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Abstract. We consider a class of splitting schemes for fourth order nonlinear

diffusion equations. Standard backward-time differencing requires the solution
of a higher order elliptic problem, which can be both computationally expensive

and work-intensive to code, in higher space dimensions. Recent papers in the

literature provide computational evidence that a biharmonic-modified, forward
time-stepping method, can provide good results for these problems. We provide

a theoretical explanation of the results. For a basic nonlinear ‘thin film’ type

equation we prove H1 stability of the method given very simple boundedness
constraints of the numerical solution. For a more general class of long-wave

unstable problems, we prove stability and convergence, using only constraints

on the smooth solution. Computational examples include both the model of
‘thin film’ type problems and a quantitative model for electrowetting in a

Hele-Shaw cell (Lu et al J. Fluid Mech. 2007). The methods considered here

are related to ‘convexity splitting’ methods for gradient flows with nonconvex
energies.

1. Introduction. Higher order PDEs arise in a number of problems in physics,
biology, and image processing. Many of these applications involve curvature effects
that lead to very stiff differential equations. With the development of high perfor-
mance computing, it is now possible to solve these problems computationally in a
reasonable time. A number of papers in the recent literature address the problem
of efficient numerical schemes for such equations.

In this paper we focus on a class of PDEs that arise in the study of thin films
and phase field models [20]. The general form is

ut = ∇ · (f(u)∇w) , (1.1)

w = −γ∆u+ ϕ(u), (1.2)
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where f is non-negative, u > 0, and both f and ϕ are smooth. For simplicity
of presentation, we impose periodic boundary conditions. However, many of our
results are still valid for some other typical boundary conditions as well and we
omit detailed discussion here.

In the following, we take γ = 1. Then, one can write the model equivalently as

ut = −∇ · (f(u)∇∆u) +∇ · (f(u)∇ϕ(u)) , (1.3)

or

ut = −∇ · (f(u)∇∆u) +∇ · (g(u)∇u) , (1.4)

where

g(u) := f(u)ϕ′(u). (1.5)

Examples in the literature include the thin film equations [42, 30, 29, 40, 35, 33,
34, 36, 18, 46, 48] in which f is typically u3 plus a possible lower order polynomial.
In degenerate Cahn-Hilliard equations, f is of polynomial form, for example u or
u(1− u) [20, 51].

For simplicity of discussion, we assume periodic boundary conditions. However,
we wish to point out that many results obtained here are valid for other boundary
conditions as well upon proper slight modifications where necessary.

If we denote ϕ(u) = ψ′(u), then

ψ′′(u) =
g(u)

f(u)
,

and there is a Lyapunov functional for the equations (1.1)-(1.2) as follows.

d

dt

∫
Ω

(γ
2
|∇u|2 + ψ(u) + cu

)
dx 6 0,

where c is any constant. Notice that conservation of mass always holds:

d

dt

∫
Ω

u(x, t)dx ≡ 0.

When ψ is positive, one can obtain an a priori H1 bound. When ψ is negative,
finite-time blowup is possible [10]. Here we consider the case where ψ may be either
positive or negative, or may change sign.

Numerical methods for such problems have been the subject of ongoing study in
the literature. Barrett, Blowey and Garke [5, 6] prove convergence of finite element
methods for the class of equations. In [5] they prove convergence for the pure fourth
order problem (with ϕ ≡ 0) with a semi-implicit time-step in which f is evaluated
at the old time level. In [6] they include the ϕ term and perform semi-implicit
time-stepping as in [5] for the highest order term and a convexity splitting for the
lower order term. Zhornitskaya and Bertozzi [52] introduce and prove convergence
of positivity preserving finite difference and finite element schemes for ([32]) with
ϕ = 0; their paper considers the spatial discretization only and shows that a special
choice of treatment of the nonlinearity yields schemes that dissipate a discrete form
of the entropy

∫
Ω
G(u), G′′ = f , as well as the well-known H1 energy

∫
Ω
|∇u|2dx.

Grün and Rumpf [32] consider related finite element schemes that are nonnegativity
preserving. Moreover, they introduce analysis for a backward Euler timestepping
method, leading to solution of the implicit problem

Un+1 − Un = −∆t∇ · (f(Un+1)∇∆Un+1)
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for a suitable spatial discretization of the differential operators. They solve this
implicit problem using iterative methods that require both good preconditioners
and a good initial guess of solutions for the method. Even with good initial guess,
solving the problem in 2D (or higher dimensional cases for other physical problems)
can still require a large number of iterations (tens or hundreds) at each time-step.

While much work has been done on finite element methods, others have focused
attention on finite difference methods that take advantage of easy to implement
fast methods for subproblems. One such example are the Alternating Direction
Implicit (ADI) methods proposed by Witelski and Bowen [50]. These have the
advantage of solving repeated implicit steps in one space dimension, thus taking
advantage of inexpensive solvers for higher order problems on the line. In this
paper we consider another class of finite difference methods. These are explicit
time stepping methods, which would ordinarily be only conditionally stable and
quite stiff. However, by modifying the method with a semi-implicit biharmonic
operator, we are able to design methods that can be both unconditionally stable
and easy to implement. Such methods were proposed for diffuse interface equations
for Hele-Shaw flow [25, 39]. For the class of equations we consider here, the scheme
takes on the form

Un+1 − Un
∆t

+M1∆2Un+1

=∇ · [(M1 − f(Un))∇∆Un] +∇ · (g(Un)∇Un) ,
(1.6)

where M1 can be chosen as a number no less than maxn |f(Un)|. For example, one
can choose simply M1 > 0 such that

‖f(u(·, ·))‖∞ 6M1 < +∞,

where the norm ‖ · ‖∞ denotes the maximum norm. We refer to schem (1.6) as
a biharmonic modified forward time-stepping method because the terms for the
equation of interest are all evaluated at the old time. However there is one additional
term added and subtracted, which has a pure biharmonic operator. This method is
similar in spirit to the Laplace-modified forward time-stepping method introduced
by Douglas and Dupont in [16]. They consider second order nonlinear diffusion
equations with a related temporal splitting of the form

Un+1 − Un
∆t

+ ∆Un+1 = ∇ · [(1− g(Un))∇Un] , (1.7)

for the case of equation (1.3) with f term zeroed out.
Schemes of the form (1.6) have also been used to solve higher order, level-set

based curvature evolution equations [31, 47]. The computational advantage to using
a scheme of the form (1.6) or (1.7) is that the implicit calculation involves only the
biharmonic operator (or Laplace operator in the case of 1.7). While the original
Douglas-Dupont paper combines the method with alternating direction implicit
time stepping for the Laplace problem, we note that recent implementations of
such schemes on square grids use spectral solvers for the implicit calculation, thus
taking advantage of the Fast Fourier transform. The idea considered here has some
relation to the convexity splitting methods recently studied for variational problems
with non-convex energies, such as the Cahn-Hilliard and Allen-Cahn equations. See
[21, 49] for a discussion of these problems. See also [1] and [19]. Our paper differs
most from those in that we consider a splitting of the highest order term in the
equation in order to treat the nonlinearity explicitly.



1370 ANDREA L. BERTOZZI, NING JU AND HSIANG-WEI LU

This paper is organized as follows: Section 2 reviews what is known about solu-
tions of the PDE and of the proposed scheme. For simplicity we consider analysis
of the timestepping problem, with continuous spatial derivatives. It is straightfor-
ward to extend the results to finite difference or finite element operators in space.
Section 3 contains the rigorous part of the paper. Section 3.1 discusses consistency
of the scheme under the assumption of sufficient regularity of the PDE solution.
Section 3.2 proves our key boundedness result for the scheme. Section 3.3 proves
convergence of the scheme. Section 4 shows some numerical simulations and dis-
cussion of empirical convergence results and modified equation analysis.

We note that the finite difference scheme and convergence estimates described
here have some features in common with the works of [2], [4] and [3], and the
similarity necessitates some discussion. Since these three earlier papers use some
common techniques, we focus on the comparison of our work with that of [4]. We
note that a similar method was used as well in the computations performed in [25]
in the finite difference setting.

In [4], a version of bi-harmonic modification was proposed of the form

Un+1 − Un
∆t

+M1∆ [∆Un+1 − ϕ(Un+1)]

=∇ · [(M1 − f(Un))∇(∆Un − ϕ(Un))] ,
(1.8)

where M1 is chosen similarly as for (1.6). The main difference is that this scheme
is nonlinear in Un+1, while our scheme is linear in Un+1. Notice the extra third
term on the left hand side of (1.8). Moreover, they use a finite element method for
the spatial discretization. Note that the relationship between the terms M1∆2Un+1

and ∇ · (M1∇∆Un) is not as in a Crank-Nicolson type scheme. The scheme is still
consistent with these two added terms since the difference of them goes to zero as
the size of time discetization goes to zero. The same observation holds for the other
pair of inserted terms involving the constant M1. The advantage of doing this can
be appreciated for example from the consideration of regularity and stability issues.

Even though there is much literature on analysis of finite element methods, there
is much less analysis for finite difference schemes solving higher order partial differ-
ential equations. The nonlinear schemes such as the one above, although yielding
satisfactory theoretical results from the point of view of scheme convergence and
stability, are less attractive from the point of view of computational load, in par-
ticular for the practitioner who may not have higher order finite element codes at
their disposal (or the expertise to quickly adapt them to problems of interest). Also,
the nonlinear implicit problem requires the solution of large scale nonlinear alge-
braic systems at each time discretization step. This problem is perhaps the most
computationally prohibitive when solving high order nonlinear partial differential
equations in high dimensional physical domains. Since there is demand from the
engineering and computational science community for simpler codes, it is therefore
important to provide a clear exposition of convergence of simpler linear splitting
schemes, in the context of strong (smooth) solutions. Finally we mention that in
[4], it is assumed that mobility function f satisfies

f ∈ C(R), 0 6 fmin 6 f(s) 6 fmax < +∞, ∀s ∈ R. (1.9)

Under the above assumptions and some other technical assumptions, e.g.

u0 ∈ H3(Ω), ‖u0‖∞ < 1− δ, ‖U0‖∞ 6 1− δ/2,
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they prove uniform boundedness of ‖∇Un‖. As a conventional notation, we denote
‖u(·, t)‖ and ‖Un‖ as the standard L2 norms for square integralable functions u(·, t)
(at t) and Un(·). Moreover, under further assumption:

0 < fmin 6 fmax < +∞, f ∈ C1(R), ‖f ′‖∞ < +∞, (1.10)

and that
‖∇(u0 − U0)‖2 6 C∆t,

the half order convergence in time is proven in [4] in the spaces L2([0, T ], H1(Ω))
and L∞([0, T ], (H1(Ω))′). Therefore, for convergence, their assumption on f is
essentially the same as ours. For g, instead of a general function ψ which we use
here, they use a special function Ψ: which satisfies

Ψ′(s) =
θ

2
ln

1 + s

1− s
− θcs.

There θ and θc are positive constants with θ < θc. This assumption is equivalent
to the assumption that

ϕ′(s) =
θs

s2 − 1
− θc.

Since both papers by Barrett et. al. and ours deal with only non-degenerate
case, we know that |u|∞ < 1 − δ. Therefore our assumption that g is uniformly
bounded and uniformly Lipschitz continuous essentially covers this special case. In
the analysis below, we develop a strong convergence theory (for smooth solutions),
proving that our scheme converges at the rate of at least O(∆t) (see Theorem 3.1),
which is higher than the half order rate proved in [4]. The computational examples
we provide show further that our scheme is practical and useful.

2. Typical behavior of the scheme and the underlying continuous PDE.
First we review the typical behavior of interest of smooth solutions of the PDE
(1.1,1.2). Existence of solutions of the scheme follows from standard elliptic bound-
ary value theory.

2.1. Solutions of the PDE. Much work has been done in the last twenty years on
rigorous (existence, uniqueness, long time behavior) analysis of solutions of fourth
order degenerate diffusion equations and on applications. For thin film equations,
several review articles for both the theory and applications problems exist including
[11, 41, 43]. There are a number of interesting physical problems corresponding to
equations of the type considered in this paper. For thin film applications, the
problem with ϕ = 0 is a degenerate fourth order equation. The case f(u) = u3

corresponds to a thin film of liquid with a no-slip condition on the liquid-solid
interface. The case f(u) = u arises in the study of liquid bridges in a Hele-Shaw
cell [15, 17]. The case with ϕ 6= 0 also arises in a number of ‘long-wave’ stable and
unstable film problems including dewetting films under van der Waals interactions
[13, 26], gravity driven layers in a Hele-Shaw cell [27, 28], and thin films spreading
under gravity [14].

Another related class of models are the Cahn-Hilliard models with degenerate
mobility [20]. In such models f is also typically a polynomial function but can
vanish at more than one value of u depending on the application. Recently Glasner
has proposed such models as diffuse interface approximations of Hele-Shaw motion
[25]. In this case f(u) = u as in the Hele-Shaw example above, however the role of u
is no longer the film thickness but instead a phase variable describing the presence
or absence of liquid within the cell.
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In general we do not have well-posedness results in the case where f(u) vanishes
due to the lack of a maximum principle for higher order PDE. Some ‘weak maximum
principle’ pointwise results are known in one space dimension [7, 12] but do not
extend to higher dimensions. Nevertheless, for many of the application areas it is
reasonable to consider, even in higher dimensions, the existence of strong solutions
away from vanishing values of f . In addition to the possibility of u vanishing, in
the case of long-wave unstable models, one can consider the possibility of blowup,
in which u goes to infinity [10, 8]. Such problems depend on special nonlinear forms
of ϕ.

For the purpose of this paper we focus on cases where there exists a smooth,
bounded solution u(x, t) to the continuous PDE such that u avoids values where f
vanishes. Since we are interested in bounded solutions, it is natural to consider an
arbitrary bound on f(u) for the solution of the PDE. For simplicity in the following
analysis, we consider solutions for which 0 < f(u) < 1, however the upper bound is
arbitrary and could trivially be generalized.

It is easy to see that for the exact solution u to (1.4), we have

d

dt

∫
Ω

|∇u|2dx+2

∫
Ω

f(u)|∇∆u|2dx

=2

∫
Ω

g(u)(∇u) · ∇∆u dx.

(2.1)

This formula provides a theoretical basis for a prioriH1 estimates for the equation
and there is a natural extension to the schemes considered in this paper.

2.2. Existence, uniqueness and regularity of Un. Due to the simple nature of
the scheme, in which the new time level depends only on the solution of a linear
fourth order elliptic equation, existence and uniqueness of solutions of the scheme is
straightforward. We need to specify boundary conditions for this problem, and that
of the underlying PDE. The most common choices for this class of problems, on
bounded domains, are the periodic boundary conditions on the torus, and Neumann-
type conditions for u and ∆u for domains with boundary. The application problems
we consider use FFT solvers for the elliptic problem and thus periodic boundary
conditions make the most sense for this paper. For any fixed ∆t, the equation
(1.6) with corresponding boundary conditions forms a standard fourth order elliptic
boundary value problem, whose well-posedness is completely solved by the Lax-
Milgram lemma.

Moreover, by integrating (1.6) over Ω, we have the following conservation of mass:∫
Ω

Undx =

∫
Ω

U0dx =

∫
Ω

u0dx =

∫
Ω

undx, ∀n > 1. (2.2)

Recall that we assume Un is the spatial discretization of u at time t = tn, with

U0(x) = u0(x) = u(x, 0), x ∈ Ω.

3. Rigorous estimates for the scheme.

3.1. Consistency. The local time truncation error can be computed using stan-
dard Taylor series arguments. In the following, we take M1 = 1 for simplicity. The
general case can be similarly treated.
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Suppose we have a solution u of the continuous PDE (1.4) on the torus T d, where
d is the dimension of the physical domain. Let un denote u(n∆t). Then the local
truncation error is defined over a time step as satisfying

un+1 − un
∆t

+∆2un+1

−∇ · [(1− f(un))∇∆un + g(un)∇un] = τn,
(3.1)

where

τn = τn,1 + τn,2,

with

τn,1 ≡
un+1 − un

∆t
− ut(n∆t)

and

τn,2 ≡ ∆t∆2un+1 − un
∆t

.

By Taylor’s expansion theorem, we have,

τn,1 =
1

2∆t

∫ (n+1)∆t

n∆t

utt(t) [(n+ 1)∆t− t] dt

and

τn,2 =

∫ (n+1)∆t

n∆t

∆2ut(t)dt.

Therefore,

‖τn,1‖−1 ≡ ‖τn,1(·, t)‖H−1 6
∆t

2
max

n∆t6t6(n+1)∆t
‖utt(·, t)‖−1

and

‖τn,2‖−1 ≡ ‖τn,2(·, t)‖H−1 6 ∆t max
n∆t6t6(n+1)∆t

‖∇∆ut(·, t)‖.

Assuming that ‖utt(·, t)‖H−1 and ‖∇∆ut(·, t)‖ are uniformly bounded with respect
to t, we have the following result for consistence of the scheme:

‖τn‖−1 ≡ ‖τn‖H−1 = O(∆t), (3.2)

which is used in our analysis of convergence of the scheme.

3.2. Boundedness. In this section, we prove some a priori bounds for numerical
solutions that satisfy a basic pointwise bound on the nonlinear diffusion coefficient.
For simplicity of analysis we assume ‖f(Un)‖∞ 6 1. Note also that we could replace
1 by a large enough M1 > 0, satisfying

‖f(u(·, ·))‖∞ 6M1 <∞.

In general, such a priori pointwise bounds are difficult to prove for thin film
equations in higher space dimensions. In one dimension the result follows directly
from an a priori H1 bound and Sobolev embedding. See [7, 9, 8]. However H1
control does not imply a pointwise bound in dimensions two and higher.

Nevertheless, for practical reasons, as shown in our computational section, it is
reasonable to consider numerical solutions that happen to satisfy

‖f(Un)‖∞ 6M1 <∞, (3.3)

and in fact this can be used as an a posteriori constraint on the timestep.
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We have the following estimate. Taking the inner product with −∆Un+1, and
letting ‖ · ‖ denote the L2 norm, we have

1

2∆t
(‖∇Un+1‖2 − ‖∇Un‖2)

+
1

2∆t
‖∇(Un+1 − Un)‖2 + ‖∇∆Un+1‖2

=
1

∆t
(∇(Un+1 − Un),∇Un+1)− (∆2Un+1,∆Un+1)

=((1− f(Un))∇∆Un,∇∆Un+1) + (g(Un)∇Un,∇∆Un+1)

6
∫

Ω

(1− f(Un))
|∇∆Un|2 + |∇∆Un+1|2

2
dx

+

∫
Ω

g(Un)∇Un · ∇∆Un+1dx,

where in the last step, we have used the assumption that ‖f(Un)‖∞ 6 1. Thus

1

∆t

(
‖∇Un+1‖2 − ‖∇Un‖2

)
+ ‖∇∆Un+1‖2 − ‖∇∆Un‖2

+

∫
Ω

f(Un)(|∇∆Un|2 + |∇∆Un+1|2)dx

62

∫
Ω

g(Un)∇Un · ∇∆Un+1dx.

(3.4)

Remark 1: Notice that (3.4) is an interesting approximation of (2.1). If g = 0, the
above result implies an estimate of the form

‖∇Un+1‖2 + ∆t‖∇∆Un+1‖2 6 ‖∇Un‖2 + ∆t‖∇∆Un‖2

over the timestep, providing uniformly boundedness of Un in H1 provided that
‖∆∇u0‖ is bounded. The other assumption needed for this estimate is the uniform
pointwise bound f(Un) 6 1 (or less than a specified constant) which can be imple-
mented as an a posteriori restriction on the timestep. We present computational
examples of this implementation later in the paper.

In general, one has f(Un) 6 M . However for simplicity of notation we perform
the analysis for the problem scaled so that f(Un) 6 1.

2

For the general case, we have

1

∆t
(‖∇Un+1‖2 − ‖∇Un‖2) + ‖∇∆Un+1‖2

− ‖∇∆Un‖2 +

∫
Ω

f(Un)|∇∆Un|2dx

6
∫

Ω

g2(Un)

f(Un)
|∇Un|2dx.

Assume that

C0 :=

∥∥∥∥g2

f

∥∥∥∥
∞
< +∞. (3.5)

Then,

‖∇Un+1‖2+∆t‖∇∆Un+1‖2

6(1 + C0∆t)(‖∇Un‖2 + ∆t‖∇∆Un‖2).
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By induction, we have, for n∆t 6 T ,

‖∇Un‖2+∆t‖∇∆Un‖2

6(1 + C0∆t)n(‖∇U0‖2 + ∆t|∇∆U0‖2)

6eC0T (‖∇U0‖2 + ∆t|∇∆U0‖2),

(3.6)

which gives boundedness of the solution sequence on [0, T ] for any T > 0.
Remark 2: Assuming (3.5), we have,

1

2

d

dt

∫
Ω

|∇u|2dx =−
∫

Ω

f(u)|∇∆u|2dx+

∫
Ω

g(u)∇u · ∇∆udx

=−
∫

Ω

f(u)

∣∣∣∣∇∆u+
1

2

g(u)

f(u)
∇u
∣∣∣∣2 dx

+
1

4

∫
Ω

g2(u)

f(u)
|∇u|2dx

6
1

4

∥∥∥∥g2(u)

f(u)

∥∥∥∥
∞

∫
Ω

|∇u|2

=
C0

4

∫
Ω

|∇u|2dx.

(3.7)

Therefore, by Grönwall inequality, we have

‖∇u(t)‖ 6 ‖∇u0‖e
C0
2 t.

Notice that (3.6) gives an estimate of Un which reflects nicely that of u as shown
above.

2

3.3. Convergence. In this section we prove convergence of the scheme in H1 pro-
vided that we have a smooth solution of the PDE and that a solution of the scheme
exists satisfying the a posteriori bound

0 < ε0 < f(Un) < 1. (3.8)

Again, the constant 1 is chosen for convenience; however the argument below ex-
tends to any suitable upper bound. In practice one can often achieve the bound
(3.8) by a suitable a posteriori time step control. This is demonstrated in a number
of examples in section 4.

Let en = un − Un. By (1.6) and (3.1), we have

1

∆t
(en+1 − en) + ∆2en+1 =∇ · ((1− f(un))∇∆un)

−∇ · ((1− f(Un))∇∆Un)

+∇ · [g(un)∇un − g(Un)∇Un] + τn.

(3.9)

Taking inner product with −∆en+1, we have

1

∆t
(∇en+1 −∇en,∇en+1) + ‖∇∆en+1‖2

=((1− f(un))∇∆un − (1− f(Un))∇∆Un,∇∆en+1)

+ (g(un)∇un − g(Un)∇Un,∇∆en+1)

+ (∇∆−1τn,∇∆en+1).
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Therefore,

‖∇en+1‖2 − ‖∇en‖2

2∆t
+ ‖∇∆en+1‖2

6((1− f(Un))∇∆en,∇∆en+1)

− ((f(un)− f(Un))∇∆un,∇∆en+1)

− (g(Un)∇en,∇∆en+1)

+ ((g(un)− g(Un))∇un,∇∆en+1)

+ (∇∆−1τn,∇∆en+1).

Assuming that f(Un) 6 1, then we have as before,

‖∇en+1‖2 − ‖∇en‖2

∆t
+‖∇∆en+1‖2 − ‖∇∆en‖2

+

∫
Ω

f(Un)
(
|∇∆en|2 + |∇∆en+1|2

)
dx

6− 2((f(un)− f(Un))∇∆un,∇∆en+1)

− 2(g(Un)∇en,∇∆en+1)

+ 2((g(un)− g(Un))∇un,∇∆en+1)

+ 2(∇∆−1τn,∇∆en+1)

≡I1 + I2 + I3 + I4.

Using Cauchy-Schwartz inequality, we have

I1 6 C

∫
Ω

|∇∆un|2

f(Un)
|f(un)− f(Un)|2dx

+
1

8

∫
Ω

f(Un)|∇∆en+1|2dx,

I2 6 C

∫
Ω

g2(Un)

f(Un)
|∇en|2dx

+
1

8

∫
Ω

f(Un)|∇∆en+1|2dx,

I3 6 C

∫
Ω

|∇un|2

f(Un)
|g(un)− g(Un)|2dx

+
1

8

∫
Ω

f(Un)|∇∆en+1|2dx,

and

I4 6 C

∫
Ω

1

f(Un)
|∇∆−1τn|2dx

+
1

8

∫
Ω

f(Un)|∇∆en+1|2dx.

Assume that f and g are Lipschitz continuous, |∇∆un|, |∇un|, |g(Un)| are uniformly
bounded from above and that f(Un) is uniformly bounded from below.
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Then, we have

‖∇en+1‖2 − ‖∇en‖2

∆t
+ ‖∇∆en+1‖2 − ‖∇∆en‖2

+

∫
Ω

f(Un)

(
|∇∆en|2 +

|∇∆en+1|2

4

)
dx

6C‖∇en‖2 + C‖τn‖2−1,

where we have used the Poincaré inequality, noticing that en is mean-zero.
So,

‖∇en+1‖2 + ‖∇∆en+1‖2∆t

6 (1 + C∆t)‖∇en‖2 + ‖∇∆en‖2∆t+ C‖τn‖2−1∆t

6 (1 + C∆t)
[
‖∇en‖2 + ‖∇∆en‖2∆t

]
+ C‖τn‖2−1∆t.

By induction on n and assuming e0 = 0, we have

‖∇en‖+ ‖∇∆en‖
√

∆t 6 C
√
n∆te

n∆t
2 max

k6n
‖τk‖−1. (3.10)

Recall that consistency of the scheme yields

max
n
‖τn‖−1 = O(∆t). (3.11)

Therefore, we have

‖∇en‖+ ‖∇∆en‖
√

∆t 6 C
√
Te

T
2 ∆t. (3.12)

Remark 3: From the above analysis, we see that we have first order convergence in
H1 norm and a half order convergence in H3 norm, provided that f , g are Lipschitz
continuous, |∇∆un|, |∇un|, |g(Un)| are uniformly bounded from the above and
|f(Un)| satisfies (3.8). Using the method of induction, we can prove the same
convergence result when dropping the above assumptions on the discrete solution
Un to the numerical scheme, with a few more assumptions on the solution u to the
original partial differential equation.

2

Theorem 3.1. Suppose that for t ∈ [0, T ], ∇u,∇∆u are uniformly bounded, f , g
are Lipschitz continuous with Lipschitz constants Lf and Lg respectively, and there
exist constants c1, c2, such that

0 < c1 6 |u(x, t)| 6 c2, ∀(x, t) ∈ Ω× [0, T ]

and

0 < δ 6 f(u) 6Mf < 1, |g(u)| 6Mg < +∞.
Then, there exists constants C1, C2 > 0 and ∆t0 > 0, such that for all ∆t with
0 < ∆t < ∆t0 and n∆t 6 T , we have

‖∇en‖+ ‖∇∆en‖
√

∆t 6 C0

√
Te

C1T
2 sup

n∆t6T
‖τn‖−1. (3.13)

Moreover, we have 0 < c1 − ε 6 |Un| 6 c2 + ε and thus

0 < δ − ε 6 f(Un) 6Mf + ε < 1. (3.14)

and that Un is uniformly bounded for n∆t 6 T in Hm for 0 6 m 6 3.
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Proof. We use the method of induction.
First of all, we have e0 = 0. Therefore the error estimate (3.13) is automatically

satisfied for n = 0. Moreover, we have

0 < δ 6 f(Un) = f(un) 6Mf < 1.

Then, we have

1

2∆t
‖∇e1‖2 +

1

2
‖∇∆e1‖2 +

1

2

∫
Ω

f(u0)|∇∆e1|2dx

6− (τ0,∆e1) 6 4‖τ0‖2−1 +
1

4
‖∇∆e1‖2.

Therefore,

‖∇e1‖2 + ‖∇∆e1‖2∆t 6 C∆t‖τ0‖2−1, (3.15)

where C is a constant independent of ∆t. Thus, (3.13) is satisfied for n = 1. For
∆t small enough, which will be specified later, we have that for n 6 1,

0 < c1 − ε < |Un| < c2 + ε,

and thus

0 < δ − ε 6 f(Un) 6 Mf + ε < 1, (3.16)

|g(Un)| 6 Mg + ε. (3.17)

Hence,

‖∇e2‖2 − ‖∇e1‖2

∆t
+
(
‖∇∆e2‖2 − ‖∇∆e1‖2

)
+

∫
Ω

f(U1)(|∇∆e1|2 + ‖∇∆e2‖)dx

6− 2((f(u1)− f(U1))∇∆u1,∇∆e2)

− 2(g(U1)∇e1,∇∆e2)

+ 2((g(u1)− (U1))∇u1,∇∆e2)

− 2(τ1,∆e2)

≡I1 + I2 + I3 + I4.

Therefore,

‖∇e2‖2 − ‖∇e1‖2

∆t
+ ‖∇∆e2‖2 − ‖∇∆e1‖2

+ (δ − ε)(‖∇∆e1‖2 + ‖∇∆e2‖2)

6 I1 + I2 + I3 + I4.

We estimate Ii’s (i = 1, . . . , 4) in the following one by one.

I1 6 2Lf‖∇∆u1‖∞‖e1‖‖∇∆e2‖

6
8L2

f‖∇∆u1‖2∞
δ − ε

‖e1‖2 +
δ − ε

8
‖∇∆e2‖2,

I2 6 2(Mg + ε)‖∇e1‖‖∇∆e2‖

6
8(Mg + ε)2

δ − ε
‖∇e1‖2 +

δ − ε
8
‖∇∆e2‖2,
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I3 6 2Lg‖∇u1‖∞‖e1‖‖∇∆e2‖

6
8L2

g‖∇u1‖2∞
δ − ε

‖e1‖2 +
δ − ε

8
‖∇∆e2‖2,

and

I4 = 2(∇∆−1τ1,∇∆e2)

6
8

δ − ε
‖τ1‖2−1 +

δ − ε
8
‖∇∆e2‖2.

Hence,

(‖∇e2‖2+∆t‖∇∆e2‖2)− (‖∇e1‖2 + ∆t‖∇∆e1‖2)

+ (δ − ε)‖∇∆e1‖2∆t+
δ − ε

2
‖∇∆e2‖2∆t

6 C2‖∇e1‖2∆t+ C1∆t‖τ1‖2−1,

where we have used the Poincaré inequality with the Poincaré constant denoted by
cp, the positive constant C1 defined as

C1 =
8

δ − ε
, (3.18)

and the positive constant C2 satisfying

C2(δ − ε)
8

=L2
f sup
n∆t6T

‖∇∆un‖2∞c2p + (Mg + ε)2

+ L2
g sup
n∆t6T

‖∇un‖2∞c2p.
(3.19)

Then,

‖∇e2‖2+∆t‖∇∆e2‖2

6(1 + C2∆t)
(
‖∇e1‖2 + ∆t‖∇∆e1‖2

)
+ C1∆t sup

k>1
‖τk‖2−1.

Thus, by one iteration or applying the discrete Grönwall inequality, we have

‖∇e2‖2+∆t‖∇∆e2‖2 +
∆t(δ − ε)

2
‖∇∆e2‖2

6C1Te
2C2∆t sup

k>1
‖τk‖2−1.

Therefore, (3.13) is satisfied for n = 2.
In general, if (3.13) is satisfied for n = k and ∆t is small enough, say no greater

than a constant ∆t0 which can be decided by the value of C1 and C2 as given by
(3.18) and (3.19) and by (3.13), then (3.16) and (3.17) are satisfied for n 6 k. Notice
that, due to (3.13), for (3.16) and (3.17) to be valid, the restriction on ∆t0 may
depend on T , but is independent of k for k∆t 6 T . Therefore similar argument in
obtaining the error estimate for n = 2 is now valid for n = k+ 1 and we get exactly
(3.13) with n = k + 1, with the same coefficients C1 and C2 as given by (3.18) and
(3.19). So by induction, (3.13) is valid for all n such that n∆t 6 T , provided that
∆t is small enough.

Moreover, recalling that ‖τ‖−1 isO(∆t), we have the upper bounds for |Un|, |∇Un|
and |∇∆Un| which are uniform for all n 6 T/∆t and thus the bounds on f(Un)
and g(Un) as well. 2
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4. Numerical simulations and discussion. We investigate the numerical prop-
erties of the biharmonic modified forward time-stepping for different variations of
the fourth order nonlinear equations (1.1)-(1.2). For convenience, the finite differ-
encing scheme is repeated here,

un+1 − un

∆t
+M∆2un+1 = ∇ · ((M − f (un))∇∆un) +∇ · (f (un)∇ϕ′ (un)) . (4.1)

We choose the scalar M = αmax (f (un)) and vary the value of α to investigate
the effect of M on the numerical stability. The equation is discretized on a uniform
cartesian mesh where uni,j = u(xi, yj , t

n), xi = i∆x, and yj = j∆x. We formulate
the spatial finite difference in conservative form,

Q = (p, q)T = ((M − f (un))∇∆un + f (un)∇ϕ′ (un)) , (4.2)

∇ ·Q = δxp+ δyq, (4.3)

δxp =

(
pi+1/2,j − pi−1/2,j

)
∆x

, δyq =

(
qi,j+1/2 − qi,j−1/2

)
∆x

.

The mobility terms at the midpoints of the mesh are approximated by trapezoidal
averages

f
(
ui+1/2,j

)
= f

(
1

2
[ui,j + ui+1,j ]

)
, (4.4)

and similarly for f(ui,j+1/2). The spatial operators on u can then be formulated
using second-order central difference on the existing grid points. We impose Neu-
mann boundary conditions on the domain boundary. Note that this is equivalent to
periodic boundary conditions with symmetry imposed (and thus connects directly
to the theory from the previous section). The constant linear implicit operator can
be inverted efficiently using fast Fourier transform. A step doubling scheme is used
to adjust the simulation timesteps and a local extrapolation [44] removes the O(∆t)
truncation error.

We first verify the convergence of the numerical scheme in the case of a well-
known 2D self-similar solution of a simple fourth order lubrication equation. We
will then illustrate interesting dynamics that arises in coarsening and in microfluidics
through the coupling of the fourth order operator with various energy terms.

4.1. Lubrication equation. Defining ϕ′ = 0 and f (u) = u reduces equations
(1.1)-(1.2) to a nonlinear fourth order diffusion equation,

ut +∇ · (u∇∆u) = 0. (4.5)

The equation dissipates a free energy of the form

dE
dt

= −
∫

Ω

|∇u|2dx ≤ 0. (4.6)

There exists a compactly-supported, d-dimensional, radially-symmetric self-similar
solution [22]

u (η, t) =

{
1

8(d+2)τd

(
L2 − η2

)2
, 0 ≤ η ≤ L

0 , η > L,
(4.7)

τ = [(d+ 4) (t+ t0)]
1/(d+4)

, (4.8)

where η = r/t.
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Figure 1. (a) Contours of the simulated solution of the nonlinear
lubrication equation (4.5) starting from initial condition (4.10) at
various simulation time. (b)Evolution of the maximum of the thin
film, u(r = 0, t).

In addition to the stability constraint imposed by the fourth order operator, the
degenerate mobility requires a specialized numerical scheme to preserve positivity
of the solution. We regularize (4.5) by replacing the degenerate mobility term with

fξ =
u5

(ξu+ u4)
. (4.9)

ξ = 10−10 so fξ ∼ u for u� ξ. Starting from a Gaussian positive initial data

u (r, 0) = ε+
σ

40
e−σr

2

, (4.10)

where r2 = x2 + y2, we expect a positive solution of the smooth problem. We
solve (4.5) on a 50 × 500 mesh with ∆x = 0.02, starting from initial condition
(4.10) with σ = 80. The parameter ε = 0.01 specifies a small thickness of the
precursor film. The prefactor for the biharmonic modification, M = αmax (f (un)),
is implemented with α = 0.3. Figure 1b shows the maximum height of the thin film
decreases initially with the u (r = 0, t) ∼ t1/3 scaling law of the similarity solution
as the film spreads isotropically. Due to the high aspect ratio of the computational
domain, the diffusion across the shorter dimension saturates by time t ∼ O

(
10−3

)
.

The ensuing evolution afterward follows that of a one dimensional problem where
u (r = 0, t) ∼ t−1/5.

In addition to the dissipation of the free energy, the estimate in Sec. 3.2 implies

‖∇un+1‖2L2 + ∆tM‖∇∆un+1‖2L2 ≤ ‖∇un‖2L2 + ∆tM‖∇∆un‖2L2 . (4.11)

As shown in figure 2, the biharmonically modified algorithm also dissipates the
quantity Fn = ‖∇un‖2L2 + ∆tM‖∇∆un‖2L2 . This provides a convenient way for
validating the algorithm.

An adaptive time stepping schemes is implemented to increase the future time
step if the numerical solution of the current time step satisfies the dissipation of
energy, (4.6). Keeping tract of the maximum of the time step allows us to determine
the maximum gradient stable timestep, ∆tg at various stages of the evolution. The
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Figure 2. Monotonic decrease of the energy estimate, F . Simu-
lation computed using α = 3.0.
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Figure 3. (a)Maximum gradient stable timestep, ∆tg.
(b)Maximum positivity preserving timesteps, ∆tp, computed
with various values of α compared with ∆tg computed with
α = 3.0.

maximum positivity preserving timestep, ∆tp, are determined by an similar adap-
tive time stepping scheme that increases the time step with respect to the positivity
of the numerical solution. As shown in figure 3a, ∆tg increases with the value of
α. As the solution smoothes sufficiently beyond t ∼ 10−2, unconditional gradient
stability is achieved for α ≥ 1.0. However, figure 3b shows the positivity preserving
criterion imposes a stiffer stability requirement that is relatively independent of the
value of α.

The accuracy requirement imposes another limiting factor in the simulation. In
the Appendix, we derive a modified equation for the the biharmonic modified scheme
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Figure 4. (a)Scaling of the truncation error associated with the
biharmonic modification. (b)Maximum timestep adopted by the
step doubling scheme.

in one dimension,

ut + (F (u))x = −∆t

[(
∂F
∂u

(F (u))x

)
x

−M (F (u))xxxxx

]
+O

(
∆x2 + ∆t2

)
,

F (u) = uuxxx. (4.12)

The first O (∆t) term is the truncation error of the forward Euler timestepping.
The biharmonic modification contributes a non-local term in the truncation error.
Starting from one dimensional (r = x) Gaussian initial conditions with various
σ, we compute the differences of the 1D numerical solutions obtained by the the
biharmonic modified timestepping, ub(x), and by the forward Euler timestepping,
uE(x), after a very small timestep, ∆t = 10−10. Assuming the numerical solutions
approximate the Gaussian initial condition, with the characteristic dimensions x ∼
σ−1/2, the truncation error of the biharmonic modification then scales as ||uE −
ub|| ∼ (F(u))xxxxx ∼ σ6, as confirmed in figure 4a. Therefore, the choice of α must
balance the requirements of numerical efficiency and accuracy. It will be interesting
to develop a rigorous theory that systematically determines the optimal value of α.

For control of truncation error, we consider a step doubling scheme, which esti-
mates the truncation error by computing ∆u = u(1)−u(2), where u(1) is the solution
after one step of size ∆t, and u(2) is the solution after two steps of size ∆t/2. The
step doubling adopts the timestep to satisfy a specific accuracy requirement:

2|∆u|
u(1) + u(2)

< 10−5. (4.13)

Figure 4b shows the maximum of the adaptive timesteps at various stages of the sim-
ulation shown in figure 1. The accuracy criterion places a more stringent constraint
on the simulation than the gradient stability. The shape dependent truncation er-
ror of the biharmonic modification decreases with the gradient of the numerical
solution, allowing the simulation to progressively increase the step size. In con-
trast, forward Euler timestepping is restricted by a constant stability constraint,
∆t ∼ O(∆x4) ∼= 10−8. Increasing the value of α beyond 1 allows the simulation to
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take larger timesteps. Setting α = 1 constrains ∆t ≤ 10−6, making simulation to
steady state impractical.

4.2. Degenerate Cahn-Hilliard equation. After studying the numerical behav-
iors of the biharmonic modified scheme, we now illustrate its application on the
Cahn-Hilliard equation with degenerate mobility

εut = ∇ · (u∇ (w)) , (4.14)

w =
(
−ε24u+ ϕ′ (u)

)
. (4.15)

A double well function, ϕ (u) = (u − ε)2(u − 1)2, represents the bulk free energy
of the material. The parameter ε determines the diffuse interface thickness by
balancing the surface energy term, |∇u|2, with the bulk free energy, ϕ. Within
this length scale, the phase variable varies smoothly from u = 1 to u = ε. The
material interface is considered as one of the contours of the phase field variable. In
the asymptotic limit of ε → 0, equations (4.14-4.15) approach the sharp interface
Hele-Shaw equations.

Equation (4.14-4.15) was first introduced as a model for spinodal decomposition
in binary alloys. Such coarsening phenomenon occurs in other systems such as mul-
tiphasic fluid and biological swarming. The growth of an ordered domain typically
obeys the power law L ∼ tn where L is the length scale of the domain. The de-
tailed understanding of the scaling law, such as the value of n, is difficult to obtain
analytically. Therefore, efficient simulation of the phase field model is important to
the characterization of the coarsening process.

We initialize the phase field variable randomly on a mesh of size 512 × 512
with ∆x = 0.03. The diffuse interface thickness imposes a requirement on the
grid resolution in order to resolve the transition layer, ∆x ≤ Cε. The parameter
ε = 0.0427 controls the diffuse interface to be ∼ 7∆x. Preconditioning techniques
may be implemented to the stability [23]. However, no preconditioning is used in
this study.

Figure 10 shows the simulation of the coarsening process. The initial condition
quickly coarsens into many smaller domains of irregular shapes with large curva-
tures, which drive the subsequent interfacial motion to relax the shapes toward
circles. The coarsening is due to the interface motion in the diffuse interface ap-
proximation, which maintains the phase field variable at a small nonzero value to
represent the materials in the dark region. Studies of dewetting thin films have
shown coarsening occur in a slow time scale by leakage of material between two
disconnected domains [24]. We can not expect this phenomenon to happen in the
sharp interface limit. In our coarsening simulation, we did not observe coarsening
by this mechanism.

As shown in the introduction, (4.14-4.15) has an energy functional of the form

E (u) =

∫
Ω

ε2

2
|∇u|2 + ϕ (u) dx, (4.16)

which must decrease monotonically for all solutions. Figure 5 shows that biharmonic
modified timestepping reproduces such property of the problem.

4.3. Electrowetting on Dialetctric (EWOD). A recent study [39] by two of
the authors and collaborators considers a phase field model for drop motion, in
a Hele-Shaw geometry, due to electrowetting. The model consists of a spatially
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Figure 5. Monotonic decrease of the energy functional during the
coarsening process.

dependent energy, evolved by a degenerate Cahn-Hilliard equation,

εut = ∇ · (u∇ (w)) , (4.17)

w =
(
−ε24u+ ϕ′ (u)

)
− εβ (x) , (4.18)

where β (x) = λχ (x) defines a local energy with a characteristic function, χ (x).
An electric field applied across the liquid-solid interface of a fluid drop produces an
electrowetting effect that was first characterized by Lippmann [38].

γsl (V ) = γsl (0)− 1

2
cV 2, (4.19)

where γsl is the solid-liquid interfacial energy, c is the capacitance per area of the
electric double layer, and V is the voltage across the electric double layer. Since
γsl (0) is a constant that does not affect the dynamics, we will assume it to be zero.
We define λ = cV 2/2αγsl, where α = h/R is the aspect ratio of the drop, to account
for the local electrowetting effect. Zero flux of energy and mass are imposed at the
domain boundary

∇u · n̂ = 0, (4.20)

u∇ (w) · n̂ = 0. (4.21)

We solve the problem on a 180× 120 mesh with ∆x = 1/30. For this problem, we
found M = 1.0 is adequate to provide good performance of the scheme.

The electrowetting induces long range motions shown in figure 6a. The drop
readily deforms its free surface during its translation into the region with lower
energy. The competition between the interfacial energy and the local energy deter-
mines the morphology of the translating drop. The variation of the curvature along
the drop contour decreases with λ due to the increasing influence of the interfacial
energy. Figure 7 shows the efficiency of the biharmonic modified scheme is relatively
independent of the strength of the local energy.

The boundary integral method developed by [37] has been quite successful in
simulating the long time evolution of free boundary fluid problems in a Hele-Shaw
cell. However, simulating drops that undergo topological changes remains a com-
plicated, if not ad hoc, process for methods based on sharp interfaces. The diffuse
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Figure 6. (a) Translation of a Hele-Shaw drop by the electrowet-
ting energy confined in the dashed square. (b) Curvature variations
of moving drops at the same center of mass location.
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Figure 7. Minimum timestep taken during the simulations with
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interface model naturally handles topology changes such as a drop splitting shown
in figure 8. The simulation reproduces the dynamics of the bulk fluid through a
gradient flow that monotonically dissipates the energy functional as shown in figure
9. It could be interesting to develop a multi-scale scheme to progressively refine the
resolution of the diffuse interface model in the pinch-off region.

5. Conclusions. In summary, we have presented some basic analysis of a
biharmonic-modified forward difference scheme for a class of fourth order degen-
erate diffusion equations, that include a possible second order (stable or unstable)
term. The analysis assumes that the PDE has a smooth positive solution and that
a solution of the scheme can be found to satisfy pointwise upper and lower bound
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t = 0.0 t = 0.14 t = 0.27 t = 0.41 t = 0.55 t = 0.69 t = 0.82

(a)

(b)

Figure 8. (a) The splitting of a Hele-Shaw drop by two local
energies in the dashed squares with λ = 3.6. (b) The 3 dimensional
view of the phase field variables.
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Figure 9. Monotonic decrease of the energy functional during the
drop splitting.

estimates. Numerical simulations are presented, for a variety of problems, that il-
lustrate that such assumptions are practical and that the class of schemes is both
simple to implement and relatively efficient for the tasks at hand. Some complex,
real-world examples are presented including a model for electrowetting on dielectric
and for coarsening dynamics of a large system of droplets.
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Figure 10. Simulation of coarsening from a uniformly distributed
random initial condition.

The scheme presented here is related to convex splitting schemes, which have been
used for other applications involving higher order equations. A related analysis of
such methods for higher order equations for image inpainting is discussed in [45].

Appendix: Modified equation. Consider the finite difference approximation of
the nonlinear diffusion (4.5) in one dimension.

un+1
i − uni

∆t
+M

(
δxxxxu

n+1 − δxxxxun
)

= −δx (uni δxδxxu
n
i ) , (5.1)

where common central difference operators are used to simplify the formula.

δxui =
(
ui+1/2 − ui−1/2

)
/∆x,

δxδxxui+1/2 = (ui+2 − 3ui+1 + 3ui − ui−1) /∆x3,

δxxxxui = (ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) /∆x4.

Expanding each terms in the difference equation by Taylor series gives

un+1
i − uni

∆t
= ut +

∆t

2
utt +O

(
∆t2

)
,

δx (uni δxδxxu
n
i ) = (uuxxx) +O

(
∆x2

)
,

δxxxxu
n+1 − δxxxxun = ∆tuxxxxt +O

(
∆t∆x2

)
.

Substitute back into the difference equation results the modified equation

ut + (uuxxx)x = −∆t

2
utt −Muxxxxt∆t+O

(
∆x2 + ∆t2

)
. (5.2)
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Defining F (u) = uuxxx, we use the fact that

ut = −Fx +O(∆t+ ∆x2)

to remove the time derivatives on the left hand side of (5.2) and obtain

ut + (F (u))x = −∆t

[(
∂F
∂u

(F (u))x

)
x

−M (F (u))xxxxx

]
+O

(
∆x2 + ∆t2

)
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