79, 80].

We verify the validity of the continuum model through simulations. We use the
same algorithm as the continuum DTS Model [76] ((3.11)-(3.13) in [76]). Fig. 4
shows example output of the attractiveness A(x, t) in the cases of hotspot formation.
The same color key is used as in Fig. 1. From (18) we infer that the parameters and
data used to create Figs. 2(a), 2(b), 3(c), and 3(d) give rise to the same continuum
attractiveness field. Hence we only display the output once here in Fig. 4. As for the
case of zero hotspot formation, the parameters and data used to create Figs. 1(a),
1(b), 3(a), and 3(b) give rise to the same continuum attractiveness field, which is the
equilibrium as the the system stays at the equilibrium with equilibrium initial data.

As was observed in the DTS Model [76], the regimes of dynamic hotspots are
absent in the continuum simulations. As the total criminal population decreases, dis-
tinctions between the behavioral regimes of the discrete and continuum simulations
increase.
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Fig. 4 Output of the attractiveness A(x, t) for the continuum Poisson-clock model with hotspot
formation. The parameters and data are the equivalent of the discrete parameters used in Figs. 2,
3(c) and 3(d).

3 Mathematical analysis of the finite size effects

Hotspot transience is well documented in real crime statistics. It would be useful if
we could guess the parameters of the model from observed pattern formation. The
finite size effects are closely related to the degree of hotspot transience. Therefore,
through the observation of the hotspot transience, we could estimate the number
of criminals. This number is normally difficult to predict. To analyze the finite size
effects quantitatively, we build a mathematical framework to quantify the relevant
pattern formation. We propose a theory for the finite size effects based on a scaling
property of the martingale formulation. Our conjecture is supported by qualitative
and quantitative simulations.

3.1 Quantification of the pattern formation

3.1.1 Statistics of degree of the hotspot transience

We construct the following statistics to measure the degree of hotspot transience.
(i) Relative Fisher information relative to the uniform measure over S `, loga-

rithm mean type (See Appendix [11]):

I `(t) := `−2
∑

s∈S

(
A`

s(t)−A`
s′(t)

)(
logA`

s(t)− logA`
s(t)
)
. (19)

As suggested in [20, 21, 22], the Fisher information is particularly suitable to mea-
sure the entropy of diffusion processes, which fits with the dynamics of the attrac-
tiveness.

(ii) Rate of change of A`(t) over time in the discrete Lp norm, p≥ 1. For a fixed
time increment ∆ t > 0, we define the Lp-area rate of change as:
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δ
`
p(t) :=

∣∣∣A`(t +∆ t)−A`(t)
∣∣∣

p
. (20)

(iii) Rate of change of the total area of certain types of regions. We focus on the
regions with attractiveness higher than 2Ā (red regions). For these regions, we define
the relative overlapping area O`(t) and non-overlapping area N `(t) as follows:

O`(t) :=
1

A`
R

∑
s∈S `

A`
s(t)≥2Ā

A`
s(t+∆ t)≥2Ā

1(s) (21)

N `(t) :=
1

A`
R

 ∑
s∈S `

A`
s(t+∆ t)≥2Ā

1(s)+ ∑
s∈S `

A`
s(t)≥2Ā

1(s)

−2O`(t), (22)

where 1(s) is an indicator function, and A`
R is the renormalization:

A`
R = ∑

s∈S `

A`
s(t)≥2Ā

1(s) (23)

As for the continuum model, in a very similar way we can define all the above
quantities, and we denote them as I (t), δp(t), O(t), and N (t).

3.1.2 Numerical simulations

Example output of direct simulations for (19)-(22) can be seen in Figs. 5-7. All
the simulations are run with ∆ t = 10, t ∈ [0,730], and p = 1. Moreover, the blue,
magenta, black and red lines show results with increasing values of q and thus in-
creasing criminal population. Figs. 5(a) and 6(a) show results with zero hotspot
formation, and the blue, magenta, black, and red lines represent results with the
simulations in Figs. 1(a), 1(b), 3(a), 3(b), respectively. Figs. 5(b), 6(b) and 7 show
results with hotspot formation, and the blue, magenta, black, red, and green lines
represent results with the simulations in Figs. 2(a), 2(b), 3(c), 3(d), and 4, respec-
tively.

The simulation output shows that a larger degree of hotspot transience appears
with a smaller criminal population. Also the continuum simulations have the lowest
degree of hotspot transience. The peaks in Figs. 6(b), 7(a) and 7(b) correspond to
the initial emergence of the hotspots in the discrete and continuum models. During
the emergence period the statistics increase as the hotspots form, and decrease and
stabilize (or directly stabilize) as the hotspots stabilize. The same simulation results
are also observed over other random paths. To conclude, the output matches well
with the qualitative simulations in Figs. 1-4, which suggests that the above statistics
are suitably chosen.
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Fig. 5 Examples of the relative Fisher information I `(t) and I (t) in the cases of zero hotspot
formation and hotspot formation. (a) shows results with the cases of zero hotspot formation, and
the blue, magenta, black and red lines represent the statistics of the discrete models plotted in Figs.
1(a), 1(b), 3(a), and 3(b), respectively. (b) shows results with the cases of hotspot formation, and
the blue, magenta, black, red and green lines show results with the simulations in Figs. 2(a), 2(b),
3(c), 3(d), and 4 respectively.

δ `
1 (t), δ1(t)
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Fig. 6 Examples of the L1-area rate of change δ `
1 (t) and δ1(t) in the cases of zero hotspot formation

and hotspot formation. (a) shows results with zero hotspot formation, and the blue, magenta, black
and red lines represent the statistics of the discrete models plotted in Figs. 1(a), 1(b), 3(a), and 3(b),
respectively. (b) shows results with hotspot formation, and the blue, magenta, black, red and green
lines show results with the simulations in Figs. 2(a), 2(b), 3(c), 3(d), and Fig. 4, respectively.

3.2 Theory of the finite size effects

With quantification of the degree of hotspot transience, we analyze the finite size
effects mathematically.
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Fig. 7 Examples of the relative overlapping and non-overlapping area, O`(t), O(t), N `(t) and
N (t) with hotspot formation. The blue, magenta, black, red, and green lines show results with the
simulations in Figs. 2(a), 2(b), 3(c), 3(d), and Fig. 4 respectively.

3.2.1 Scaling property of the stochastic component

We study a scaling property related to the total criminal population. Specifically
we vary the initial criminal number, the repeat victimization strength θ , and the
replacement rate Γ . Fixing Θ > 0, �> 0, for q∈ (0,D/`2�), we consider the discrete
model with parameters and initial data scaled in a certain way:(

B`,(q)(t),n`,(q)(t)
)

:=
(

B`(t),n`(t)
)∣∣∣

B0`∼=B̄, n0`∼=qn̄`, θ=Θ
q , Γ=q�

, (24)

where B̄, n̄` are the homogeneous equilibrium values as in (7) with θ = Θ and
Γ = �:

B̄=
Θ�

ω
, n̄` =

�`2

D
(

1− e−`
2(B̄+A0)D−1

) ∼= �

B̄+A0
. (25)

As q increases, the initial criminal population and the criminal replacement rate both
increase while the initial attractiveness field remains fixed. Applying (9) and (10) to(

B`,(q)(t),n`,(q)(t)
)

over a small time step δ t we obtain


〈

B`,(q)(t +δ t),φ `
〉
=
〈

B`,(q)(t),φ `
〉
+G

`,(q)
1

(
t,φ `

)
δ t +M

`,(q)
1

(
t,φ `

)
,

〈
n`,(q)(t +δ t),φ `

〉
=
〈

n`,(q)(t),φ `
〉
+G

`,(q)
2

(
t,φ `

)
δ t +M

`,(q)
2

(
t,φ `

)
,

(26)

where G
`,(q)
i (t,φ `) are the short notations for G `

i

(〈(
B`,(q)(t),n`,(q)(t)

)
,φ `
〉)

, and

M
`,(q)
i

(
t,φ `

)
for M `

i

(〈(
B`,(q)(t),n`,(q)(t)

)
,φ `
〉)

, i = 1, 2. By (10) we obtain the
standard deviation of the stochastic component
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Var
(
M

`,(q)
i (t,φ `)

)
∼=
√
E
[
V

`,(q)
i (t,φ `)

]
δ t, i = 1,2, (27)

where V
`,(q)

i (t,φ `)’s are the short nations for V `
i

(〈(
B`,(q)(t),n`,(q)(t)

)
,φ `
〉)

, i =
1, 2. This implies that the infinitesimal variances are the key to estimate deviation
of the discrete model from the deterministic component.

We analyze the infinitesimal variance for attractiveness. By (11) and (13) we
rewrite the infinitesimal variance as the summation of two components

V
`,(q)

1

(
t,φ `

)
= V

`,(q)
1,1

(
t,φ `

)
+

1
q
V

`,(q)
1,2

(
t,φ `

)
, (28)

where

V
`,(q)

1,1

(
t,φ `

)
∼=

`2

D

(〈
ηD
4

∆
`B`,(q)(t)−ωB`,(q)(t)+

Θ

q

(
B`,(q)(t)+A0

)
n`,(q)(t),φ `

〉)2

, (29)

and

V
`,(q)

1,2

(
t,φ `

)
∼= q`2

Θ
2
〈

n`,(q)(t)
(

B`,(q)(t)+A0
)
,
(

φ
`
)2
〉
. (30)

We perform estimates at the first time step. At time zero, from (29), (30) and (25)
we infer that the two components are actually independent of q, namely

V
`,(q)

1,1

(
0,φ `

)
=

`2

D

(〈
−ωB̄+Θ

(
B̄+A0

)
n̄`,φ `

〉)2
= 0, (31)

and

V
`,(q)

1,2

(
0,φ `

)
= `2

Θ
2
〈
n̄`
(
B̄+A0

)
,
(

φ
`
)2
〉
= `2

Θ
2�
∣∣∣φ `
∣∣∣2
2
. (32)

This together with (28) implies that at time zero we have

V
`,(q)

1

(
0,φ `

)
≡ q−1`2

Θ
2�
∣∣∣φ `
∣∣∣2
2
. (33)

Thus we infer that the infinitesimal variance for the attractiveness is inversely pro-
portional to q:

V
`,(q)

1

(
0,φ `

)
∝ q−1. (34)

This implies that for 0 < q < q̃ < D�/`2, we have

V
`,(q)

1

(
0,φ `

)
> V

`,(q̃)
1

(
0,φ `

)
. (35)
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This together with (27) implies that at the first time step we have

Var
(
M

`,(q)
1

(
δ t,φ `

))
> Var

(
M

`,(q̃)
1

(
δ t,φ `

))
. (36)

To conclude at the first time step a smaller value of q leads to a larger deviation of
B`,(q)(t) from the deterministic component, and hence the hotspots develop temporal
transience in the discrete attractiveness simulations. We conjecture that (35) remains
to be true in later times, namely,

V
`,(q)

1

(
t,φ `

)
> V

`,(q̃)
1

(
t,φ `

)
, for 0 < q < q̃ <

D�

`2 and t > 0. (37)

To conclude, the scaling property of the martingale formulation related to the crim-
inal population possibly leads to the finite size effects.

3.2.2 Numerical simulations

We perform direct simulations of the infinitesimal standard deviation for the attrac-

tiveness,
√

V
`,(q)

1 (t), to check the validity of (37). Example output can be seen in
Figure. 8. The test function is chosen to be

φ
`(x) = 1+ sin(x1)sin(x2)/20. (38)

Fig. 8(a) shows results in the cases with no hotspot. The blue, magenta, black, and
red lines show results with the simulations in Figs. 1(a), 1(b), 3(a), and 3(b), respec-
tively. Fig. 8(b) shows results with hotspot formation. The blue, magenta, black and
red lines represent results with the simulations in Figs 2(a), 2(b), 3(c), and 3(d), re-
spectively. The same simulation results are also observed over other random paths.
The output of the simulations supports our previous conjecture as in (37).

Furthermore, in Fig. 9 we check whether (34) is valid for later times:

V
`,(q)

1

(
t,φ `

)
∼=

1
q
`2

Θ
2�
∣∣∣φ `
∣∣∣2
2
, t > 0. (39)

Taking the average of both sides of (39) over the time period [0,T ], we obtain

1
T

∫ T

0
V

`,(q)
1

(
t,φ `

)
dt ∼=

1
q
`2

Θ
2�
∣∣∣φ `
∣∣∣2
2
. (40)

Fig. 9 shows the log-log plot of (40). The lines show the theoretical scaling with
slope −1 and the x-intercept `2Θ 2�

∣∣φ `
∣∣2
2. The points show the true scaling with the

coordinates as:

x = logq, y = log
(

1
T

∫ T

0
V

`,(q)
1

(
t,φ `

)
dt
)
, q = 1,10,100,1000. (41)
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Fig. 8 Examples of the infinitesimal standard deviation for attractiveness,
√

V
`,(q)

1 (t), for both
zero hotspot formation and hotspot formation. (a) shows results with no hotspot, and the blue,
magenta, black and red lines show results with the simulations in Figs. 1(a), 1(b), 3(a), and 3(b),
respectively. (b) shows results with hotspot formation, and the blue, magenta, black and red lines
show results with the simulations in Figs. 2(a), 2(b), 3(c), and 3(d), respectively.

The output shows that all the points fall onto the straight lines. This indicates stabil-
ity of the Poisson-clock model with equilibrium initial value, which further indicates
validity of the model.

log
∫ T

0 V
`,(q)

1 dt
T

-1 0 1 2 3 4

log q

-0.2

1.5

3.2

-1 0 1 2 3 4

log q
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(a) (b)

Fig. 9 Comparison of log-log plot of the theoretical and true scaling for both zero hotspot for-
mation and hotspot formation. The straight lines show the theoretical scaling with slope −1 and
the x-intercept `2Θ 2�

∣∣φ `
∣∣2
2
∼= 2.9892. The points show the true scaling. (a) shows results with no

hotspot, and the points with x-axis as 0, 1, 2, and 3 show results with the simulations of the blue,
magenta, black and red lines in Fig. 8 (a), respectively. (b) shows results with hotspot formation,
and the points with x-axis as 0, 1, 2, and 3 show results with the simulations of the blue, magenta,
black and red lines in Fig. 8 (b), respectively.
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4 Conclusion

In this paper, we apply the Poisson clock to the agent-based residential burglary
DTS Model [76]. The time increments are exponentially distributed random vari-
ables, which are more suitable to model random arrivals. This is a Markov pure
jump process, and a martingale approach is applicable. A martingale formulation is
derived which consists of a deterministic and a stochastic component. It provides
us with a tool to study both the statistical and stochastic features of the process.
The model thus obtained is a stochastic-statistical residential burglary model (SSRB
Model).

The deterministic part yields a continuum model. It is the same as the contin-
uum version of the DTS Model [76]. We find that the continuum SSRB Model is
a good approximation of the discrete SSRB Model under the circumstance of a
large number of criminals. Moreover, for the finite size effects, we build statistics
to quantify the relevant pattern formation, and find a theoretical explanation using
a scaling property of the stochastic component. That is, as the criminal population
decreases, the stochastic component increases in size, which leads to a larger devia-
tion of the discrete model from the deterministic component. This scaling property
can be proven at time zero with equilibrium initial data. Numerical simulations sup-
ports our conjecture that the scaling property remains to be true in later times. This
explains theoretically the reason why dynamic hotspots have been observed associ-
ated with small criminal population in the discrete simulations of the SSRB model
and the DTS Model [76]. And more, for general human behavior with similar ag-
gregation pattern formation, our finding suggests that hotspot transience indicates a
significant stochastic fluctuation in the martingale formulation, which could predict
a small size of agents taking part in the activity.

There are two possible directions for the future work. On the one hand, we can
assume independent Poisson clocks for each agent, which is more realistic to model
typical criminal activities. Independent Poisson clocks will make the computations
more complex though. It would be interesting to explore whether the finite size ef-
fects also occur. On the other hand, we can study parameterization of hotspot tran-
sience. This will give us a deeper understanding of the pattern formation in a com-
plex system, e.g. pattern formation in fluid turbulence. This topic has been drawing
a lot of interests recently ([31, 35, 38, 32]). But quantitative studies are lacking as
far we know. The quantitative framework that we develop here could be applicable.

5 Appendix

To prove Theorem 2.1, we compute the infinitesimal means and variances of〈(
B`(t),n`(t)

)
,φ `
〉

for fixed ` ([1, 12, 16, 34, 36, 43, 47, 58, 59, 66, 68].
We first study related random variables. We assume that the Poisson-clock ad-

vances at t−, and analyze the transition at time t. Conditioned on (B`(s, t−),n`(s, t−)),
we observe that E`

s (t), s ∈ S , is a family of independently identically distributed
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Binomial random variables with the parameters n`(s, t−) and p`(s, t−), that is

P
(

E`
s (t) = i

∣∣∣B`
s(t
−),n`s(t

−)
)
=

(
n`s(t

−)

i

)(
p`s(t

−)
)i
(1− p`s(t

−))n`s(t
−)−i, (42)

where i = 0,1,2, ...,n`s(t
−). Hence we have

E
[
E`

s (t)
∣∣∣B`

s(t
−),n`s(t

−)
]
= p`s(t

−)n`s(t
−), (43)

Var
(

E`
s (t)
∣∣∣(B`

s(t
−),n`s(t

−)
)
,∀s ∈S

)
= n`s(t

−)p`s(t
−)
[
1− p`s(t

−)
]
. (44)

Let J`s, j(t), j = 1,2, ...,n`s(t
−) be a family of independently distributed Bernoulli

random variables assuming 1 with probability 1− p`s(t
−). If the j-th agent at site s

chooses not to burglarize, then J`s, j(t) assumes 1. This implies that

E
[(

J`s, j(t)
)2
∣∣∣∣(B`

s(t
−),n`s(t

−)
)]

=E
[
J`s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)]

=1− p`s(t
−). (45)

We also note that by our construction E`
s (t) = ∑

j=n`s(t
−)

j=1

(
1− J`s, j(t)

)
.

Let Φ`
s, j(t), j = 1, ...,n`s(t

−) be a family of independently identically distributed
random variables assuming φs′ with probability A`

s′/T `
s , for every s′, s′ ∼ s. Then we

have

E
[
Φ

`
s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

]
= ∑

s′
s′∼s

φ
`
s′

A`
s′(t
−)

T `
s (t−)

, (46)

E
[(

Φ
`
s, j(t)

)2
∣∣∣∣(B`

s(t
−),n`s(t

−)
)
,∀s ∈S `

]
= ∑

s′
s′∼s

(
φ
`
s′
)2 A`

s′(t
−)

T `
s (t−)

. (47)

Let the number of replaced criminals on site s at time t be ξ `
s (t). Then ξ `

s (t) is a
family of Bernoulli random variables assuming 1 with probability Γ `2/D. Hence
we have

E
[
ξ
`
s (t)
∣∣∣(B`

s(t
−),n`s(t

−)
)]

=
Γ `2

D
, (48)

Var
((

ξ
`
s (t)
)2
∣∣∣∣(B`

s(t
−),n`s(t

−)
))

=
Γ `2

D
(1− Γ `2

D
). (49)

Because the decision to burglarize is (conditionally) independent from the decision
to move for each of the burglars, J`s, j(t) and Φ`

k,h(t) are (conditionally) independent
for any choices of s, k, j and h. This implies that
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E
[
J`s, j(t)Φ

`
s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

]
= E

[
J`s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

]
E
[
Φ

`
s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

]
= (by (45) and (46))

=
[
1− p`s(t

−)
]

∑
s′

s′∼s

φ
`
s′

A`
s′(t
−)

T `
s (t−)

, (50)

Var
(

J`s, j(t)Φ
`
s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

)
= E

[(
J`s, j(t)Φ

`
s, j(t)

)2
∣∣∣∣(B`

s(t
−),n`s(t

−)
)
,∀s ∈S `

]
−
[
E
[
J`s, j(t)Φ

`
s, j(t)

∣∣∣(B`
s(t
−),n`s(t

−)
)
,∀s ∈S `

]]2

= (by (45), (46), (47), and (45))

=
[
1− p`s(t

−)
]

∑
s′

s′∼s

(
φ
`
s′
)2 A`

s′(t
−)

T `
s (t−)

−
[
1− p`s(t

−)
]2

∑
s′

s′∼s

φ
`
s′

A`
s′(t
−)

T `
s (t−)


2

, (51)

Right after the Poisson clock advances we have the following transition:

∑
s∈S `

n`s(t)φ
`
s = ∑

s∈S `

n`s(t
−)

∑
j=1

[
1− J`s, j(t)

]
Φ

`
s, j(t)+ ∑

s∈S `

ξ
`
s (t)φ

`
s . (52)

With the above random variables we compute the infinitesimal means and vari-
ances. In the computational steps we will drop the super script ` for simplicity.

We compute the infinitesimal mean for
〈
B`(t−),φ `

〉
. From (6) we have

G1

(〈
B`(t−),φ `

〉
,
〈

n`(t−),φ `
〉)

=
D
`2E

[
`2

∑
s∈S

[
Bs(t)−Bs(t−)

]
φs

∣∣∣∣∣(B(t−),n(t−))
]

= by (43)

= D ∑
s∈S

[(
1− ω`2

D

)
η`2

4
∆Bs(t−)−

ω`2

D
Bs(t−)+θ ps(t−)ns(t−)

]
φs, (53)

which implies (11).
We compute the infinitesimal variance of

〈
B`(t−),φ `

〉
:
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V `
1

(〈(
B`(t),n`(t)

)
, φ

`
〉)

= lim
δ t→0

1
δ t

E
[(〈

B(δ t + t−),φ
〉
−
〈
B(t−),φ

〉)2
∣∣∣(B(t−),n(t−))]

=
D
`2E

`4

(
∑

s∈S
Bs(t−)φs− ∑

s∈S
Bs(t)φs

)2
∣∣∣∣∣∣(B(t−),n(t−))


= D`2E

[
∑

s∈S
Bs(t−)φs− ∑

s∈S
Bs(t)φs

∣∣∣∣∣(B(t−),n(t−))
]2

+D`2Var

[
∑

s∈S
Bs(t−)φs− ∑

s∈S
Bs(t)φs

∣∣∣∣∣(B(t−),n(t−))
]

:= J1 + J2. (54)

For J1, from (53) we have

J1 =
`2

D
G 2

1
(〈

B(t−),φ
〉
,
〈
n(t−),φ

〉)
. (55)

Then for J2, we apply the independence of Es(t) for distinct s ∈S and with (44)
we obtain

J2 =D`2Var

(
∑

s∈S

[(
1− ω`2

D

)
η`2

4
∆Bs(t−)−

ω`2

D
Bs(t−)+θEs(t)

]
φs

∣∣∣∣∣(B(t−),n(t−))
)

= D`2Var

(
∑

s∈S
θφsEs(t)

∣∣∣∣∣(B(t−),n(t−))
)

= D`2
∑

s∈S
θ

2
φ

2
s Var

(
Es(t)

∣∣(B(t−),n(t−)))
= D`2

∑
s∈S

θ
2
φ

2
s ns(t−)ps(t−)

[
1− ps(t−)

]
. (56)

This together with (55) and (54) implies (13).
We compute the infinitesimal mean for

〈
n`(t−),φ `

〉
. From (52) we have

G2

(〈(
B`(t−),n`(t−)

)
,φ `
〉)

=
D
`2E

[
`2

∑
s∈S

ns(t)φs− `2
∑

s∈S
ns(t)φs

∣∣∣∣∣(B(t−),n(t−))
]

= D ∑
s∈S

E

[
ns(t−)

∑
j=1

[1− Js, j(t)]Φs, j(t)+ξs(t)φs−ns(t−)φs

∣∣∣∣∣(B(t−),n(t−))
]
. (57)

This together with (45), (46) and (48) implies
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G2

(〈(
B`(t−),n`(t−)

)
,φ `
〉)

= D ∑
s∈S

ns(t−) [1− ps(t)] ∑
s′

s′∼s

φs′
As′(t−)
Ts(t−)

+
Γ `2

D
φs−ns(t−)φs


= D ∑

s∈S

φsAs(t−) ∑
s′

s′∼s

ns′(t−) [1− ps′(t)]
Ts′(t−)

+
Γ `2

D
φs−ns(t−)φs

 , (58)

which implies (12).
We compute the infinitesimal variance of

〈
n`(t−),φ `

〉
V `

2

(〈(
B`(t),n`(t)

)
, φ

`
〉)

= lim
δ t→0

1
δ t

E
[(〈

n(δ t + t−),φ
〉
−
〈
n(t−),φ

〉)2
∣∣∣(B(t−),n(t−))]

= D`2E

[
∑

s∈S
ns(t−)φs− ∑

s∈S
ns(t)φs

∣∣∣∣∣(B(t−),n(t−))
]2

+D`2Var

(
∑

s∈S
ns(t−)φs− ∑

s∈S
ns(t)φs

∣∣∣∣∣(B(t−),n(t−))
)

:= J3 + J4. (59)

For J3 we have

J3 =
`2

D
G 2

2
(〈

B(t−),φ
〉
,
〈
n(t−),φ

〉)
. (60)

For J4, with the independence of the related random variables, we obtain

J4 = D`2
∑

s∈S
Var

(
ns(t−)

∑
j=1

Js, jΦs, j(t)+ξs(t)φs−ns(t−)φs

∣∣∣∣∣(B(t−),n(t−))
)

= D`2
∑

s∈S
Var
(
ξs(t)φs

∣∣(B(t−),n(t−)))
+D`2

∑
s∈S

ns(t−)Var
(
Js, j(t)Φs, j(t)

∣∣(B(t−),n(t−)))
:= J4,1 + J4,2. (61)

For J4,1, by (49) we have

J4,1 = `4
Γ

(
1− Γ `2

D

)
∑

s∈S
φ

2
s . (62)

For J4,2, by (50) and (51) we have
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J4,2 = D`2
∑

s∈S
ns(t−)ps(t−)

[
1− ps(t−)

]∑
s′

s′∼s

φs′
As′(t−)
Ts(t−)


2

+D`2
∑

s∈S
ns(t−)

[
1− ps(t−)

]∑
s′

s′∼s

φ
2
s′

As′(t−)
Ts(t−)

−

∑
s′

s′∼s

φs′
As′(t−)
Ts(t−)


2

:= J4,1,1 + J4,1,2. (63)

We simplify J4,1,2 as follows

J4,1,2 = D`2
∑

s∈S
ns(t−)

[
1− ps(t−))

]
∑
s′

s′∼s

As′(t−)
Ts(t−)

φs′ −∑
s′

s′∼s

φs′
As′(t−)
Ts(t−)


2

= D`2
∑

s∈S
ns(t−)

[
1− ps(t−)

]
∑
s′

s′∼s

As′(t−)
Ts(t−)

 ∑
s′′

s′′ 6=s′
s′′∼s

(φs′ −φs′′)
As′′(t−)
Ts(t−)


2

. (64)

This together with (59)-(63) implies (14).
With the infinitesimal means and variances we apply Theorem (1.6), [14] or The-

orem 3.32, [51], to arrive at (9), and apply Exercise 3.8.12 of [6], Lemma A 1.5.1,
[44], or Proposition B.1 in [64]3 to obtain (10). To conclude the proof of Theorem
2.1 is completed.
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5. M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, Image deblurring with Poisson data:
from cells to galaxies, Inverse Problems, 25, paper n. 123006, 26 (2009).

6. K. Bichteler, Stochastic integration with jumps, Cambridge University Press, Cambridge,
(2002).

7. D. Brockmann, L. Hufnagel, and T. Geisel, The scaling laws of human travel, Nature, 439,
462–465, (2006).

8. T. Budd, Burglary of domestic dwellings: Findings from the British Crime Survey, Home
Office Statistical Bulletin, Vol. 4 (Government Statistical Service, London, 1999).

9. L. Cao and M. Grabchak, Smoothly truncated levy walks: Toward a realistic mobility model,
2014 IEEE 33rd Int. Performance Computing and Communications Conference, (IPCCC),
5–7 December 2014, Austin, Texas, USA, pp. 1–8.

10. S. Chaturapruek, J. Breslau, D. Yazdi, T. Kolokolnikov, and S. G. McCalla, Crime modeling
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