HIGHER-ORDER FEATURE-PRESERVING
GEOMETRIC REGULARIZATION

MARC DROSKE* AND ANDREA BERTOZZI

Abstract. We introduce two fourth-order regularization methods that remove geometric noise
without destroying significant geometric features. These methods leverage ideas from image denoising
and simplification of high contrast images in which piecewise affine functions are preserved up to
infinitesimally small transition zones. We combine the regularization techniques with active contour
models and apply them to segmentation of polygonal objects in aerial images. To avoid loss of
features during the computation of the external driving forces we use total-variation based inverse
scale-space techniques on the input data. Furthermore, we use the models for feature-preserving
removal of geometric texture on surfaces.

1. Introduction. Geometric partial differential equations are very powerful and
widely used ingredients for modeling and solving problems that involve “shapes” as
free variables [10, [34] [33]. Such PDEs can be modeled directly or emerge from vari-
ational methods by either deriving the formal Euler-Lagrange equations or the cor-
respondig gradient descent (see [b0, [I7, [51]). One prominent example is the prob-
lem of image segmentation, which is often modeled in terms of the boundary of
the unknown segment. In particular, the well-known class of active contour mod-
els [14, 23] [49] 13} B8] model a geometric evolution problem, that evolves an initial
curve towards the boundary of the segment. Naturally, the main component that
influences the segmentation process is the external data, which can be images of any
kind, such as photographs or magnetic resonance images. Since images can contain
a very high amount of information and in addition be corrupted by noise, it is often
crucial to mitigate non-uniqueness by imposing a restriction on the complexity of the
solution. This reduction of the solution space by penalization is referred to as regu-
larization and is often achieved by adding smoothness to the evolving geometry. In
this context, a common problem is to find a good balance between the smoothing pro-
cess and external driving forces. Our aim in this paper is to exploit prior knowledge
to devise feature-preserving smoothing methods, that help to avoid oversmoothing
at sharp corners. In particular, these methods facilitate the segmentation of objects
with only a piecewise smooth boundary by avoiding over-smoothing.

Let us first describe some of the most important classic approaches for boundary-
based segmentation. Consider, for example, the pioneering work of Kass, Witkin
and Terzopoulos [37] which introduced active contours [I4] (also known as snakes) as
parametrized curves or surfaces that evolve according to both local properties of the
curve and to image-dependent forces that are directed towards significant features.
The classical image snake method computes minimizers of the functional
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to segment boundaries for the input image ug : 2 — R on the image domain 2 C
R?. The functional E is defined on closed curves given by a parametrization c :
[0,1] — Q and «, 8 are positive weights of the respective energy contributions. The
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first two, the membrane energy and the thin-plate energy, control the fairness of
the curve and constitute the internal energy. The last integral defines the external
energy, i. e., models the image feature driven dependence of the curve: the lower
the gradient of ug is in magnitude, the stronger is the penalization of the curve. In a
gradient-flow minimization method, the external energy is responsible for evolving the
curve so that it eventually stops at a boundary, whereas the internal energy smoothes
rough edges. However, if the internal energy (regularization) does not reflect our
expectations on the shape of the object (e.g., segmentation of smooth shapes versus
polygons or objects with a fractal or fuzzy boundary), the balancing of the energies is a
difficult trade-off. Ideally, the regularization energy should only penalize implausible
shapes. Naturally, plausibility depends highly on the context. In medical image
segmentation, a smoothness assumption is perfectly valid, in this paper however we
would like to devise a regularization energy, which treats “piecewise” smooth shapes,
such as smooth approximations to polygons as plausible.

Active contour models, including all their variants, are commonly used in the lit-
erature and successfully applied to a wide range of segmentation problems, especially
in medical imaging (cf. e.g. [57, [I8]). Even though parametric models have serious
difficulties in changing their topology, they are numerically appealing because they
can be solved very efficiently. In many applications the topology is known a-priori
and hence no splitting or merging is required.

Due to the vast amount of research in image segmentation a comprehensive
overview is beyond the scope of this article. We briefly review some well-known seg-
mentation methods. Caselles et al. [I5] introduced a geodesic active contour model
by minimizing the related energy

Eyld = a / lea(2)]2dz + / a(IVg (c(2)) )z (1.2)

in which u§ denotes a regularized version of up and ¢ > 0 plays the role of a scale
parameter. It turns out that the minimization of this energy is equivalent to finding
geodesics with respect to a space-dependent isotropic metric g, by minimization of
the energy

Byl) = 2072 / a(IVug ()2 e (=) [dz = / gdA (1.3)

In contrast to 7 this functional is completely intrinsic, i.e., the energy does not
depend on the specific parametrization of the contour but only on the geometry of the
curve itself. The notion of equivalence of the minimization of and has been
made precise by Aubert and Blanc-Féraud [2], who derived that under some mild
conditions on g, for all piecewise C'' Jordan-curves, there exists a neighborhood in
which the steepest descent direction of also decreases (|1.3) and vice versa. Ring
and Hintermiiller introduced a Newton-type optimization technique of this problem
in [33]. An extension of the geodesic contour model, that aligns the contour with
the morphology of the input image in the sense of the Hildreth-Marr edge detector
was introduced by Kimmel and Bruckstein [39]. The energy allows to formulate
the segmentation problem by modeling the metric factor g. Despite its conceptual
attractiveness, this model does not directly address preservation of features, since g
does only depend on extrinsic factors and not the local geometry.

2



A technique due to Mumford & Shah [43] involves minimization of the energy

Eyslu, T = /

(u—uo)QdX—l—ﬁ/ |Vu||? dx + a9~ 1(T), (1.4)
Q o\r

where s#9~1 denotes the d — 1-dimensional Hausdorff-measure. This method com-
bines edge-preserving image denoising with segmentation in such a way that the
discontinuity set I' of the reconstructed function u divides the image into separate
homogeneous regions. Later the regularization term #¢~1(I") has been extended to
also take into account the curvature (Mumford-Shah-Euler & Mumford-Shah-Nitzberg)
[44]. Chan and Vese [I6] have formulated a piecewise constant variant of this model,
in which the discontinuity set is represented by a level set function.

All of these methods incorporate curve regularization via length measurement
(possibly non-homogeneously weighted in space), hence none of them directly ad-
dresses the problem of segmenting objects with geometric features: the internal energy
will always result in a smoothing of sharp angles of the boundary contour.

It would appear natural to leverage formal descriptions of anisotropies from ma-
terials science, where crystalline structures are expressed by so called Wulff-shapes
[59). If a description of the local morphology, in terms of normals and anisotropy, is
known at each point of the image, the minimization of an anisotropic area functional
could be guided by prescribing a Wulff-shape [22]. Numerical methods have already
been developed for problems as anisotropic mean curvature flow [24] [5], anisotropic
ROF [31] or surface diffusion [25, 111, [19]. However, since the automatic detection of
Wulff-shapes is a difficult problem, we focus on automatic feature preservation that
is guided by the geometry of the shape variable itself, allowing the curve to adjust
itself to features without prior knowledge of the morphology.

Our approach is motivated by low-curvature image simplifiers (LCIS) originating
in a paper by Tumblin & Turk [56] and further developed by Bertozzi & Greer, who
have developed a well-posedness theory and devised a Laplacian limiting scheme (see
[6] for details). The key observation is that the fourth-order PDE

ug + div(g(Au)VAu) =0 (1.5)

produces solutions that dynamically smooths noise while preferring locally linear
shapes, resulting in regions of constant slope separated by small regions of rapidly
changing curvature. In particular they were able to prove that has globally
smooth solutions from smooth initial data in one dimension for the specific functional

-1
g proposed by Perona and Malik [45], g(s) = (1 + ;—2) , using nonlinear entropy

estimates motivated by related equations from lubrication theory. Since the results
were proved for a periodic geometry it is natural to consider a geometric variant of
this model for a self-evolving closed curve in the plane. We note that global well-
posedness depends on details of the nonlinearity in g and there are some subtleties
that are discussed in this paper and in [7]. Furthermore, the influence of the surface
metric makes it difficult to transfer the results to the geometric case. Nevertheless our
point here is to use the fact that has been shown to be a highly effective denois-
ing model for piecewise linear signals, to motivate a geometry-based curve evolution
model that is effective for segmenting objects with corners (the geometric analogue
of a piecewise linear function).

The solution u is smooth, hence the notion of corners is understood in an infinites-
imal sense. The dynamics can be combined with a basic L? fidelity term, leading to
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very effective denoising of piecewise linear data. In contrast, second-order adaptive
filtering techniques like Perona-Malik [45] diffusion filtering or TV-based techniques
like Rudin-Osher-Fatemi (ROF) filtering [47] typically develop some staircaising in
the resulting image which can be undesirable in continuous non-constant regions.
We note that is a gradient flow of a non-quadratic energy functional on Awu and
preferably smoothes in regions of low curvature, while strong kinks, that are indicated
by a large Laplacian lead to a small energy contribution. In this paper we show how
to adapt this dynamics to geometric objects. In the context of variational processing
of surfaces, the question of which notion of curvature to penalize naturally arises.
Elsey and Esedoglu recently discovered that the minimization of the L'-norm of the
Gaussian curvature leads to a geometric analog of the ROF denoising model [30]. In
this paper, we will focus on mean-curvature based models that arise as analogies of
LCIS and as weighted Willmore flow. We develop algorithms rather than rigorous
theory. It would be interesting in future work to develop analysis for these methods,
along the lines of [6] for the LCIS problem.

This paper is organized as follows. In Section [2| we introduce two approaches for
corner preserving regularization of contours. Aiming at regularization strategies for
a wider class of problems, we will consider both an evolution type approach and a
variational approach, which is based on a general functional depending on the mean
curvature. We will extend the Willmore functional and its variation to a general
mean-curvature-dependent integrand in order to obtain a suitable weak formulation,
that can be split into two inter-dependent second-order equations. In Section [3] we
will describe in detail, how the continuous equations can be discretized with a fi-
nite element scheme. In Section [4] we describe a multiscale strategy based on inverse
scale-space techniques which are especially suitable for generating coarse scale repre-
sentations, that contain the main geometric features and apply them to segmentation
of aerial images. Finally, we will present and discuss results for surface denoising.

2. Feature preserving geometric evolution equations. Unlike in the Eu-
clidean case, there exists no estimator for sharp corners on manifolds that is given by
first-order derivatives only (with respect to its local coordinates). This is due to the
fact that the first derivatives of the parametrization characterize the first fundamental
form, which is an intrinsic property.

In the following we propose geometric analogies of (L.5). We will give an overview
of two different possibilities, that appear naturally in the higher-order case, namely

e an evolution equation that is motivated by the surface diffusion equation,
which is obtained by a weighted H~! metric for the area functional, and

e a gradient flow equation of a convex energy depending on the curvature of
the moving contour which resembles a generalized Willmore flow.

2.1. Basic geometric notations. Let us first describe the basic differential
geometric setting. For the sake of a more compact presentation we consider smooth
closed manifolds I' embedded in R4*!, d = 1,2. Given a countable atlas {(z®,Q%)},
with reference domains Q* ¢ R%, and the corresponding coordinate map z® : Q® — T,
the vectors %, i =1,...,d, span a basis of the tangent space T,,I" at the point p € I'.

Tangent vectors can be interpreted as linear functionals on C'*°(T"):

0 _ Of(x%) o
ge ()] = e O, e=2"(0). 21

On the tangent bundle 7T, the metric g : T,I' x T,I' — R for all p € I' can be defined
from the embedding and subsequent identification of tangent vectors with vectors in
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B g 0\ 0z 0x¢ (2.2)

T\ og o) T ogrog /
Since this equation describes the metric on the atlas, it also defines the entire metric
g. The components of the inverse gr' are as usual denoted by (gp? )i;-

Due to countability of the atlas, the existence of a partition of unity, allows to
define the integration of a function f on I' by aggregation. Here, the volume element
dA is given by v/det grd€. This leads to a straightforward definition of the scalar-
products on C%(T') and C°(TT):

(f,9)r = / fgdA and (v,w)pr := / gr(v, w) dA. (2.3)
r r
The total differential of a function f € C1(I') is a linear functional df, i. e.,
0 0 Of ox
—.,df ) = = =x%(§). 2.4
(@) = 5@ =220, a=ang (2.4
The gradient Vi f is the representation of df in the metric g, implicitly given by
0 0 .
gF(vaaagl)<a§Z7df> Zflaad (25)

For a vector field v we define the divergence divrov as the dual operator of the gradient
with respect to g:

/ divpv ¢ dA == — / gr(v,Vrp)dA Ve e C(T). (2.6)
r r

Furthermore, the Laplace-Beltrami operator is given by Ar := divpVrp. The scalar
mean curvature is denoted by h := ¢r(S).

2.2. Weighted surface diffusion. We obtain a straightforward geometric vari-
ant of by replacing the differential operators by their corresponding intrinsically
geometric counterparts and by choosing the coordinates x as the free variable. The
active contour I' is always understood as a d-dimensional compact and oriented man-
ifold, which is immersed by the coordinate mapping = : I' — R4, We arrive at the
evolution equation

x¢ + divp(g(h)VrArz) =0, (2.7a)
(0, ) = o, (2.7b)
which is very similar to the equation which describes the evolution of surfaces under

-1
surface diffusion where the Perona-Malik weighting function g(s) = (1 + ;%) is

used as a mobility, that depends on the scalar mean curvature h:

xy + divp(g(h)Vrh)n =0, (2.8a)

Here, n denotes the outer normal of I". Note, that we use gr for the metric and ¢ for
the nonlinearity throughout this paper.
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Fic. 2.1. Ewolution of a simply initial geometry without external forces. Top row: weighted
surface diffusion at times 0, 2.1079e-05, 4.30717e-05, 8.72062¢-05 and 0.000174442 solving equation
(2.8a). Bottom row: simplified version of surface diffusion at times 0, 1.81354e-05, 3.63744e-
05, 7.25345e-05 and 0.000138453. The curve evolution is almost identical. The initial shape is
parametrized by x : [0,27] — R2,t — r(t)(cos(t), sin(t))T, r(t) = % + % sin(15¢).

Like regular surface diffusion this weighted variant preserves volume and
decreases area, which is a desirable combination of properties for geometric regular-
ization: since the volume is preserved, the area decrease is not achieved by uniform
shrinkage, but by suppressing local oscillatory components in the curve. This is in
contrast with length penality functionals that are commonly combined with an exter-
nal force term as described in the introduction. The competetion of the regularization
term and the driving forces would introduce a bias even for a simple shape as a circle.
Due to the divergence structure, the derivation is the same as in the unweighted case
(v corresponds to the velocity field):

Volume preservation

d
%|Q(t)‘ = / vdA = — / leF(g(h)Vph) dA = / g(h)gp(th, VF].) dA =0.
I(t) I'(t) I'(t)

Area decrease (energy dissipation):

d

—I|T()| = — hdA

Girwi == [ o
L'()

= [ divelo®rmnda = [ glh)r(Trh, Ven)da <o

L'(t) L(t)

Unfortunately, the preservation of volume is not guaranteed for the evolution
under . However, in our experiments and behave very similarly as
indicated in Fig. the top row of Figure shows the behavior of weighted
surface diffusion (2.8), whereas the bottom row shows the evolution under equation
(2.7). The curve develops corners early by accentuating the high-curvature areas, still
retains infinitesimal regularity and eventually converges to a circle. Note that the
circle is stationary for both equations, whereas second order models usually continue
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to shrink, since the underlying functionals penalize area. This justifies to use
in the context of geometric regularization. The preservation of features plays a much
more important role and is already a substantial improvement. In the computations
we have used n = 1 and approximated the curve by a polygon with 512 segments.

Furthermore, solving the exact surface diffusion equation numerically is a quite
complex task, since additional equations have to be introduced to convert vectorial
quantities to scalar quantities and vice versa. Furthermore, the system is numerically
solved by a Schur-complement approach. The evaluation of the operator that has to be
inverted in every time step involves an inversion of a discrete second order differntial
operator, which makes the computation by using an iterative solver prohibitively
expensive. In this paper, we are only interested in this equation for the sake of
qualitative comparisons and refer to [4] for details on the isotropic case. We will
see later (see Section [3)) that equation is much easier to implement and is less
computationally expensive.

To use the evolution equation in a snake evolution context, we consider

xy = —divp(g(h)VrArz) + 7 fext (), (2.9)

where foyt : @ — R? stands for the external driving force. As described before, the
extrinsic force is responsible for moving the curve towards the object boundaries. Its
modeling and computation highly depends on the type of input image and is a subject
on its own. Frequently, such forces are designed to point towards image features, such
as edges. Ideally the force is zero only on the boundary of the object to be segmented,
which is in practice not achievable (or the segmentation problem would already be
solved), so it introduces a dependency of the computed solution to the initial curve
configuration. In Section this will be described in more details.

Only normal movements have an influence on the shape of the evolved curve, but
the external force field may point in any direction. Hence, tangential shifts may result
in an undesirably uneven distribution of points along the discretized curve. In analogy
to the variational approach, where it is sufficient to consider the normal variations of
the energy, we rule out tangential shifts, by replacing the external force in by
its projection in normal direction:

xy = —divp(g(h)VrArz) + v (n @ n) fext (). (2.10)

Note that we have dropped the lower order regularization term, since the regulariza-
tion is dominated by the higher order term.

2.3. Energies with mean curvature dependent densities. It is often not
convenient to solely have a flow equation available. For instance, optimization tech-
niques and step-size control rules usually require the evaluation of the full regularized
functional. Furthermore, all three fundamental segmentation models mentioned in
the introduction are variational methods. To fill this gap, we now consider the energy

W] = /FG(h) dA. (2.11)

For quadratic G the above energy corresponds to the so-called Willmore-energy [40]
47, [42], 53, [52], B8, 28] 19], 20). Spheres are minimizing critical points of the Willmore
energy with value 167rE| Intuitively, W[I'] — 167 describes how much I" deviates from
a sphere by measuring the amount of bending.

INote that h denotes the sum of principal curvatures, not the average.
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Fic. 2.2. Evolution of a simply initial geometry without external forces under gradient flow of
the weighted Willmore functional at times 0, 0.6.37621e-06, 1.28998e-05, 2.58389e-05 and 5.16116e-
05.

The energy is entirely intrinsic, since integration takes place over I' and the inte-
grand only depends on an intrinsic geometric quantity. We will see later (Sec. [2.4.2)),
that for closed T, the variation of W is given by

(W'[z],9) = /F ( — divpe(G” (h)Vrh) — G'(R)]S)? + G(h)h)<pdA (2.12)

for variation vector fields ¥ with scalar normal part ¢, where S denotes the Weingarten
map of I'. Hence, the corresponding evolution by gradient descent is described by the
equation

By (t) = (divr(G”(h)Vph) + (WIS - G(h)h)n. (2.13)

To obtain a sensitivity with respect to high curvatures we choose
s 1 52
G(s) := tan ( = | — =n’log [ 1+ — | . 2.14
(s) := nsarctan (U) 57 0g< +772> (2.14)

—1
Note that G”(s) = (1 + ;—Z) = ¢(s) and that the highest-order term is the same

as in the weighted surface diffusion equation . However, due to further contri-
butions in non-divergence form, we can no longer expect volume preservation. In the
vicinity of zero, G is close to quadratic and has a regularizing effect similar to Will-
more flow. For s — 0o, G becomes almost linear, which leads to the preservation of
strong features, since varying the argument affects the energy only marginally. This
is analogous to smooth approximations of the TV functional, in the form of a Huber
functional of ||Vul| used to obtain piecewise constant approximations [7]. Figure
shows that the qualitative properties of the evolution is very similar to (2.8a)).

A simple, but useful advantage of the weighted Willmore approach, is that it
can easily be incorporated into a geometric shape minimization approach. Using the
above energy, one could for instance include a higher-order regularization term into
the Mumford-Shah-functional, which would allow to represent discontinuity sets with
sharp corners by choosing 3 small:

Buslu,T] = /

Q

1
2 2 d—1 1
(u—up) dx—i—oz/ﬂ\F (IVul||* dx+ 8.2 (I‘)—i-’y/FG(h)dA. (2.15)

As described in Section we will use the following piecewise constant version of this
model for some of our numerical experiments:

EXileo, e1,T] = Z/ (Ci—uo)de—F/G(h)dA, (2.16)
Q; r
8

i=1,2
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In general, we observed in our experiments, that the denoising properties of
weighted surface diffusion, the simplified variant and gradient flow of the
weighted Willmore functional are very similar. Local oscillatory components are very
quickly smoothed out, whereas the global shape is preserved for a longer time.

2.4. Variation of the weighted Willmore functional. In this section we will
compute the variation of the functional W and formulate a weak formulation that is
suitable for a spatial finite element discretization.

2.4.1. Differential geometric tools. We will need the following lemmas. The
proofs can be found in [26], which primarily addresses the anisotropic case.

LEMMA 2.1. Let x. = z + € + O(€?) be a variation of x € T in direction of
the variation vector field 9 = ¢n+ Dx(v) and he the mean curvature of the perturbed
surface x.. Then

Oche| = —Arp — |S|>¢ + gr(grady h,v). (2.17)

€

LEMMA 2.2 (Derivation of the area-element). Let z. = z + e + O(¢?) be a
variation of x € I in direction of the variation vector field ¥ = ¢n + Dx(v). Let gr,
be the fundamental form of the perturbed surface. Then the derivation of the area
element is locally given by

Ocv/det gr, d§ = divrd+/det gr d€ (2.18)

LEMMA 2.3 (Tangential and normal components of Apd). Let ¥ = pn + Dz (v)
be a perturbation vectorfield on T', then the following identity holds:

Ard = (Ap(p — g0|S|2) n+2Dn(Vrp) + ¢Dz(Vrh) +ArDz(v), (2.19)

€Dz (TT)+ €Dz (TT)
where the normal component of the last term is given by
(ArDz(v),n)n = — (gr(v, Vrh) + 2tr(S V.v)) n. (2.20)

Here, V.v € End(T,I') denotes the Riemannian connection. For further details we
refer to [27]). The short notation ¥ = pn + Dz(v) stands for the decomposition of 9
into the scalar normal factor ¢ and the tangential component Dz (v).

2.4.2. First variation. From now on we will consider an immersion z : I' — R¢
and formulate the energy W in terms of = instead of I'. Let

Wia] = /FG(h) dA. (2.21)

Recall that we assume that I is a closed manifold, in order to avoid several boundary
integrals. Let us now derive the first variation of W at x in a perturbation vector
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field ¥:

W'lal.0) = S W],

/ G (h)0.h. dA + / G(h)divrd dA
T T

—— [ @) (are+ I5Pe - gr(eradp h,v)) da
I

+ / G(h)divrd dA

r
- / G'(h) (Apcp + 829 — gr(grady h,v)) dA
r

+ / divr(G(h)v) — G (h)gr(eradp b, v) + G(R) div(on) dA
r H/—’Wh

— A ( — G/(h) (AFSO + ‘S|2<,0) + din(G(h)v) + @G(h)h> dA,

where we have used the relation

divp(G(h)v) = G(h)divrv + gr(gradp G(h),v)
= G(h)divrv + G’ (h)gr(gradp h,v). (2.22)

The first term becomes
- /F G'(h)ArpdA = — /F G'(h)divr(Vre) dA
:/FQF(VI‘GI(h)aVFQD) dA
= —/FdivF(VG’(h))godA

= —/ diVF(G//(h)VFh)(p dA,
r
and we obtain

(Wial',9) = /F (— dive(@"(h)Veh) — /(ISP + G(h)h)pdA (2.23)

LEMMA 2.4 (First Variation, preliminary weak form). Let z. = z + €9+ O(€?) be
a variation of x € T' in direction of the variation vector field 9 = pn + Dx(v). Then
the first variation of the weighted Willmore functional can be written as

Wylsl. o) = [

(—G (h)n, Ard) dA — 2 / G (B Da(Ven) : Da(Vrd) dA
T N

+/G(h)Dx(er) : Dx(Vrd) dA  (2.24)
r
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Proof.
(W![2],9) = /F G/ (h)dch.| _, dA + /F G(h)divrd dA
~— [ Gt (are+ 1P - ar(Trh.v)) d
+ /F G(h)Da(Vrz) : Da(Vrd) dA.

We know from the proof of Thm. 71 in [26] using v(n) = ||n|| and hence a, = 1 :
TT — TT that

Dxz(Vrn) : Dx(Vrd) = ¢|S|? 4 tr(SV.v). (2.25)
Using this and Lemma [2.3] we obtain:

(=G'(h)n, Ard + 2nDz(Vrn) : Dx(Vrd)) = — G'(h)(Arp — ¢|S|?)
+ G'(h)gp(u th)
+ 2G'(h)tr(SV.v)
—2G"(h)|S]?
—2G'(h)tr(SV.v)
=~ G'(h)(Arp + ¢|S[)
+ G/(h)gr(’U, th)
which is the desired result. O
THEOREM 2.5 (First Variation, weak form). Let z. = x+ed+O(€?) be a variation

of x € T in direction of the variation vector field 9 = ¢on + Dx(v). Then using

the variable substitution w = —G'(h)n the first variation of the weighted Willmore
functional can be written as

(W (2], 9) = /F Da(Vew) : Da(Vid) dA
i / (neD2(Vrw), ni Da(Vrdy)) dA
T

+ / G(h)Dxz(Vrz) : Dx(Vrd) dA.
r
Proof. We further analyze the following terms from Lemma

/ (G'(h)n, Ard) dA + / (G'(h)n,2nDx(Vrn) : Dx(Vrd)) dA =: (1) + (II).
r r

By integrating by parts, we obtain

(I) = /F (G’ (h)n, Ard) dA

:_/Fgr(vp(a’(h)nk),vm).
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The second term can be transformed the following way
(II) = 2/FG’(h)Dx(Vpn) : Dx(Vrd)dA
= 2/ng(<n,G’(h)n>Vpn,Vp19) dA
= Q/FQF(VF(G/(h)ni)7VF19i)dA
— 2/Fgr(nl(VFG'(h)nl)m7 Vrd;) dA

) /F g0 (Vo)) G (R)ynimg, Viedy)) dA.

=0

0
Remark Observe that the combination of the terms leads to a change in sign of the
term

/F gF(vI‘ (G/(h)nk), Vpﬁk) dA.

The forward diffusion of the highest order operator is hence “hidden” in the term
involving the normal projection.

3. Numerical approximation. In this section, we will describe the numerical
schemes that we have used for the discretization of the previously introduced geometric
evolution equations. Both variants directly lead to weak formulations that allow the
discretization by a finite element method.

3.1. Discretization in space. We consider a finite element discretization with
a Lagrange basis of piecewise affine elements on the discrete interface I'y, and define
the following general forms of mass and stiffness matrices:

M [w] := (/ wl (®; (I>j)dA> (3.1)
T'n 1<i<n,1<5<n
Ll = (/ WV, - Vi, dA) (3.2)
In 1<i<n,1<5<n
L[A] := (L[Aij])lgigdylgjgd (3.3)

Here, I;, : C°(T',) — V" stands for the nodal interpolation operator, which implies
that the so called lumped mass matrix Mj is diagonal and can easily be inverted
[55]. In order to calculate the elements of the stiffness matrices, we consider for each
triangle T' a reference triangle T € R, For d = 2, we choose €% =(0,0), ' = (1,0)
and £2 = (0,1). The local chart X is then given by a simple affine map from T onto
T, which maps the nodes £ onto the corresponding nodes P € T, and hence the local
first fundamental form is given by

_0x ox X
T og gy 9%
From the definition of the gradient (2.5)), we deduce the local representation

Lo L 9o’ -1 1 0
l_ 1 7 0 0&1 _
th,q) _Zgjﬁ(P _P)7 (W _<1)7(0)7(1>7 (35)
1,5 082
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=p'— PO, (3.4)



if we consider nodal basis functions ® € V". For weights w which are constant for
each triangle, e. g., functions depending on the gradient of a function f, € V", the
entries of the stiffness matrix (3.2)) are given by

L{w)ij = [T|wr Vi, ®" - Vi, &7, (3.6)

3.2. Discretization of Variant I. In the following, we will describe a simple
discretization scheme for the one-dimensional case of problem (2.7). We observe, that
(2.10) can be written as a coupled system of two equations:

xy = divp(g9(h)Vry) +7(n & n) fexs ()
Yy = —Ara}

which yields the weak formulation

(‘Th ﬂ)f‘(t) + (g(h)VFy» Vrﬁ) TT(t) = ’Y((n & n)fext (.’E), ,&)F(t)
(va)r(t) = (vF‘T’VFd})TF(t)

for all ¥,¢ € C=(T'(¢)).
For the discretization in time we consider a first-order difference quotient approx-
imation of xz, i. e.,

k+1 _ .k
Ty A % with 2" := z(k7). (3.7)

We choose a semi-implicit scheme in time and obtain

(@ —a*0) oy + (9B )Vry ™ Vr0) ) = T (0 ©0") faxa (@), 9)
W) = (Vea™ VeY) s

again for all test functions. As usual we now restrict the problem to the finite di-
mensional space V" and denote the discrete representations of a continuous functions,
obtained for example by projection, by capital letters. The coordinate vector of y
is given by Y = LX. Note that the mean curvature lags behind from the previous
time-step. The dependence of the differential operators on the metric is also treated
explicitly. In terms of matrix and vector representations, this can be written as

(M, + TL[g(H")|M;, 'L) X" = M, X* + 79M, [N* @ N*] Foee (XF). (3.8)

For one-dimensional contours, this system can be solved directly by a combination
of the Sherman-Morrison method and Thomas’ algorithm for banded matrices on
periodic domains. In the case of surfaces, one can choose an iterative method such as
a SSOR-preconditioned conjugate gradient solver, since the matrix on the left hand
side is symmetric positive definite.

3.3. Discretization of Variant II: Weighted Willmore flow. Let us now
describe the discretization of the gradient flow of the weighted Willmore functional
using the weak formulation of Theorem [2:5]

Following the approach for the discretization scheme of Rusu [48] for isotropic
Willmore-flow and the implementation of Diewald [26] in the anisotropic case, we treat
the term which depends on the normal of the surface explicitly and the other terms at
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least semi-implicitly. We especially want to treat the highest-order term implicitly by

solving a Newton iteration or semi-implicitly by solving a single Newton-step during

each time-step. We will treat the coefficient G(h) of the second-order term explicitly.
More precisely, we apply the following time stepping scheme:

:Ck+1 o Ik
/ T A= / Da(Vr(w**)) : Da(Vrd)dA
T r

T

+2/ <nle(prlk),niD:c(Vp19¢)> dA
r

- / G(hW")Dx(Vra*t) . Dz(Vrd) dA.
I

Note that w**! = —G(h¥*1)n depends nonlinearly on z¥*+1. After a straightforward
linearization we obtain thanks to sufficient smoothness of G the following Newton
iteration scheme for w*+*!:
E+1 _ k1Y (7 k+1 k+1 k+1
wi{y = =G "(h;) (hi T — by )n—=G'(h; T )n
=wifiy =wjt!
for j =0,... and hi ™ := h*. Let us now express wf_tlll and wf;rl in a weak sense:

w’-“j_rll 1Y
Jri _ k+1 k+1 _ k+1 k+1
/FGN(h;?H) dA = /F — (WA — W )ndA = /F (Aratl — Aratt) dA

_ / Dar (Vr(at! — o5+1)) : Da(Vro)dA Vo € HI(T,RY)
I

/ whlydA = / ~G'(WfTnpdA vy € HY(D,RY)
F F

After restricting the problem to the discrete finite element space, the two equa-
tions are given in matrix form as follows:

WER = — (M [G"(HF ) 1) L EH + (M [G7 () 1) LR 4 W

Jj+1 Jj+1
(3.9)
M, X = —7LW/ ' — 7LIG(H®) X + My XF + r2LIN" @ NY R (3.10)

Here N* denotes the normal of the discrete configuration I'*. By substituting ([3.9)
into (3.10)) and shifting all explicitly treated terms to the right hand side, we obtain
the following discrete system:

+1 J+1
— _ 71 — — —
= M X+ 4 7L [(Mh[G”(HJ’?“) )L - WL 4 r2L [N o NFIE,
(3.11)

My, X+ L (MG (G (HE) 1) LA R 4 LG (HY) X

4. Numerical experiments. In this section we will describe three different
application scenarios, namely segmentation of aerial images and surface processing.
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4.1. Segmentation of objects with sharp corners. We have applied the
proposed regularization to segmentation of Kanizsa’s triangle and real-world satellite
images, aiming at the segmentation of man-made objects with sharp corners, in par-
ticular on the detection of buildings. Figures and show the segmentation of
two such objects.

In real-life applications the external forces usually give rise to a serious non-
convexity of the problem. A natural approach to overcome this problem is to consider
multi scale techniques for the generation of the external forces in addition to the
internal regularization. A common multi scale approach for the regularization of
variational problems is a coarse-to-fine strategy, which can be understood as a choice-
criterion for picking a meaningful solution of the large space of local minima. One first
computes the solution to a modified problem in which the non-convexity is strongly
regularized and then aims to follow the path of solution as more detail is added. Even
though this technique does usually not give any guarantees on computing the global
minimum, the solutions that are computed this way have a very good chance of at-
taining a significantly lower energy value than that of the original problem. Naturally,
it is crucial to approach the unregularized problem iteratively. This avoids having to
chose a fixed scale parameter for preprocessing, which would always lead to loss of
fine-scale information.

4.1.1. Inverse scale space techniques. One of the most basic coarse-to-fine
scale-space technique consists in applying a linear filter such as linear diffusion on
the initial image and to successively refine the scale. Even though one can get rid of
most of the irrelevant and undesirable background patterns, strong features marked
by edges will be blurred equally. We consider inverse scale-space techniques that are
motivated by the Bregman-type iterations of the ROF-regularization with a L' fidelity
term [12]. In case of the TV-L! denoising model, the Bregman-iteration leads to a
sequence uy by successively computing

up, = argmin [Jul| v + AM|vg—1 + f —ul| L1, k>0, (4.1)

where f = ug+vi and vg = 0. By interpreting the change of v as an approximation to
the time derivative v, Burger et al. [I2] obtain a relaxed continuous inverse scale space
formulation, which for the TV-L! denoising model, leads to the following evolution
of the coupled system

uy = div <|§Z|> + A(sign(f —u) +v), vy = asign(f — u). (4.2)

This flow yields a natural inverse scale, that starts at a very coarse scale—typically
the mean of the initial image—and eventually converges back to the original image.
However, already on coarse scales, the edges are remarkably well preserved and are
thus a very suitable choice for the input of the segmentation process. We have chosen
A = 10* and a = 10? for our experiments.

4.1.2. Ambrosio-Tortorelli approximation of the edge-map. The gener-
ation of a suitable external source term is a topic unto itself. We will rely on a
multiscale approach for the generation of the edge map as well, since the regulariza-
tion of the external force leads to a rounding effect on the corners of the objects. On
the other hand, the energy landscape on the coarse initial scale has a heavily reduced
amount of local minima.
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We considered the phase-field approximation of the Mumford-Shah functional of
Ambrosio & Tortorelli [I] for the computation of an edge map we :  — [0, 1], which
is close to zero on edge sets and one elsewhere. More precisely, we follow the finite
element discretization approach of Bourdin & Chambolle [9] to minimize the energy

A 1
Earlu,w] = 225 [ (u— uigs(t))?dx + 3 / (w? + k)| Vu||? dx
Q

2 Ja
2
+ AT (e||Vw||2 + (1w)> dx, (4.3)
2 O 4e

where the weight Aar > 0 controls the fidelity of u to wisg, the solution of . The
parameter var controls the phase-field approximation of the length term .#9~1(I),
while € controls the width of the profile of the phase field function w. We have set
Aar = 10* and var = 2. This allows us to pursue the minimization using coarse to
fine edge indicators by initially choosing a large value for epsilon and reducing it until
it is in the order of the grid size. The small and positive parameter k. ensures strong
ellipticity of the coupled system. The negative gradient of the phase field function
can then be used as the external driving force for the snake evolution equation.

4.1.3. Iterative procedure for controlling sensitivity to high curvature.
In the early stage of the segmentation, the edge preserving property of the segmen-
tation process is not yet important. It could even be misleading, since the contour
should ideally first capture only the approximate shape of the segment. Using a very
low sensitivity with respect to the curvature in the beginning and a higher sensitivity
during the final stage has in our experiments shown to lead to better results in the
overall segmentation process.

In the iterative segmentation procedure we aim to choose an appropriate coupling
for the curvature sensitivity, the scale of the input image and the phase-field parameter
€. The iteration is summarized in Algorithm

Algorithm 1 Iterative multiscale segmentation

1: Choose initial curve I'y
2: Choose initial scale parameters, i.e., a time ty for the inverse scale space flow, ¢
for the Ambrosio-Tortorelli approximation of the edge-map and 7y, set k = 0.
3: repeat
4: Compute the solution uysg(tx) of .
5: Set up the external forces, e.g., by first computing the phase field approxima-
tion of the edge-map we, of uigs(tx) and extracting the negative gradient

vectors.
6: Compute a stationary solution I'y of the segmentation model.
7 Set k —k+1
8: Refine scale parameters ¢y, €, and 7;. The other parameters, such as v, 4 and

A are kept constant.
9: until stopping criterion fulfilled

The external force computation in line[5]is only an example of possible approaches.
This step opens a wide range of modeling possibilities, including interactive tools to
influence the flow in complicated problem scenarios, where an automatic segmentation
may fail.

Figure shows an example on which we perform the scale space procedure.
Figure hows7 the original image, the TV-L! filtered image, the
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(a) original image

(c) initial edge map, e = 0.1

(e) final result, e = 0.002, n = 2 (f) result without curvature weight

F1G. 4.1. Segmentation of a satellite image of a depot building using equation (2.10)

initial edge-map, followed by different stages of the evolution with (shown in Figs.
[4.1(d) and [4.1(e)]) and without curvature dependent weight (shown in Fig. [4.1(f)).
Let us describe the whole process in more detail. As already mentioned above, the
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(a) original image (b) applying TV-L! 1SS filtering

(c) initial edge map, € = 0.05 and initial (d) intermediate stage of evolution
configuration

(e) final result, e = 0.001, n = 2 (f) dropping the curvature weight

F1G. 4.2. In this example, a piecewise constant Mumford-Shah energy combined with the exter-
nal force induced by the phase field function @ and the weighted Willmore functional has been
manimized (cf. equation (2.16) ).
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(a) Steady state for n = oco. (b) Steady state for n = i.

Fi1G. 4.3. The image on the left shows the steady state of @ on a moisy image using Will-
more reqularization, which yields oversmoothing especially at sharp angles. The image on the right
demonstrates the advantage of using the weighted Willmore energy on polygonal shapes. The same
weight for the fidelity term (yms = 107) has been used for both computations.

interactive segmentation process starts by computing the evolution of the relaxed
inverse scale space equation until the main features of the desired object are
clearly visible. Then we have chosen an initial € = 0.1 (the image domain is scaled to
have a unit edge length) and compute the minimum of the energy (see Figure
. At that stage we are mainly interested in driving the contour towards an
attracting regime that is close enough to the correct boundaries of the object, such
that the scale can safely be refined without risking the computation of a false local
minimum.

In this phase we keep the contour smooth until it hits interesting features and
start evolving according to by chosing a large sensitivity value of 7, (= 25 in our
test cases, see for the role of 7). Once we have reduced € and reached a fine scale,
in which corners become significant, we reduce 7 to a value around 1. To demonstrate
that the formation of corners is truly due to the curvature dependent weight and not
only due the multiscale generation of the external potential, we have increased 7 at
the final segmentation shown in Figure |4.1(e)| and recomputed the new stationary
point. We observe that the contour flips back to an overly smooth approximation of
the boundary as shown in Figure {4.1(f)

All the proposed formulations lead to entirely intrinsic evolution equations. The
condition of the discrete approximation of the differential operators depends on the
spacing of the grid points on the curve. Even though the projection helps significantly
to reduce the effect of tangential shifts, the implicit time stepping and the movement
of the curve into concavities often leads to an irregular spacing, which we correct
by a retriangulation. Furthermore, it is desirable to maintain a sufficient number of
discrete grid points close to the corners to be able to approximate the geometry well.
In the one-dimensional case, retriangulation can be easily achieved using the arc-
length parametrization. For two-dimensional manifolds a simple volume-preserving
mesh regularization technique (see Sec. can be used.

In Figure we have experimented with a variational segmentation model on a
similar input image. We have minimized the piecewise-constant Mumford-Shah model
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(cf. (2.16])), combined with the weighted Willmore functional:

Elc;, T :/FG(h)dAJr'yMS > /Q‘(cruo)2 dx+7AT/wedA, (4.4)

i=1,2 r

where w, is the phase-field function from the solution of . In this example we
chose yms = 108 and yar = 10, so that the piecewise-constant Mumford-Shah term
is the dominant external force contribution.

In order to compute the gradient of the energy functional numerically, integrals
over ) and (o, i.e., the regions divided by I' have to be evaluated. We used an eikonal
solver to compute a signed distance function starting with initial signed distances on
the corners of all cells that are intersected by I'. These cells are tesselated into triangles
to achieve subpixel accuracy along the interface.

In the experiments, the region-based partitioning has proven quite insensitive
to strong misleading gradients in the image (see the small hole in the roof). This
would be difficult to achieve with a local feature based external force term only, as
for example in .

In We again verify the positive impact of the curvature dependent weighting
term. Also, the beneficial effect of the inverse scale space method is apparent: already
at a short time the regularized image reflects the main contour of the building very
sharply. The irrelevant smaller objects, which could have a negative influence on the
segmentation, are not yet visible.

Figure demonstrates the benefit of using the weighed Willmore regulariza-
tion on polygonal shapes: undesirable oversmoothing at corners can be prevented
without sacrificing an overall regularizating effect, which is responsible for avoiding
high-frequency perturbations of the curve due to noisy input data. In this computa-
tion, we have not applied any denoising on the input image.

An indicative test case is the segmentation of Kanizsa’s triangle (Figure ,
which aims at the detection of subjective contours [36], i.e., the identification of an
object which is not perceptible in its raw form, but only through continuation of
partially visible boundaries. The human observer can easily identify the triangle as
the most plausible simple geometric object, that fits into the given geometric con-
figuration. Due to the sharp concavities, the object is a good candidate for feature
preserving regularization. To segment the interior triangle we proceeded as follows.
Since the input image Fig. is clean and does not contain fine-scale patterns, we
did not need to apply any pre-filtering. To obtain an initial edge map in Fig. [4.4(b)}
we chose the phase-field parameter as ¢y = 0.2 for Eq. (2.10). To help the circle shrink
towards an attracting regime, corresponding to the corners of the triangle, we have
added a modest length penalization to compute the first stationary solution I'g with
Mo set to 100, which basically turns off the feature-preservation (see Fig. 4.4(c))). The
curve I'y is now sufficiently close enough to allow to switch off the length penalization,
which would only unnecessarily smooth the curve and undo the corner-preservation
regularization. We set €; = 0.05 and increased the curvature sensitivity by setting
71 to 10 which computes the solution shown in Fig. The steep external force
field, already pulls the snake very close to the desired triangle shape. The curvature-
dependency is however not strong enough to avoid the regularization on the tip of the
corners. After reducing 79 further to 1, we finally arrive at the segmentation result

shown in Figs. (4.4(e)) and (4.4(f)).

4.2. Surface smoothing. One of the most natural applications of feature-pre-
serving regularization techniques is feature-preserving smoothing. Furthermore, there
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(a) initial configuration

¢) intermediate step of the segmenta- d) intermediate step of the segmenta-
P g P g
tion tion for a finer edge map

(e) final result on top of the finest edge (f) final result on top of the original
map used image

Fia. 4.4. Psycho-visual segmentation: segmentation of the Kanizsa triangle.
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Fic. 4.5. Different multi-scales on the armadillo data set. The left column shows the evolution
of the original surface (top) under standard Willmore flow at time steps 1 and 4. In the middle
row, the simplified surface diffusion has been computed. The right column shows the weighted
Willmore flow. Time steps 1, 3 and 5 are depicted. The timestep T is 10~8 and n = 10.

exists a wide range of problems, that are based on scale-space techniques. We have
considered two basic approaches:

4.2.1. Generating a multiscale by computation of initial value prob-
lems. Similarly to PDE-based scale-space approaches in image processing, we can
simply evolve the initial input geometry I'g under the evolution equation (2.7)) to
obtain a family of smoothed surfaces I'(¢).

A related approach is to consider the gradient-flow of the weighted Willmore
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Fic. 4.6. Comparison of different higher-order multi-scales on the horse data set. The left
column shows the evolution of the original surface (top) under standard Willmore flow at time
steps 1 and 4. In the middle row, the simplified surface diffusion has been computed. The
right column shows the weighted Willmore flow. The timestep T is 10~ and n = 10. All variants
remove geometric texture very rapidly, but the curvature-dependent flows also preserve important
features.

functional

Both versions define a scale-space operator S(T") : T'g — I'(T). By construction we
have S(0) = 1 and S(T} + T») = S(T») o S(T}) (semigroup property) a fundamental
requirement for the construction of scale-spaces. In Figures [£.5] and [£.6] we show a
comparison of standard Willmore flow (left column) and the two curvature-dependent
evolutions, i.e., (middle column) and weighted Willmore flow (right column).
While standard Willmore flow rounds-off all parts of the surface homogeneously, the
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F1G. 4.7. Denoising of the fandisk data set with fidelity. Top left shows the noisy model. On the
top right the surface is denoised with standard mean curvature flow. The bottom left shows denoising
with Willmore flow. The bottom right shows the denoising result with the weighted Willmore flow.

weighted versions produce a much more appealing coarse to fine scale, in which im-
portant geometric features such as smooth creases and tips are preserved significantly
better. The curvature sensitivity parameter has been set to 7 = 10 in both variants.

The horse mesh contains a fine-level geometric texture. During Willmore flow,
this texture is removed already in the early stage of the evolution, however, the creases
are unnaturally rounded off. During the evolution of the weighted Willmore-flow, the
texture is removed quickly as well, but the shape of the object on a macro-scale is
well preserved.

4.2.2. Energy minimization with a fidelity term. Inspired by the set-up of
the Rudin-Osher-Fatemi model, we might also consider the variational problem:

min / G(h) dA+2 / d(-To) dA (4.6)
A Jr r
—Wr]

for a given, initial noisy surface I'yg. In contrast to the Euclidean case, the choice
of the fidelity function d : R¥*! x R4 — R{ is not straightforward in the case of
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surfaces. Naturally the Hausdorff distance would be a good candidate for measuring
the fidelity of I' to the initial surface, we chose d(x,T) := dist(x, '¢)? which simplifies
the minimization process, because d can be precomputed for a given initial surface.
In this model, A defines a balance between the regularity of I' and how close the
smoothed surface should be to the original surface. For fixed A, the overall functional
is minimized.

Even with spatial acceleration structures, such as KD-tree or bounding volume
hierarchies, the on-the-fly computation of the fidelity integral would be costly, because
the projection of a point onto a triangulated surface involves at least a local search.
Instead, we computed the distance function of I'y on the bounding box on a uniform
grid, in a two-step procedure:

1. Initialize the distance function in the vicinity of I'y. More precisely, for all
triangles T' of the discrete noisy surface I'gj, find all cubes Cr;, that are
intersected by T, compute for all nodes of Cr; the distance to T. If this
distance is smaller than a potentially previously computed value, update its
value.

2. Now that the values of the distance function are known close to the interface,
we can use a solver for the eikonal equation ||Vu|| = 1 to extend the distance
function onto the whole domain (i.e. the enlarged bounding box of T'y).

In Figure we show the results of this approach applied to the well-known fandisk
dataset. We have compared our functional with the area functional and the Willmore
energy and adjusted 7 in each case to obtain visually appealing results to have a some-
what fair comparison. Not surprisingly the curvature-dependent approach preserves
the creases much better than the other two. In this computation we have set n = 5.

Note that the construction of the signed distance function also introduces some
numerical errors. The result can thus not be compared with pure mesh-based smooth-
ing techniques. We also observe that creases do not evolve to perfectly sharp feature
lines, an effect which hints to an analogy to the Euclidean case, in which LCIS over-
comes staircaising effects.

4.2.3. Remarks. An inconvenient side-effect of the movement of vertices during
the evolution is that the mesh may degenerate, leading to a very high condition
number. Hence, depending on the number of steps taken and the initial regularity of
the mesh, retriangulation of the mesh can become unavoidable. We have found the
scheme proposed by Bénsch et al. [4] very useful, since it is fast, easy to implement
and preserves the enclosed volume of the mesh, which is particularly for higher-order
flows a desirable property.

Compared to the range of existing feature-preserving surface denoising techniques
in the literature, for instance the anisotropic geometric diffusion techniques by Clarenz
et al. [21], the subdivision surface discretization Bajaj and Xu [3], the discrete exterior
calculus formulation of Hildebrandt and Polthier [32] or bilateral filtering of Jones et
al. [35], we focused on the different qualitative smoothing which has a “rounding”
effect, in contrast to the “shrinking” effect that is typical for second order techniques,
that are based on the penalization of area. The iterative feature preserving smoothing
of normal fields Tasdizen & Whitaker [54] and fitting for surfaces represented by level
set functions has a similar effect, although it is strictly speaking not a fourth order
flow. The variational setting is flexible and easily extends to other applications and
variational set-ups, for instance to apply recent developments for cartoon-texture
decomposition methods of images onto surfaces.

Our finite element computations have used the OpenMesh library for the traversal
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of elements [§].

5. Summary and conclusion. Motivated by low-curvature image simplifiers
in image processing, we have presented geometric and fully intrinsic fourth-order fea-
ture preserving regularization techniques by drawing analogies to surface diffusion
in a weighted H ! metric and a weighted Willmore functional. We observed, that
a simplified form of the first variant has very similar qualitative properties, but is
much easier to implement and can be computed much more efficiently. Due to the
need for a suitable energy functional for feature-preserving regularization of geometric
variational problems, we extended the finite element formulation of Rusu to a more
general mean-curvature dependent energy functional. We applied the new regular-
ization methods to segmentation of aerial images and were able to precisely extract
object boundaries with sharp corners. We also compared the different variants in the
context of surface denoising and again verified very similar results, which allows to
choose the model depending on the problem context. When a flow equation is suffi-
cient, the simplified variant of surface diffusion is more convenient, since it is easier to
implement than weighted Willmore flow. Both methods smooth out geometric texture
quickly without destroying sharp features.

From our first promising results, we see a large potential to improve the regular-
ization in a wide range of geometric optimization problems. We can expect further
improvement by extending the isotropic curvature weight by an anisotropic one in the
spirit of Clarenz et al. [2I] or Diewald [26].

The recently presented numerical scheme by Dziuk [29] for parametric Willmore
flow completely cancels tangential shifts. The derivation of an analogous weighted
formulation would be an interesting extension to circumvent the mesh regularization
steps (and their associated numerical errors) we currently employ to avoid degenerated
elements.
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Appendix. As an instructive alternative to the Finite Element discretization,
we present straightforward spatial finite difference approximations of the geometric
differential operators that are needed for the numerical solution of . For a dis-
crete approximation of a Jordan-curve I' by a closed polygon with n vertices x;,
i=0,...,n—1, we define

ligg =lzis1 — sl and L= ——F

using the convention x; = =; moq n- Then the piecewise constant difference quotient
approximations of Vr, u for v : I'j, — R on the segment [x;, z;+1) is given by
Ui+1 — Uy
Vh’phuiJr% = %
i+
Furthermore we approximate the divergence at x; for a piecewise constant function v
(corresponding to a one-dimensional vectorfield) on the polygon segments by

Vipl = Vi

li

N|=

divy p, vi =

The discrete approximation of the discrete Laplace-Beltrami operator Ar, is then
given by

Uj41—Uq _ Us—Uj—1
. Livs iy
A[‘hui = leh’Fth’phui = l'
1
After incorporating the mobility g, we obtain
Ui+l —Ug Ui —Uj—1
Ll — g, 15—
gz+2 li+% gz 3 li7%

diva,r, (9Vh,r, Jus = (5.1)

l;
by evaluating g on the midpoints of the intervals. This approximation corresponds to
the Finite Element approximation using lumped masses and a barycentre quadrature
rule. The relation (5.1)) for all vertices x; can be expressed by a matrix L[g] and hence
(2.7) is discretized in space by

X, +L[gLIJX =0, X(0) = X,

for every spatial component of I', where again X denote the vector of coefficients.
Note, that L[g] is also changing in time, due to the dependence on .

Even though the scalar part in could be discretized similarly, it is not
straightforward to devise a semi-implicit time-stepping scheme for weighted Willmore
flow. This is much easier with a Finite Element approach using the weak formulation
from Thm. 2.5

In higher dimensions the corresponding analogues of the Finite Element approx-
imations lead to discrete exterior calculus (cf. [46] for details).
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