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Abstract. We study Γ-convergence of graph-based Ginzburg–Landau
functionals, both the limit for zero diffusive interface parameter ε → 0
and the limit for infinite nodes in the graph m→∞. For general graphs
we prove that in the limit ε → 0 the graph cut objective function is
recovered. We show that the continuum limit of this objective function
on 4-regular graphs is related to the total variation seminorm and com-
pare it with the limit of the discretized Ginzburg–Landau functional.
For both functionals we also study the simultaneous limit ε → 0 and
m → ∞, by expressing ε as a power of m and taking m → ∞. Finally
we investigate the continuum limit for a nonlocal means-type functional
on a completely connected graph.

1. Introduction

1.1. The continuum Ginzburg–Landau functional. In this paper we
study an adaptation of the classical real Ginzburg–Landau (also called Allen–
Cahn) functional to graphs. The Ginzburg–Landau functional is the object
to be minimized1 in a well-known phase-field model for phase separation in
materials science, e.g. [47, 48], and is given by

FGLε (u) := ε

∫
Ω
|∇u(x)|2 dx+

1
ε

∫
Ω
W (u(x)) dx, ε > 0, (1.1)
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1Note that to avoid trivial minimizers an additional constraint needs to be added. In

materials science it is common to add a mass constraint of the form
R

Ω
u = M for a

fixed M > 0. In image-analysis applications one often adds a fidelity term of the form
λ‖u− f‖2L2(Ω) to the functional FGLε , where λ > 0 is a parameter and f ∈ L2(Ω) is given

data, often a noisy image which needs to be cleaned up; see [54].
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where u ∈ W 1,2(Ω) is the phase field describing the different phases the
material can be in and W is a double-well potential with two minima, e.g.
W (s) = s2(s− 1)2. Ω is a bounded domain in RN .

Recently [14] this functional has been adapted to weighted graphs in an
application to machine learning and data clustering: An image is interpreted
as a weighted graph, with the vertices corresponding to the pixels and the
weights based on the similarities between the pixels’ neighborhoods. The
phase-separating nature of the Ginzburg–Landau functional then drives sep-
aration of the different features in the image.

The continuum functional FGLε has been extensively used and studied,
but a theoretical understanding of its equivalent on graphs is lacking. In
this paper we use Γ-convergence [28, 15] to study the asymptotic behavior
of minimizers of the graph-based Ginzburg–Landau functional when either
ε → 0 or the number of nodes in the graph m → ∞. In Section 2.4 we
discuss Γ-convergence in more detail. Its most important feature is that if
a sequence of functions {fn}∞n=1 Γ-converges to a limit function f∞ and in
addition satisfies a specific compactness condition, then minimizers of fn
converge to minimizers of f∞.

It has been proven [49, 47, 48]2 that FGLε Γ-converges as ε → 0 to the
total variation functional

FGL0 (u) := σ(W )
∫

Ω
|∇u|, (1.2)

where now u is restricted to functions of bounded variation taking on two
values (corresponding to the minima of the potential W ) almost everywhere
and the surface tension coefficient σ(W ) is determined by the potential W
(see Section 5.1 for more details). Because the total variation of a binary
function is proportional to the length of the boundary between the regions
where the function takes on different values, from this limit functional the
phase-separating behavior can be seen clearly: u takes on one of two values,
corresponding to the two different phases of the material, and by minimizing
the BV seminorm of u the interface between the two phases gets minimized.

One of the results in this paper is a similar Γ-convergence statement for
the graph Ginzburg–Landau functional:

fε(u) := χ

m∑
i,j=1

ωij(ui − uj)2 +
1
ε

m∑
i=1

W (ui), (1.3)

2As poster child for Γ-convergence the proof has been reproduced, clarified, and ex-
tended upon in various ways; see e.g. [10, 56, 33, 42, 11, 2, 3, 27, 4]
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where ui is the value of u on node i, ωij the weight of the edge connecting
nodes i and j, m is the number of nodes in the graph, ε > 0, and χ ∈ (0,∞)
is a constant independent of ε and m, usually chosen to be χ = 1

2 so the first
summation is the analogue of

∫
|∇u|2 (see Section 2.2). The different terms

in this functional and its scaling will be explained below.
The Euler–Lagrange equations for this functional are a nonlinear extension

of the graph heat equation using the graph Laplacian [26]. Nonlinear elliptic
equations on graphs were investigated in [50], and recently in [46] their well-
posedness was studied.

We study not only the limit ε→ 0 in analogy with the classical continuum
result, but also investigate the limit m → ∞. For a graph embedded in Rn

this can be interpreted as the limit for finer discretization or sampling scale.
In order to make sense of this limiting process we need to assume some
additional structure on the graph that tells us how nodes are added along a
sequence of increasing m. In this paper we consider 4-regular graphs (i.e.,
each node is connected to exactly 4 edges) with uniformly weighted edges in
Sections 4 and 5, and a completely connected graph for the nonlocal means
functional is studied in Section 6, but it is an interesting question if and how
this can be extended to different types of graphs. Adaptation of our results
to a 2-regular graph is fairly direct, but it is not clear at this moment how
to extend our method to other graphs, even regular ones.

1.2. Different scalings on a 4-regular graph. The formulation of fε in
(1.3) does not require the graph to be embedded in a surrounding space,
although an embedding may exist as in the case of the 4-regular graph con-
sidered as an N ×N square grid on the flat torus T2.

We study two natural scalings for the functional on this 4-regular graph.
The first is a direct reformulation of the graph functional fε from (1.3) with
χ = 1

2 and weights equal to N−1 on all existing edges and zero between two
vertices that are not connected by an edge:

hN,ε(u) := N−1
N∑

i,j=1

(ui+1,j−ui,j)2+(ui,j+1−ui,j)2+ε−1
N∑

i,j=1

W (ui,j). (1.4)

The second we get from discretizing the functional FGLε on the square grid
using a forward finite difference scheme for the gradient and the trapezoidal
rule for the integrals:

kN,ε(u) := ε
N∑

i,j=1

(ui+1,j−ui,j)2+(ui,j+1−ui,j)2+ε−1N−2
N∑

i,j=1

W (ui,j). (1.5)
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The subscripts in ui,j denote the horizontal and vertical coordinates along
the square grid.

We will consider Γ-limits of these functionals when ε → 0 and N → ∞
sequentially. We also prove results in the case where we set ε = N−α for α >
0 in a specified range and take N →∞. Based on the Γ-convergence result
in the continuum case we expect hN,ε and kN,ε to converge to total variation
functionals. This intuition turns out to be correct, but with a twist: kN,ε
converges to the total variation functional

∫
T2 |∇u|, but hN,ε converges to the

anisotropic total variation
∫

T2 |ux|+ |uy|. It picks up the directionality of the
grid. Precise results are stated and proved in Sections 4 and 5. These results
fit in very well with the research on Γ-convergence of discrete functionals to
continuum functionals, as in e.g. [15, 17, 5, 18, 6, 7, 8, 23]. In fact, many of
the techniques used in Section 5 are inspired by [5] specifically.

We would like to point out that there is also a substantial literature on the
convergence of graph Laplacians and their eigenvalues and eigenvectors to
continuum limits. See e.g. [40, 36, 12, 41, 13, 44, 45] and references therein.
The techniques used and the kind of results obtained in those papers are
quite different from ours, but in a certain sense our results can be seen as
nonlinear extensions of the graph Laplacian case.

In all cases we have to impose extra constraints on minimizers of the
Ginzburg–Landau functional to avoid trivial minimizers. We prove results
showing that in most cases the addition of a mass constraint or the addition
of an Lp fidelity term to the functional is compatible with the Γ-convergence
results.

1.3. Asymptotic behavior of nonlocal means. The functionals of nonlo-
cal means type—or (anisotropic) nonlocal total variation type—we consider
are built on the square grid in which the graphs are fully connected; see
[21, 34, 35, 20]. Fix Φ ∈ C∞(T2). We study

gN (u) := N−4
N∑

i,j,k,l=1

(ωL,N )i,j,k,l|ui,j − uk,l|, (1.6)

where ωL,N := e−d
2
L,N/σ

2

with σ, L > 0 constants (possibly depending on N)
and

(d2
L,N )i,j,k,l :=

L∑
r,s=−L

(
Φ
( i− r
N

,
j − s
N

)
− Φ

(k − r
N

,
l − s
N

))2
. (1.7)
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If Φ is thought of as an image on T2, as in e.g. [14], then L gives the size of
the pixel neighborhoods whose pairwise comparisons form the graph weights.
As we will see in Section 3, gN arises as the Γ-limit of fε in (1.3) as ε → 0
on this particular fully connected graph. This is a natural class of problems
for which to study Γ-convergence as N →∞.

1.4. Structure of the paper. This paper is structured as follows. Section 2
sets up notation and gives more background information about how to set
up a PDE-to-graph “dictionary” used to find the graph analogue of the
Ginzburg–Landau functional. It also gives more details about Γ-convergence.
In Section 3 the Γ-convergence result for fε is proved. This result holds for
general finite undirected weighted graphs. Next we turn our attention to
the square grid on the torus. In Sections 4 and 5 the Γ-convergence results
for hN,ε and kN,ε respectively are stated and proved. Γ-convergence for the
nonlocal means-type functional gN is discussed in Section 6. We close with a
discussion of our results and open questions for future research in Section 7.

2. Setup

We will start with introducing some general graph theoretical notation.

2.1. Graph notation. Let G = (V,E) be an undirected graph with vertex
(or node) set V , |V | = m ∈ N, and edge set E ⊂ V 2. Consider the space
V of all functions V → R. A function u ∈ V can be seen as a labeling
of the vertices of G. It is useful to number the vertices in V from 1 to m
(in arbitrary but fixed order). We will write Im for the set of integers i
satisfying 1 ≤ i ≤ m. If u ∈ V and ni ∈ V is the ith vertex we will use the
shorthand notation ui := u(ni). Let E be the space of all functions E → R,
which are skew-symmetric with respect to edge direction; i.e., if ϕ ∈ E and
eij := (ni, nj) ∈ E is the edge between the ith and jth vertex in V , we write
ϕij := ϕ(eij) and demand ϕij = −ϕji3. Since the graph is undirected we have
eij ∈ E ⇔ eji ∈ E. When no confusion arises we will abuse notation slightly
and consider eij = eji

4. In this paper we consider weighted graphs, which
means we assume there is given a function ω : E → (0,∞), called the weight
function, which assigns a positive weight to each edge. Because the graph is
undirected the weight function is symmetric: ωij := ω(eij) = ωji. It is often

3We impose skew-symmetry so that E can be viewed as the space of flows as defined in
e.g. [22, Section 2.2]. An interesting topological structure arises in this setting [22, Section
3], but for our current purposes the demand of skew-symmetry neither hinders nor helps
us.

4See note 3.
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useful to extend ω to a function on V 2 instead of on E ⊂ V 2 by identifying
the edge eij with the pair (ni, nj) ∈ V 2 of its end vertices and setting ωij = 0
if and only if eij /∈ E. In particular, if the graph has no self-loops, ωii = 0 for
all i ∈ Im. In the same way we can extend ϕ ∈ E to a function ϕ : V 2 → R
by setting it to zero on node pairs that are not connected by an edge. We
can incorporate unweighted graphs in this framework by viewing them as
weighted graphs with the range of ω restricted to be {0, 1}. We define the
degree of vertex ni as di :=

∑
j∈Im ωij . If G has no isolated vertices, then

for every i ∈ Im, di > 0.

2.2. Graph Laplacians, Dirichlet energy, and total variation. Our
first goal is to define operators that serve as the graph-gradient and graph-
divergence operators. Using these operators we can then define a graph
Laplacian, a Dirichlet energy, and isotropic and anisotropic total variations
on the graph. There are many possible choices to do this. Ours follow
[41, Section 2] and [35] and are presented here. In Appendix A we give
details and background on the justification of these choices. V ∼= Rm and5

E ∼= Rm(m−1)/2 are Hilbert spaces defined via the following inner products:

〈u, v〉V :=
∑
i∈Im

uivid
r
i , 〈ϕ, φ〉E :=

1
2

∑
i,j∈Im

ϕijφijω
2q−1
ij ,

for some r ∈ [0, 1] and q ∈ [1/2, 1]. Different choices of r and q are useful in
different contexts, as will become clear later in this section. We also define
the dot product as the operator from E × E to V for ϕ, φ ∈ E as follows:

(ϕ · φ)i :=
1
2

∑
j∈Im

ϕijφijω
2q−1
ij .

With the Hilbert space structure in place, if we define a difference operator,
then all the other operators and functionals will follow naturally. We define
the difference operator or gradient ∇ : V → E as

(∇u)ij := ω1−q
ij (uj − ui).

Notice that the choice q = 1 makes the gradient operator nonlocal on the
graph, because its dependence on ωij disappears. The locality reappears in
the E-“inner product” (or strictly speaking sesquilinear form), which is thus
turned semidefinite. The opposite is the case for q = 1

2 .

5The factor 1
2

in m(m−1)/2 comes in because the graph is undirected. Strictly speaking

E is not isomorphic to Rm(m−1)/2 if we impose skew-symmetry, but this distinction is not
relevant for our purposes. The Hilbert space structure can be defined in any case.
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The other graph objects of interest for this paper now follow:
• Norms:

- ‖u‖V :=
√
〈u, u〉V =

√∑
i∈Im u

2
i d
r
i ,

- ‖ϕ‖E :=
√
〈ϕ,ϕ〉E =

√
1
2

∑
i,j∈Im ϕ

2
ijω

2q−1
ij ,

- ‖ϕ‖i :=
√

(ϕ · ϕ)i=
√

1
2

∑
j∈Im ϕ

2
ijω

2q−1
ij (note that ‖ · ‖E,dot ∈ V),

- ‖u‖V,∞ :=max{|ui| : i∈Im} and ‖ϕ‖E,∞ :=max{|ϕij | : i, j∈Im}.
• The Dirichlet energy does not depend on r or q:

1
2
‖∇u‖2E =

1
4

∑
i,j∈Im

ωij(ui − uj)2.

• The divergence div : E → V defined as the adjoint of the gradient6:

(divϕ)i :=
1

2dri

∑
j∈Im

ωqij(ϕji − ϕij).

• A family of graph Laplacians ∆r := div ◦∇ : V → V (not to be confused
with the p-Laplacians from the literature): Writing out this definition gives

(∆ru)i := d1−r
i ui −

∑
j∈Im

ωij
dri
uj =

∑
j∈Im

ωij
dri

(ui − uj).

If we view u as a vector in Rm we can also write

∆ru = (D1−r −D−rW )u,

where Dr is the diagonal matrix with diagonal elements Dii = dri and W
is the weight matrix with elements Wij = ωij . We can recover two of the
most frequently used graph Laplacians from the literature (cf. [26, 43, 41])
by choosing either r = 0 or r = 1. For r = 0 we get the unnormalized
graph Laplacian, and for r = 1 we have the random-walk Laplacian, which
also goes by the name of (asymmetric) normalized Laplacian. For the latter
case, the connection with random walks comes from the fact that D−1W is
a stochastic matrix; i.e., the sum of the elements in each of its rows equals
1. Note that ∆r is only symmetric if r = 0. A third graph Laplacian which
is often encountered in the literature is the symmetric normalized Laplacian
I −D−

1
2WD−

1
2 , where I is the m-by-m identity matrix. However, this one

does not fit well into the current framework and we will not consider it here.

6If the graph has an isolated node i for which ωij = for all j and di = 0, we interpret
this definition as (divϕ)i = 0.
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• Total variations7:
- The isotropic total variation TV : V → R defined by

TV(u) := max{〈divϕ, u〉V : ϕ ∈ E , max
i∈Im

‖ϕ‖i ≤ 1}

=
√

2
2

∑
i∈Im

√∑
j∈Im

ωij(ui − uj)2.

- A family of anisotropic total variations TVaq : V → R defined by

TVaq(u) := max{〈divϕ, u〉V : ϕ ∈ E , ‖ϕ‖E,∞ ≤ 1} =
1
2

∑
i,j∈Im

ωqij |ui − uj |.

TV and TVa 1
2

appear in [35] as isotropic and anisotropic total vari-
ation respectively. In this paper we show that TVa1 is the Γ-limit of
a sequence of Ginzburg–Landau-type functionals (Theorem 3.1).

Because we can identify u ∈ V with a vector û ∈ Rm and all norms on
Rm are equivalent, we can express convergence in any of these norms. For
definiteness we choose a simple norm, not dependent on the degree function
d: For a sequence {un}∞n=1 ⊂ V and u∞ ∈ V and corresponding vectors
ûn, û∞ ∈ Rm we define

un → u∞ as n→∞ if and only if |ûn − û∞|2 → 0 as n→∞,

where | · |p, with p ∈ N, is defined for û ∈ Rm as

|û|p :=
( ∑
i∈Im

ûpi

) 1
p
,

with the subscript i labeling the elements of the vector.
Where this does not lead to confusion, we will use the same notation u

for both the function u ∈ V and the corresponding vector û ∈ Rm.

2.3. The functionals. A standard choice of double-well potential isW (s) =
s2(s−1)2. This is a representative example in the class of potentials for which
our results hold. We always assume that W ∈ C2(R), W ≥ 0, and W (s) = 0
if and only if s ∈ {0, 1}. Different lemmas and theorems in this paper require
different additional assumptions:

7An interesting question which falls outside the scope of this paper is in which respects,
if any, the curvatures derived as “derivatives” from these total variations resemble the
continuum case curvature.



Γ-convergence of graph Ginzburg–Landau functionals 1123

(W1) There exists two disjoint open intervals Î0 and Î1 containing 0 and 1
respectively, constants c0, c1 > 0, and a β > 0, such that

0 ≤ max{W (s) : s ∈ Î} < min{W (s) : s ∈ Îc}, where Î := Î0 ∪ Î1, and

∀s ∈ Î0, W (s) ≥ c0|s|β, and ∀s ∈ Î1, W (s) ≥ c1|s− 1|β. (2.1)

(W2) There exists a c > 0 such that for large |s|, W (s) ≥ c(s2 − 1).
(W3) There exist c1, c2 > 0 and p > 0 such that for large |s|, c1|s|p ≤

W (s) ≤ c2|s|p.
(W4) There exist c3, c4 > 0 and q > 0 such that for large |s|, c3|s|q ≤

W ′(s) ≤ c4|s|q.
(W1) describes the behavior near the wells. It says thatW is strictly bounded
away from zero outside of neighborhoods of its wells and inside these neigh-
borhoods W has a polynomial lower bound. We need it when we study the
simultaneous scaling Γ-limit for hαN , and it gives us explicit estimates of how
quickly sequences of functions with bounded Ginzburg–Landau “energy” ap-
proach the wells of the potential. Assumption (W2) is a coercivity condition
that will help establish compactness in some situations (it could be replaced
by any assumption that allows the conclusion that

∫
T2 W (u) is bounded from

below by a function which is coercive in ‖u‖L2(T2)). (W3) with p ≥ 2 is a
condition needed to prove compactness in the classical Modica–Mortola Γ-
convergence result for FGLε (see e.g. [56, Proposition 3]). In addition, we
will use its lower bound to prove equi-coerciveness (Definition 2.2) of the
functional kαN , which is defined below in (2.4). Finally, we will need (W4) to
control the behavior of W in between grid points, when studying the simul-
taneous scaling Γ-limit for kαN . As is easily checked, the standard example
W (s) = s2(s − 1)2 satisfies all the above assumptions for correctly chosen
constants.

We frequently encounter binary functions in V and write

Vb := {u ∈ V : ∀i ∈ Im, ui ∈ {0, 1}} .
The graph Ginzburg–Landau functional fε : V → R from (1.3) can be defined
in terms of the Dirichlet energy:

fε(u) = 2χ‖∇u‖2E +
1
ε

m∑
i=1

W (ui), with χ ∈ (0,∞).

Let T2 be the two-dimensional flat unit torus. We construct a square grid
with m = N2 and nodes GN := N−1Z2 ∩ T2. Interpreting GN as a graph
we can use the notation from Section 2.1 with subscript N , e.g. VN are the
vertices of GN , VN are the real-valued functions on VN , (Vb)N the binary
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({0, 1}-valued) functions on VN , etc. We understand the vertices VN to be
embedded in T2. To distinguish the horizontal and vertical directions in our
graph when working on GN , instead of ui we will write ui,j := u(ni,j), where
ni,j := (i/N, j/N) ∈ VN ⊂ T2. We refer to a single square in the grid by

Si,jN := [i/N, (i+ 1)/N)× [j/N, (j + 1)/N). (2.2)

We remind the reader that we introduced three different functionals on the
square grid: the graph-theoretical Ginzburg–Landau functional hN,ε : VN →
R in (1.4), the discretized Ginzburg–Landau functional kN,ε : VN → R in
(1.5), and the “sharp interface” (i.e., ε → 0) nonlocal means functional
gN : VbN → R in (1.6).

We call hN,ε the graph-theoretical Ginzburg–Landau functional because
it is equal to fε from (1.3) if we choose the weight ω in fε as

ω(ni,j , nk,l) :=
{
N−1 if (|i− k| = 1 ∧ j = l) ∨ (i = k ∧ |j − l| = 1),
0 otherwise,

and χ = 1
2 . The kN,ε we get by using the trapezoidal rule and a standard

finite-difference scheme to discretize the Ginzburg–Landau functional FGLε .
We have used the periodicity to relate the terms of the form (ui,j − ui−1,j)2

and (ui,j − ui,j−1)2 to (ui+1,j − ui,j)2 and (ui,j+1− ui,j)2 in the sum, respec-
tively.

To study Γ-convergence for the “simultaneous” limits ε→ 0 and N →∞
of hN,ε and kN,ε we set ε = N−α, for α > 0, and let N →∞ in the functionals

hαN (u) := N−1
N∑

i,j=1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 +Nα
N∑

i,j=1

W (ui,j),

(2.3)

kαN (u) := N−α
N∑

i,j=1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 +Nα−2
N∑

i,j=1

W (ui,j).

(2.4)

We prove Γ-convergence results for hαN in Section 4.2 and for kαN in Sec-
tion 5.2.

Note that hαN = Nγ−1kγN if γ = α+3
2 . This shows that we do not expect

hαN and kγN to have the same limit, unless possibly if α = γ = 1. This value
falls outside the regimes for α we consider, and hence we do find different
limits.
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2.4. Γ-convergence. Γ-convergence was introduced by De Giorgi and Fran-
zoni in [29]. It is a type of convergence for function(al)s that is tailored to the
needs of minimization problems, as we will see below. A good introduction
to the subject is [15], the standard reference work is [28].

Definition 2.1. Let X be a metric space and let {Fn}∞n=1 be a sequence
of functionals Fn : X → R ∪ {±∞}. We say that Fn Γ-converges to the
functional F : X → R∪{±∞}, denoted by Fj

Γ→ F , if for all u ∈ X we have
that

(LB) for every sequence {un}∞n=1 such that un → u it holds that F (u) ≤
lim inf
n→∞

Fn(un) and

(UB) there exists a sequence {un}∞n=1 such that F (u) ≥ lim sup
n→∞

Fn(un).

The lower bound condition (LB) tells us that the values along the sequence
Fn(un) are bounded from below by F (u); the upper bound (UB) shows that
the value F (u) is actually achieved. Combined with a compactness or equi-
coerciveness condition (Definition 2.2 below), this allows for conclusions on
the minimizers of Fn and F .

It is useful to note that to prove (LB) for a given sequence {un}∞n=1

we only need to prove it for a subsequence {un′}∞n′=1 ⊂ {un}∞n=1 such
that lim

n′→∞
Fn′(un′) = lim inf

n→∞
Fn(un). If (LB) is satisfied for such a se-

quence (which always exists), then F (u) ≤ lim inf
n′→∞

Fn′(un′) = lim
n′→∞

Fn′(u′n) =

lim inf
n→∞

F (un). Hence, when proving (LB) we will assume without loss of gen-

erality that {un}∞n=1 is such a sequence. The uniqueness of the limit then
implies that it suffices to prove (LB) for any subsequence. Clearly we can
also assume that lim inf Fn(un) < ∞, and hence it suffices to prove (LB)
for a specific subsequence {un′′}∞n′′=1 for which there is a C > 0 such that
Fn′′(un′′) ≤ C. In practice this means that to prove (LB) we can assume a
uniform bound on Fn(un) and freely pass to subsequences when needed.

If we are working with functionals that depend on a continuous parameter,
e.g. ε → 0 or N → ∞, we have to prove (LB) and (UB) for an arbitrary
sequence {εn}∞n=1 with εn → 0 as n → ∞ (or {Nn}∞n=1 with Nn → ∞ as
n→∞).

Definition 2.2. Let X be a metric space and let {Fn}∞n=1 be a sequence of
functionals Fn : X → R∪{±∞}. We say the sequence is equi-coercive if for
every t ∈ R there exists a compact set Kt ⊂ X such that for every n ∈ N
{u ∈ X : Fn(u) ≤ t} ⊂ Kt.
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In practice equi-coerciveness is proved by showing that any sequence
{un}∞n=1 for which Fn(un) is uniformly bounded has a convergent subse-
quence.

Γ-convergence combined with equi-coerciveness allows us to conclude the
following result.

Theorem 2.3 (Chapter 7 in [28] and Theorem 1.21 in [15]). Let X be a
metric space, {Fn}∞n=1 be a sequence of equi-coercive functionals Fn : X →
R ∪ {±∞}, and let F be the Γ-limit of Fn for n → ∞. Then there exists a
minimizer of F in X and min{F (u) : u ∈ X} = lim

n→∞
inf{Fn(u) : u ∈ X}.

Furthermore, if {un}∞n=1 ⊂ X is a precompact sequence such that

lim
n→∞

Fn(un) = lim
n→∞

inf{Fn(u) : u ∈ X},

then every cluster point of this sequence is a minimizer of F .

Following [5] for our purposes it turns out it is often more useful to refor-
mulate Γ-convergence in terms of the Γ-lower limit

F ′(u) := inf{lim inf
n→∞

Fn(un) : un → u}

and the Γ-upper limit

F ′′(u) := inf{lim sup
n→∞

Fn(un) : un → u},

[28, Definition 4.1]. It can be shown, [28, Remark 4.2, Proposition 8.1], [16],
that our definition of Γ-convergence above is equivalent to the following two
conditions. For each u ∈ X we have that
(LB′) F (u) ≤ F ′(u) and
(UB′) F (u) ≥ F ′′(u).

The benefit of this reformulation is that the functions F ′ and F ′′ are lower
semicontinuous [28, Proposition 6.8], which comes in handy in Section 5. In
fact, since conditions (LB) and (LB′) are equivalent, we will sometimes use
the combination (LB)+(UB′) to prove Γ-convergence in this paper. Note
that (UB) implies (UB′).

2.5. Constraints. It is common in semisupervised learning applications to
have a mass constraint or an additional term in the functional corresponding
to a fit to the known data. Moreover, such constraints are typically necessary
to obtain nontrivial minimizers. We need to check that these constraints are
compatible with the convergence.

First consider the case of adding a fidelity term of the form λ|u − f |pp to
the functional, where f ∈ V is a given function (usually representing some
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known data to which the minimizer should be similar) defined on some or
all of the vertices in V and λ > 0 is a parameter. If p agrees with the
topology of the Γ-convergence we can use the property that Γ-limits are
stable under addition of a continuous term or a sequence of continuously
convergent terms [28, Definition 4.7, Propositions 6.20–21] to conclude that
the Ginzburg–Landau functionals plus fidelity term again Γ-converge. We
will summarize the results that are relevant for us in the following definition
and lemma, based on the cited definition and propositions in [28].

Definition 2.4. Let X be a metric space, and let {Fn}∞n=1 be a sequence
of functionals Fn : X → R ∪ {±∞}. We say the sequence is continuously
convergent to a function F : X → R ∪ {±∞} if for every u ∈ X and for
every η > 0 there is an N̄ ∈ N and a δ > 0 such that for all n ≥ N̄ and
v ∈ X with ‖u− v‖ < δ we have |Fn(v)− F (u)| < η.

Lemma 2.5. Let X be a metric space, and let {Fn}∞n=1 be a sequence of
functionals Fn : X → R ∪ {±∞} which Γ-converges to F : X → R ∪ {±∞}
and {Hn}∞n=1 be a sequence of functionals Hn : X → R ∪ {±∞} which is
continously convergent to H : X → R ∪ {±∞}; then Fn + Hn Γ-converges
to F + H. If Ĝ : X → R ∪ {±∞} is a continuous functional, then Fn + Ĝ

Γ-converges to F + Ĝ.

If instead a mass constraint is imposed on the minimizers we have to check
that each convergent sequence preserves the constraint (to make it compati-
ble with the lower bound and compactness conditions) and that the recovery
sequence from the upper bound condition does satisfy the constraint (or can
be adapted to satisfy it, without violating the upper bound condition). Since
we are dealing with Lp convergence, the former is usually trivially satisfied,
but the latter does demand some more attention. Details for each of the
functionals are provided in the relevant sections.

For functions u ∈ Vb we carefully need to determine the form of our mass
constraint. The constraint

∑m
i=1 ui = M leads to shrinking support when

m → ∞, which is unwanted. An alternative condition is an average mass
constraint of the form 1

m

∑m
i=1 ui = M . Note that

∑m
i=1 ui can take on only

integer values between 0 and m, and hence mM should be of that form as
well in order for the average mass constraint not to lead to an empty set
of admissible minimizers. If we impose this for all m this is only possible
if M = 0 or M = 1; however, specific subsequences of m can satisfy this
condition for different values of M (e.g. if M = 1

2 and we consider even
m). Hence the choice of M can constrain the subsequences of m which
are admissible. In order to avoid the possible difficulties with the average
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mass equality, one can also impose an average mass inequality. Since the
arguments for the mass equality easily generalize to an inequality, we will
not discuss this situation further.

3. Γ-convergence of fε

3.1. Γ-convergence and compactness. In this section we prove Γ-conver-
gence and compactness for the functional fε : V → R from (1.3).

Theorem 3.1 (Γ-convergence). fε
Γ→ f0 as ε→ 0, where

f0(u) :=
{
χ
∑

i,j∈Im ωij |ui − uj | if u ∈ Vb,
+∞ otherwise

=
{

2χTVa1(u) if u ∈ Vb,
+∞ otherwise.

Theorem 3.2 (Compactness). Let W satisfy the coercivity condition (W2),
let {εn}∞n=1 ⊂ R+ be a sequence such that εn → 0 as n → ∞, and let
{un}∞n=1 ⊂ V be a sequence such that there exists a C > 0 such that for all
n ∈ N fεn(un) < C. Then there exists a subsequence {un′}∞n′=1 ⊂ {un}∞n=1

and a u∞ ∈ Vb such that un′ → u∞ as n→∞.

Although in FGLε the first term is scaled by ε, the first term of fε contains
no ε. The reason for this is that the Dirichlet energy in FGLε is unbounded
for the binary functions u that form the domain of the limit functional FGL0 .
However, the difference terms in fε are finite even for the binary functions
and thus need no rescaling. The proof of Γ-convergence uses this fact to
view the difference terms as a continuous perturbation of the functional

wε(u) :=
1
ε

∑
i∈Im

W (ui).

Lemma 3.3. The sequence of functionals gε Γ-converges: wε
Γ→

ε→0
w0, where

w0 : V → {0,∞} is defined via

w0(u) :=
{

0 if u ∈ Vb,
+∞ otherwise.

Proof. To prove the required lower bound (LB) let u ∈ V and consider
sequences {εn}∞n=1 and {un}∞n=1 such that εn → 0 and un → u as n → ∞.
If u ∈ Vb, from gε ≥ 0 it follows that w0(u) = 0 ≤ lim inf

n→∞
wεn(un). If on

the other hand u ∈ V \ Vb, then for large enough n, ∃v̄ ∈ V such that
un(v̄) /∈ {0, 1} and hence

lim inf
n→∞

wεn(un) ≥ lim inf
n→∞

1
εn
W (v̄) =∞ = w0(u).
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For the upper bound (UB) we can assume without loss of generality that
u ∈ Vb. Define for every n ∈ N un := u; then trivially un → u if n → ∞,
and furthermore lim sup

n→∞
wεn(un) = 0 = w0(u). �

Proof of Theorem 3.1. Define

ŵ(u) := χ
∑
i,j∈Im

ωij(ui − uj)2.

ŵ is a polynomial on Rm and hence continuous. Γ-convergence is stable
under continuous perturbations (e.g. [28, Proposition 6.21]). Since fε is a
continuous perturbation of wε we have by Lemma 3.3 fε

Γ→ ŵ+w0 as ε→ 0.
We complete the proof by noting that if u ∈ Vb, then

ŵ(u) = χ
∑
i,j∈Im

ωij |ui − uj |. �

Proof of Theorem 3.2. By the uniform bound on fεn(un) we have∑
i∈Im

W ((un)i) ≤ Cεn.

Combined with the coercivity condition (W2) on W we conclude that for n
large enough the sequence {un}∞n=1 is bounded, and hence by the Bolzano–
Weierstrass theorem there exists a converging subsequence with limit u∞.
Since W ∈ C2(R) and εn → 0 as n →∞, we conclude that W (u∞(vi)) = 0
for all i ∈ Im and hence u∞ ∈ Vb. �

Remark 3.4. Since f0 is defined on binary functions u, if we write

Sk := {i ∈ Im : ui = k} for k ∈ {0, 1},

we can rewrite f0 as

f0(u) =
{
χ
∑

i∈S0,j∈S1
ωi,j if u ∈ Vb,

+∞ otherwise.

Minimizing f0 thus corresponds to finding a minimal graph cut of G, i.e.,
dividing the graph into clusters with minimal edge weight between them.
Such a minimization requires an extra constraint to avoid trivial minimizers.
A common choice is to prescribe the number of clusters (in this case two)
one wants, or to introduce a normalization into the sum of the weights based
on the cluster sizes (e.g. normalized cut, normalized association [55], and
Cheeger cut [57])). One could also minimize f0 under a fixed-mass constraint
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(see Section 3.2 below). One often relaxes the problem of normalized graph-
cut minimization by losing the binarity constraint, e.g. in spectral clustering
[51, 43].

If the weight function ω is such that there is a nontrivial partition A∪B =
Im such that ωij = 0 for i ∈ A and j ∈ B, then a nontrivial minimizer of f0

(without the mass constraint) is clearly given via S0 = A and S1 = B. In
this case we can write

ui =

∑
j∈Im ωijuj

di
,

which is of a form related to the image-denoising method known as nonlocal
means; cf. [21].
Remark 3.5. In this paper we assume that W has wells at 0 and 1. The
proofs in this section make no use of this fact and can easily be extended to
potentials W with wells at values s1 and s2. In this case the set Vb needs
to be redefined as the set of functions taking values in {s1, s2}, and the
limit functional f0 from Theorem 3.1 is multiplied by a factor |s1−s2|, since
(ui − uj)2 = |s1 − s2||ui − uj | for u ∈ Vb.

3.2. Constraints. Next we show that the addition of a fidelity term λ|u−
f |pp or a mass constraint is compatible with the Γ-convergence.

Theorem 3.6 (Constraints). fε+λ| ·−f |pp
Γ→ f0 +λ| ·−f |pp as ε→ 0, where

p ∈ R+, λ > 0, and a given function f ∈ V (or possibly a given function
f : U → R where U is a strict subset of the vertex set V and the sum in
| · −f |pp is restricted to vertices in U). Compactness for fε + λ| · −f |pp as in
Theorem 3.2 holds. If instead, for fixed M > 0, the domain of definition of
fε is restricted to

VM := {u ∈ V :
∑
i∈Im

ui = mM},

where M is such that mM is an integer between 0 and m, then the results of
Theorems 3.1 and 3.2 remain valid, with the domain of f0 restricted to VM .

Proof. The fidelity term λ|u − f |pp is a polynomial; hence, a continuous
perturbation independent of ε to fε and thus Γ-convergence follows by The-
orem 3.1 and Lemma 2.5. The addition of this term does not affect the
compactness property at all.

The mass constraint is compatible with the limit functional being defined
on binary functions. The constraint is preserved under convergence in V ∼=
Rm, so it is compatible with (LB) from Definition 2.1 and compactness.
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If u ∈ Vb satisfies the mass constraint, then trivially so does the recovery
sequence {un}∞n=1 used to prove (UB) from Definition 2.1 in Lemma 3.3. �

4. Γ-limits for the graph-based functional hN,ε

In this section we will study the convergence properties of hN,ε from (1.4).
We consider two different cases. In the first we first take the limit ε→ 0 and
then let N →∞; in the second we take both limits at once by substituting
ε = N−α for well-chosen α > 0 and then considering the limit N →∞ for hαN
in (2.3). These results have a similar feel as numerical convergence results;
however, the lack of regularity of the binary limit functions complicates the
results and proofs.

Remark 4.1. We note that, while we give the proofs for T2 in Sections 4.1
and 4.2, they can easily be generalized to Td for any d ∈ N, if we let the
scaling factor in the first term of hN,ε in (1.4) be N1−d instead of N−1 and
we change hαN in (2.3) accordingly:

hN,ε(u) := N1−d
N∑

i,j=1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + ε−1
N∑

i,j=1

W (ui,j),

hαN (u) := N1−d
N∑

i,j=1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 +Nα
N∑

i,j=1

W (ui,j).

For the extra fidelity term in Theorem 4.13 the scaling factor then needs to
be N−d instead of N−2.

4.1. Compactness and sequential Γ-limits: first ε→ 0, then N →∞.
By Theorem 3.1 we immediately have hN,ε

Γ→ hN,0 as ε → 0, where hN,0 is
defined for u ∈ V as

hN,0(u) :=
{
N−1

∑N
i,j=1

(
|ui+1,j − ui,j |+ |ui,j+1 − ui,j |

)
if u ∈ VbN ,

+∞ otherwise.

In this section we prove that hN,0
Γ→ h∞,0 as N → ∞, where h∞,0 is

defined for u ∈ L1(T2) as

h∞,0(u) :=


∫

T2

|ux|+ |uy| if u ∈ BV (T2; {0, 1}),

+∞ otherwise.
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The anisotropic total variation in h∞,0 is defined as∫
T2

|ux|+ |uy| := sup
{∫

T2

udiv v : v ∈ C1
c (T2; R2), ∀x |v(x)|∞ ≤ 1

}
,

where for a vector v(x) = (v1(x), v2(x)) ∈ R2, the norm | · |∞ is defined by

|v(x)|∞ := max{|v1(x)|, |v2(x)|}.

For functions u ∈ BV (T2; {0, 1}) this anisotropic total variation gives the
length of the (reduced8) boundary of the set {u = 1} projected onto the
horizontal and vertical axes (counting multiplicities).

We prove a compactness and Γ-convergence result.

Theorem 4.2 (Compactness). Let {Nn}∞n=1 ⊂ N satisfy Nn → ∞ as n →
∞, and let {un}∞n=1 ⊂ L1(T2) be a sequence for which there is a constant C >
0 such that for all n ∈ N, hNn,0(un) ≤ C. Then there exists a subsequence
{un′}∞n′=1 ⊂ {un}∞n=1 and a u ∈ BV (T2; {0, 1}) such that un′ → u in L1(T2)
as n′ →∞.

Theorem 4.3 (Γ-convergence). hN,0
Γ→ h∞,0 as N → ∞ in the L1(T2)

topology.

The convergence of hN,0 to an anisotropic total variation is reminiscent of
the related, but different, results in [23].

Because the limit function h∞,0 is defined on L1(T2) functions, it will
be useful to identify the binary functions on the square graph, i.e., the
functions in VbN with a subset of L1(T2), namely binary functions on T2 that
are piecewise constant on the squares of the grid. Using the notation Si,jN
from (2.2) we define

AN :=
{
u ∈ L1(T2) : ∀(i, j) ∈ I2

N , u is constant a.e. on Si,jN

}
, (4.1)

AbN :=
{
u ∈ AN : u ∈ L1(T2; {0, 1})

}
.

We construct a bijection between the normed spaces VN and AN by iden-
tifying u ∈ VN with the unique ũ ∈ AN which satisfies ũ ≡ ui,j almost
everywhere on Si,jN for all (i, j) ∈ I2

N . It is easy to check that convergence in
VN corresponds to Lp convergence in AN (1 ≤ p <∞) and that the bijection
maps the subset VbN to AbN and vice versa (for its inverse). In what follows
we will drop the tilde if this does not lead to confusion.

8For the definition of reduced boundary see [9, Definition 3.54].
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With this identification we write for u ∈ AN

hN,0(u) =


∫

T2

|ux|+ |uy| if u ∈ AbN ,

+∞ otherwise.
(4.2)

In fact, for our Γ-convergence purposes, without loss of generality we extend
the functional to all u ∈ L1(T2) such that hN,0(u) = +∞ if u ∈ L1(T2)\AbN .

First we prove the compactness result.

Proof of Theorem 4.2. By the definition of the isotropic and anisotropic
total variation and (4.2) we have for all n ∈ N∫

T2

|∇un| ≤
∫

T2

|(un)x|+ |(un)y| ≤ C.

In addition, for each n ∈ N, un ∈ AbNn ; hence, ‖un‖L1(T2) ≤ 1. We deduce
that the sequence {un}∞n=1 is uniformly bounded in the BV norm, and thus
by compactness ([37, Theorem 1.19] or [32, 5.2.3 Theorem 4]) there exists a
subsequence {un′}∞n′=1 ⊂ {un}∞n=1 and a u ∈ BV (T2) such that un′ → u in
L1(T2) as n′ →∞. Since all un take the values 0 and 1 almost everywhere,
by pointwise almost-everywhere convergence (after possibly going to another
subsequence) so does u. �

In the next lemma (LB) from Definition 2.1 is proved.

Lemma 4.4 (Lower bound). Let u ∈ L1(T2) and let {un}∞n=1 ⊂ L1(T2) and
{Nn}∞n=1 ⊂ N be such that un → u in L1(T2) and Nn →∞ as n→∞. Then

h∞,0(u) ≤ lim inf
n→∞

hNn,0(un).

Proof. First consider the case where u ∈ BV (T2; {0, 1}); then without loss
of generality we can assume that un ∈ AbNn . Analogous to the isotropic total
variation also this anisotropic total variation is lower semicontinuous with
respect to L1 convergence [24, Lemma A.5]; hence, we find

h∞,0(u) =
∫

T2

|ux|+ |uy| ≤ lim inf
n→∞

∫
T2

|(un)x|+ |(un)y| = lim inf
n→∞

hNn,0(un).

If u ∈ L1(T2) \BV (T2; {0, 1}) and un → u in L1(T2), then

h∞,0(u) =∞ = lim inf
n→∞

hNn,0(un),

which we prove via contradiction: Assume lim inf
n→∞

hNn,0(un) <∞; then there

is a subsequence {un′}∞n′=1 ⊂ {un}∞n=1 for which hNn′ ,0(un′) is uniformly
bounded, and hence by Theorem 4.2 un′ → û in L1(T2) as n′ →∞, where û ∈
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BV (T2; {0, 1}). By the uniqueness of limit û = u, which is a contradiction.
�

To prove the lim sup inequality we use the following results from [24]
(which we give here in a form adapted to our situation, which follows easily
from the results in [24]).

Lemma 4.5 (Corollary A.4 and Theorem 4.1 from [24]). For u ∈ BV (T2)
we have∫

T2

|ux|+ |uy|

= sup
{∫

T2

udiv v : v ∈ L∞(T2; R2), div v ∈ L∞(T2), |v(x)|∞ ≤ 1 a.e.
}
.

Furthermore, for each u ∈ AbN there exists a v ∈ L∞(T2; R2) such that
|v(x)|∞ ≤ 1 almost everywhere,

−
∫

T2

udiv v =
∫

T2

|ux|+ |uy|,

and ‖div v‖L∞(T2) = 4N .

The first result in the above lemma says we can relax the condition on
the admissible vector fields in the definition of the anisotropic total variation
to L∞ vector fields with essentially bounded divergence. The second result
shows that the supremum is achieved by a specific vector field if u ∈ AbN .

Lemma 4.6 (Upper bound). Let u ∈ L1(T2) and {Nn}∞n=1 ⊂ N be such that
Nn → ∞ as n → ∞. Then there exists a sequence {un}∞n=1 ⊂ L1(T2) such
that un → u in L1(T2) as n→∞ and h∞,0(u) ≥ lim sup

n→∞
hNn,0(un).

Proof. Without loss of generality we can assume that u ∈ BV (T2; {0, 1}).
Construct un as follows. For x ∈ Si,jNn define

un(x) :=
{

1 if (Si,jNn)◦ ⊂ suppu,
0 otherwise.

In words, un takes the value one on those squares of the grid whose inte-
rior lies completely in the support of u and zero on the other squares. By
∂∗ suppu denote the reduced boundary of the set suppu, i.e., all points in
∂ suppu for which there is a well-defined normal vector (see [9, Definition
3.54]). Since suppun is the maximal set which is both a union of squares
on the grid and is contained in suppu, the difference in area between suppu
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and suppun is bounded by the length of the reduced boundary of suppu
times the area of a square; i.e.,∫

T2

|un − u| ≤ H1(∂∗ suppu)N−2
n .

Because u ∈ BV (T2; {0, 1}) the set suppu has finite perimeter, and hence
un → u in L1(T2).

For each un let vn ∈ L∞(T2; R2) be the vector field whose existence is
guaranteed by Lemma 4.5; then∫

T2

|(un)x|+ |(un)y| = −
∫

T2

un div vn = −
∫

T2

udiv vn +
∫

T2

(u− un) div vn.

(4.3)
For the last term we have∣∣∣ ∫

T2

(u− un) div vn
∣∣∣ ≤ ‖u− un‖L1(T2)‖ div vn‖L∞(T2)

≤ 4H1(∂∗ suppu)N−1
n → 0, as n→∞.

Hence, by the first statement of Lemma 4.5 we have

lim sup
n→∞

∫
T2

|(un)x|+ |(un)y| = lim sup
n→∞

(
−
∫

T2

udiv vn
)

≤ lim sup
n→∞

∫
T2

|ux|+ |uy| =
∫

T2

|ux|+ |uy|,

which proves the result. �

Proof of Theorem 4.3. Combining Lemmas 4.4 and 4.6 proves the Γ-
convergence result in Theorem 4.3. �

Remark 4.7. Note that we could have used any Lp space instead of L1

in the results above. Because T2 is bounded, convergence in Lp implies
convergence in L1, and so the result of Lemma 4.4 is easily recovered. For
Theorem 4.2 and Lemma 4.6 we note that because un and u are binary
functions taking values 0 and 1 almost everywhere, the bound on their Lp

difference is the same as that on their L1 difference, and the results follow
again.

We end this section with an illustration of the preference for squares and
rectangles of hN,0.

Lemma 4.8 (Minimizers of hN,0). Let M ∈ [0, 1] be such that N2M = K2

for some K ∈ N.
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If M ∈ [0, 1
4), then u0 is a minimizer of hN,0 over all u ∈ AbN that satisfy∫

T2 u = M if and only if u0 is the characteristic function of a square.
If M ∈ (1

4 , 1), then u0 is a minimizer if and only if it is the characteristic
function of a rectangle of the form R = [a, b] × [0, 1] ⊂ T2 or R = [0, 1] ×
[a, b] ⊂ T2 for a and b that satisfy the mass constraint.

If M = 1
4 , u0 is a minimizer if and only if it is the characteristic function

of a square or a rectangle R as above.

Proof. First consider the square grid GN to be embedded in R2 instead of in
T2 so that we do not have periodic boundary conditions on [0, 1]2. Let u be
the characteristic function of a set Ω. We can assume Ω is connected, because
else hN,0(u) can be lowered by rearranging Ω to be connected without chang-
ing the mass. Let u0 have the square with sides of length L0 = KN−1 =

√
M

as support, and let Ω be contained in a rectangle with sides of lengths L and
B. Then

∫
[0,1]2 u ≤ LB, and hence

hN,0(u0) = 4L0 = 4
(∫

T2

u
)1/2

≤ 4
√
LB ≤ 2(L+B) ≤ hN,0(u),

with equality if and only if L = B = L0. Hence characteristic functions of
squares are the minimizers of hN,0 if we ignore periodic boundary conditions.

However, on the periodic torus if Ω is a rectangle we can use periodicity
to eliminate two sides of the rectangle. This can be done only if the other
two sides have length 1 and hence hN,0(u) = 2. This beats the square if
4L0 = 4

√
M > 2. �

It is worth noting here that this asymptotic behavior of hN,ε is not acces-
sible via numerical simulations of a gradient flow, since it is dependent on
ε being small enough for the minimizers to be essentially binary and hence
not differentiable.

4.2. Simultaneous scaling Γ-limit for hαN . In Section 4.1 we first took
the limit ε → 0 for hN,ε before letting N → ∞. In this section we will
consider the limit if we let both parameters go to their limit simultaneously.
To this end we choose ε = N−α for α > 0 and consider the limit N →∞ of
hαN in (2.3). We identify VN with AN in the sense of Section 5.1 and extend
hαN to all of L1(T2) by setting hαN (u) := +∞ for u ∈ L1(T2) \ AN .

We show that the Γ-limit is again given by h∞,0 if α is large enough,
depending on the growth rate β of W around its wells given in assumption
(W1).
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Theorem 4.9 (Γ-convergence). Assume that W satisfies condition (W1) for
some β > 0 in (2.1), and let α > β; then hαN

Γ→ h∞,0 as N → ∞ in the
L1(T2) topology.

Theorem 4.10 (Compactness). Assume that W satisfies condition (W1) for
some β > 0 in (2.1), and let α > β. Let {Nn}∞n=1 ⊂ N satisfy Nn → ∞ as
n→∞, and let {un}∞n=1 ⊂ L1(T2) be a sequence for which there is a constant
C > 0 such that for all n ∈ N, hαNn(un) ≤ C. Then there exists a subsequence
{un′}∞n′=1 ⊂ {un}∞n=1 and a u ∈ BV (T2; {0, 1}) such that un′ → u in L1(T2)
as n′ →∞.

We first prove the lower bound for the Γ-limit.

Lemma 4.11 (Lower bound). Let u ∈ L1(T2), and let {un}∞n=1 ⊂ L1(T2)
and {Nn}∞n=1 ⊂ N be such that un → u in L1(T2) and Nn →∞ as n→∞.
Assume that W satisfies condition (W1) for some β > 0 in (2.1), and let
α > β. Then

h∞,0(u) ≤ lim inf
n→∞

hαNn(un).

Proof. First consider the case where u ∈ BV (T2; {0, 1}). Without loss
of generality we may assume that hαNn is uniformly bounded. Since W is
nonnegative we deduce there is a C > 0 such that for all (i, j) ∈ I2

Nn
,

W ((un)i,j) ≤ CN−αn . Together with (2.1) in assumption (W2) this implies
that for n large enough and all (i, j) ∈ I2

Nn
we have (un)i,j ∈ Î. In addition,

by the growth condition in (2.1) we get for n large enough and s ∈ {0, 1}

cs|(un)i,j − s|β ≤W ((un)i,j) ≤ CN−αn .

Hence, if we define δn := (C/min({c0, c1}))
1
βN
−α
β

n we deduce that for n large
enough δn ∈ (0, 1

2), and for all (i, j) ∈ I2
Nn

, (un)i,j ∈ (−δn, δn)∪(1−δn, 1+δn).
Define

Xn :=
{

(i, j) ∈ I2
Nn :

(
(un)i,j ∈ (−δn, δn) ∧ (un)i+1,j ∈ (1− δn, 1 + δn)

)
∨
(
(un)i+1,j ∈ (−δn, δn) ∧ (un)i,j ∈ (1− δn, 1 + δn)

)}
; (4.4)

then for (i, j) ∈ Xn we have |(un)i+1,j − (un)i,j | ≥ 1− 2δn, hence

N−1
n

Nn∑
i,j=1

((un)i+1,j − (un)i,j)2 (4.5)

≥N−1
n (1− 2δn)

∑
(i,j)∈Xn

|(un)i+1,j − (un)i,j |+N−1
n

∑
(i,j)∈Xc

n

((un)i+1,j − (un)i,j)
2
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=N−1
n

Nn∑
i,j=1

|(un)i+1,j − (un)i,j | − 2δnN−1
n

∑
(i,j)∈Xn

|(un)i+1,j − (un)i,j |

+N−1
n

∑
(i,j)∈Xc

n

((un)i+1,j − (un)i,j)
2 −N−1

n

∑
(i,j)∈Xc

n

|(un)i+1,j − (un)i,j |.

For the second summation in (4.5) we note that there are c > 0 and C̃ > 0
such that

0 ≤ 2δnN−1
n

∑
(i,j)∈Xn

|(un)i+1,j − (un)i,j | ≤ cδnN−1
n N2

n(1 + 2δn)

≤ C̃(N1−α/β
n +N1−2α/β

n )→ 0 as n→∞.

The third and fourth summation in (4.5) we combine into∣∣∣N−1
n

∑
(i,j)∈Xc

n

|(un)i+1,j − (un)i,j |
(
|(un)i+1,j − (un)i,j | − 1

)∣∣∣
≤ N−1

n

∑
(i,j)∈Xc

n

|(un)i+1,j − (un)i,j |
∣∣|(un)i+1,j − (un)i,j | − 1

∣∣
≤ N−1

n N2
n2δn(2δn − 1) ≤ C̃(N1−2α/β

n −N1−α/β
n )→ 0 as n→∞,

for some C̃ > 0. As in Section 5.1 we now identify VNn with ANn to write
for the first summation in (4.5)

N−1
n

Nn∑
i,j=1

|(un)i+1,j − (un)i,j | =
∫

T2

|(un)x|;

hence, from (4.5) and the computations that followed we deduce

N−1
n

Nn∑
i,j=1

((un)i+1,j − (un)i,j)2 ≥
∫

T2

|(un)x|+O(N1−α/β
n ). (4.6)

Analogously we have

N−1
n

Nn∑
i,j=1

((un)i,j+1 − (un)i,j)2 ≥
∫

T2

|(un)y|+O(N1−α/β
n ).

By the lower semicontinuity of the anisotropic total variation with respect
to L1 convergence [24, Lemma A.5] we have∫

T2

|ux|+ |uy| ≤ lim inf
n→∞

∫
T2

|(un)x|+ |(un)y|;
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hence,∫
T2

|ux|+ |uy| ≤ lim inf
n→∞

N−1
n

Nn∑
i,j=1

((un)i+1,j − (un)i,j)2 + ((un)i,j+1 − (un)i,j)2

≤ lim inf
n→∞

hαNn(un),

which proves the lower bound for the case where u ∈ BV (T2; {0, 1}).
Now consider u ∈ L1(T2) \ BV (T2; {0, 1}). Let un → u in L1(T2); then

an argument by contradiction (similar to that at the end of the proof of
Lemma 4.4) and the compactness proved below in Theorem 4.10 prove that
h∞,0(u) =∞ = lim inf

n→∞
hαNn(un). �

Next we prove the upper bound.

Lemma 4.12 (Upper bound). Let u ∈ L1(T2) and {Nn}∞n=1 ⊂ N be such
that Nn → ∞ as n → ∞. Then there exists a sequence {un}∞n=1 ⊂ L1(T2)
such that un → u in L1(T2) as n→∞ and

h∞,0(u) ≥ lim sup
n→∞

hαNn(un).

Proof. Without loss of generality we can assume that u ∈ BV (T2; {0, 1}).
Construct un ∈ ANn as follows. For x ∈ Si,jNn define, as in the proof of
Lemma 4.6,

un(x) :=
{

1 if (Si,jNn)◦ ⊂ suppu,
0 otherwise.

Then
(
(un)i+1,j− (un)i,j

)2 = |(un)i+1,j− (un)i,j |, and hence, identifying VNn
with ANn ,

N−1
n

Nn∑
i,j=1

(
(un)i+1,j − (un)i,j

)2 = N−1
n

Nn∑
i,j=1

|(un)i+1,j − (un)i,j | =
∫

T2

|(un)x|.

Similarly

N−1
n

Nn∑
i,j=1

(
(un)i,j+1 − (un)i,j

)2 =
∫

T2

|(un)y|.

Since every un takes values in {0, 1} we can repeat the argument from the
proof of Lemma 4.6 in and following (4.3) to prove that

lim sup
n→∞

∫
T2

|(un)x|+ |(un)y| ≤
∫

T2

|ux|+ |uy|.



1140 Yves van Gennip and Andrea L. Bertozzi

Since for every n ∈ N and (i, j) ∈ I2
Nn

we have W ((un)i,j) = 0, we get the
desired result. �

Proof of Theorem 4.9. Combining Lemmas 4.11 and 4.12 we get the
Γ-convergence result in Theorem 4.9. �

Next we prove compactness.

Proof of Theorem 4.10. By the first part of the proof of Lemma 4.11
we have, after possibly going to a subsequence, that for all n ∈ N and all
(i, j) ∈ I2

Nn
, (un)i,j ∈ Î; hence, ‖un‖L1(T2) is uniformly bounded. By the

same proof, in particular (4.6) and the uniform bound on hαNn(un), we have
for all n ∈ N that

∫
T2 |(un)x|+|(un)y| is uniformly bounded. We deduce as in

the proof of Theorem 4.2 a uniform bound on the BV norms of un, from which
it follows by the compactness theorem in BV ([37, Theorem 1.19] or [32,
5.2.3 Theorem 4]) that there exists a subsequence {un′}∞n′=1 ⊂ {un}∞n=1 and
a u ∈ BV (T2) such that un′ → u in L1(T2) as n′ →∞. By the arguments in
the proof of Lemma 4.11, each un′ takes values in (−δn′ , δn′)∪(1−δn′ , 1+δn′),
where δn′ → 0 as n′ →∞. After possibly going to another subsequence, un′
converges pointwise almost everywhere to u; hence, u takes values in {0, 1}
almost everywhere. �

4.3. Constraints. In this section we show that addition of a fidelity term to
the functional or imposing a mass constraint are compatible with the three
Γ-limits we discussed; i.e., ε → 0 for hN,ε, N → ∞ for hN,0, and N → ∞
for hαN .

Theorem 4.13 (Constraints). (1) hN,ε+λN−2|·−f |pp
Γ→ hN,0+λN−2|·−f |pp

for ε → 0, where p ∈ N, λ > 0, and a given function f ∈ VN (or possibly a
given function f : U → R, where U is a strict subset of the vertex set V and
the sum in | · −f |pp is restricted to vertices in U). A compactness result for
hN,ε + λN−2| · −f |pp as in Theorem 3.2 holds.

If instead, for fixed M > 0, the domain of definition of hN,ε is restricted to
VMN (i.e., VM from Theorem 3.6 on the grid GN ), where M is such that N2M
is an integer between 0 and N2, then the Γ-convergence and compactness
results for ε→ 0 remain valid, with the domain of hN,0 restricted to VM as
well.

(2) Let p ∈ N, λ > 0, f ∈ C1(T2), and fN ∈ AN the sampling of f on
the grid GN (f and fN and their norms can also be defined on subsets of T2

and GN as in part 4.13); then hN,0 +λN−2| · −fN |pp
Γ→ h∞,0 +λ‖ ·−f‖p

Lp(T2)
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as N →∞ in the Lp(T2) topology. A compactness result as in Theorem 4.2
and Remark 4.7 holds for hN,0 + λN−2| · −fN |pp.

If instead the domain of hN,0 is restricted to VMN for a fixed M such that
N2M is an integer between 0 and N2, then the compactness and lower bound
results from Lemma 4.4, Theorem 4.2, and Remark 4.7 remain valid, with
the domain of h∞,0 restricted to

BVM (T2; {0, 1}) :=
{
u ∈ BV (T2; {0, 1}) :

∫
T2

u = M
}
.

With the same restriction, the upper-bound result from Lemma 4.6 is still
valid if we restrict it to sequences {Nn}∞n=1 ⊂ N such that N2

nM is an integer
for each n ∈ N.

(3) If λ, f , and fN are as in part 4.13 and α > β as in Theorem 4.9, then
hαN +λN−2| ·−fN |1

Γ→ hαN +λ‖·−f‖L1(T2) as N →∞ in the L1(T2) topology.
A compactness result as in Theorem 4.10 holds for hαN + λN−2| · −fN |1.

If instead the domain of hαN is restricted to VMN for a fixed M ∈ [0, 1],
then the Γ-convergence and compactness results from Theorems 4.9 and 4.10
remain valid, with the domain of h∞,0 restricted to BVM (T2; {0, 1}).

We give a sketch of the proofs.
(1) This follows directly from Theorem 3.6.
(2) For the fidelity term first we note that for v, fN ∈ AN ,

N−2|v − fN |pp =
∫

T2

|v − fN |p.

Hence, for v ∈ AN , u ∈ Lp(T2), f ∈ C(T2), and fN ∈ AN the discretization
of f on GN , we have∣∣∣ ∫

T2

|v − fN |p −
∫

T2

|u− f |p
∣∣∣ ≤ ∫

T2

∣∣|v − fN | − |u− f |∣∣
≤ ‖v − fN − u+ f‖p

Lp(T2)
≤ ‖v − u‖p

Lp(T2)
+ ‖f − fN‖pLp(T2)

.

Since (by a Taylor-series argument) fN → f in Lp(T2) as N → ∞, the
sequence of fidelity terms is continuously convergent, and thus by Lemma 2.5
the Γ-limit follows. Clearly the compactness isn’t harmed (even helped) by
adding an extra term to the functional.

For the mass constraint, since u ∈ AbN the conditions on M are necessary
as explained in Section 2.5. Lp(T2) convergence preserves average mass, and
hence the constraint is compatible with (LB) and compactness. For (UB)
the recovery sequence {un}∞n=1 used in the proof of Lemma 4.6 has support
contained in the support of u, and hence if

∫
T2 u = M , then

∫
T2 un ≤M . We
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can construct a similar recovery sequence {ûn}∞n=1, where ûn has support
on all grid squares which intersect suppu. This sequence satisfies all the
required properties of a recovery sequence and has

∫
T2 un ≥ M . Hence,

under the assumption on {Nn}∞n=1, which assures that the mass condition
can be satisfied for each Nn, there exists a recovery sequence {un}∞n=1, where
un takes the value 1 on suppun as well as on a select chosen number of
squares which lie in supp ûn \ suppun. For these combinations of {Nn}∞n=1

and M , (UB) is compatible with the mass constraint as well.
(3) For the fidelity term we can use the same arguments as above.
For the mass constraint we note that now un ∈ ANn and the limit function

u ∈ BV (T2; {0, 1}). This means each choice M ∈ [0, 1] is allowed in the mass
constraint. As above, because of the L1 convergence this mass constraint is
compatible with (LB) and compactness. For (UB) we note that the proof of
Lemma 4.12 followed Lemma 4.6, so our argument here is very similar to that
for hN,0 above, with the added bonus that we do not need to restrict ourselves
to specific combinations of {Nn}∞n=1 and M . Let the recovery sequences
{un}∞n=1 and {ûn}∞n=1 be as above. Now construct another recovery sequence
{un}∞n=1 by setting un = un on suppun and un = cnûn on (suppun)c, where
cn ∈ [0, 1] is chosen such that for each n the average mass constraint is
satisfied.

5. Γ-limits for the discretized
Ginzburg–Landau functional kN,ε

In this section we will study the convergence properties of kN,ε from (1.5).
We first take the limit N → ∞ and then ε → 0. The resulting Γ-limits
are given in Section 5.1. The simultaneous limit, obtained by substituting
ε = N−α for well-chosen α > 0 and then considering the limit N → ∞ for
kαN in (2.3), is studied in Section 5.2.

There has been a series of (recent) papers dealing with convergence of
discrete energies to integral energies among which are [17, 5, 18, 6, 7, 8],
all expanding on the ideas in [15, Chapter 4]. For many of the proofs we
will use ideas from [5], in which the authors prove a Γ-limit of integral form
exists for a general class of grid-based functionals. Here we study a specific
functional and hence can prove more explicit results.
Remark 5.1. In Sections 5.1 and 5.2 we prove the results for T2, but they
can easily be generalized to Td for any d ∈ N, if we let the scaling factor
in the first term of kN,ε in (1.5) be εN2−d instead of εN0 and the factor
in the second term ε−1N−d instead of ε−1N−2 and we change kαN in (5.2)
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accordingly:

kN,ε(u) :=εN2−d
N∑

i,j=1

(ui+1,j − ui,j)2+ (ui,j+1 − ui,j)2+ ε−1N−d
N∑

i,j=1

W (ui,j),

(5.1)

kαN (u) :=N2−d−α
N∑

i,j=1

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 +Nα−d
N∑

i,j=1

W (ui,j).

(5.2)

The admissible range of α in Theorems 5.6 and 5.7 is dependent on the
dimension d in a way which will be made precise in Remark 5.10. For the
extra fidelity term in Theorem 5.12 the scaling factor then needs to be N−d

instead of N−2.

5.1. Sequential Γ-convergence and compactness: first N →∞, then
ε → 0. We will prove kN,ε

Γ→ k∞,ε as N → ∞, where k∞,ε is defined for
u ∈ L1(T2) as

k∞,ε(u) :=
{
ε
∫

T2 |∇u|2 + ε−1
∫

T2 W (u) if u ∈W 1,2(T2),
+∞ otherwise.

We see that k∞,ε is the Ginzburg–Landau functional from (1.1). As explained
in Section 1.1, it is known that this functional Γ-converges in either the
L1(T2) or L2(T2) topology9 as ε → 0 to the total variation (1.2). To be
precise, its Γ-limit is

k∞,0(u) :=

 σ(W )
∫

T2

|∇u| if u ∈ BV (T2; {0, 1}),

+∞ otherwise,

where σ(W ) := 2
∫ 1

0

√
W (s) ds > 0 is a constant depending on the specific

form of W , in particular on the transition between its wells; see [47]. The
sequence of functionals is equi-coercive as well.

For fixed u ∈ C3(T2) we have pointwise convergence (in C3(T2)) kN,ε(u)→
k∞,ε(u) as N → ∞ (more details below), but the dependence of the dis-
cretization errors on derivatives of u prevents us from concluding uniform
convergence. Γ-convergence offers a useful middle ground between pointwise

9Results are usually stated in the L1 topology, but for example [53, 15, 25] note that
the results can be stated in the L2 topology as well.
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and uniform convergence and can thus be seen as an extension of classical nu-
merical analysis results. The pointwise convergence follows from combining
the boundedness of T2 with the trapezoidal rule (for fixed i)∫

T
f(x, y) dy = N−1

N∑
j=1

f(x, j/N) +
1
12
N−2∂

2f

∂y2
(x, ξ), for f ∈ C2(T2),

for some f -dependent ξ ∈ (0, 1), and the finite difference approximation of
the derivative

∂u

∂x
(i/N, j/N) = N

[
u((i+ 1)/N, j/N)− u(i/N, j/N)

]
(5.3)

− 1
2
N−1∂

2u

∂x2
((i+ ri)/N, j/N)

for some ri ∈ [0, 1]. We see the dependence of the errors on derivatives of
the functions f and u.

We prove the following Γ-convergence and compactness results.

Theorem 5.2 (Γ-convergence). kN,ε
Γ→ k∞,ε as N → ∞ in the L1(T2) or

L2(T2) topology.

Theorem 5.3 (Compactness). Assume W satisfies (W2). Let {Nn}∞n=1 ⊂ N
satisfy Nn → ∞ as n → ∞, and let {un}∞n=1 ⊂ L1(T2) be a sequence for
which there is a constant C > 0 such that for all n ∈ N, kNn,ε(un) ≤ C.
Then there exists a subsequence {un′}∞n′=1 ⊂ {un}∞n=1 and a u ∈ W 1,2(T2)
such that un′ → u in L2(T2) as n′ →∞.

The proof of Γ-convergence adapts the ideas that are developed in an
abstract general framework in [5] to our situation. In Section 4.1 we con-
structed a bijection between VN and AN from (4.1). In what follows we
will identify u ∈ VN with its counterpart ũ ∈ AN and drop the tilde if no
confusion arises.

For u ∈ AN ⊂ L1(T2) we define pointwise evaluation by identifying each
u with its representative, which is piecewise constant on the squares Si,jN
and for which pointwise evaluation is well-defined. For z ∈ T2 we define the
difference quotients as

Dk
Nu(z) := N

[
u(z + ek/N)− u(z)

]
, k ∈ {1, 2}, (5.4)

where ek denotes the kth standard basis vector of R2.
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With the identification between VN and AN we extend the functional to
all u ∈ L1(T2) as follows:

kN,ε(u) =

 ε

∫
T2

[
(D1

Nu)2 + (D2
Nu)2

]
+ ε−1

∫
T2

W (u) if u ∈ AN ,

+∞ otherwise.
(5.5)

In the proof of the lim inf inequality we will use the slicing method (see
[15, Chapter 15] and [16]), which uses the following notation. Remembering
T2 ∼= [0, 1)2 we define T2

1 := {(0, y) ∈ T2 : ∃t ∈ [0, 1) : (t, y) ∈ T2} and
T2

2 := {(x, 0) ∈ T2 : ∃t ∈ [0, 1) : (x, t) ∈ T2}, and for (0, y) ∈ T2
1 and

(x, 0) ∈ T2
2 we define the sets T2

1,y := {t ∈ [0, 1) : (t, y) ∈ T2} and T2
2,x := {t ∈

[0, 1) : (x, t) ∈ T2} and the functions u1,y(t) := u(t, y) and u2,x(t) := u(x, t)
on T2

1,y and T2
2,x respectively.

In what follows ε > 0 is fixed.

Lemma 5.4 (Lower bound). Let u ∈ L1(T2), and let {un}∞n=1 ⊂ L1(T2)
and {Nn}∞n=1 ⊂ N be such that un → u in L1(T2) and Nn →∞ as n→∞.
Then

k∞,ε(u) ≤ lim inf
n→∞

kNn,ε(un).

Proof. This proof is an application of arguments in [5, Proposition 3.4].
First consider the case where u ∈W 1,2(T2); then we can assume without

loss of generality that {kNn,ε(un)}∞n=1 is uniformly bounded, and thus un ∈
ANn . For (x, y) ∈ Si,jNn we define

v1
n(x, y) := un(i/Nn, j/Nn) +D1

Nnun(i/Nn, j/Nn) · (x− i/Nn),

v2
n(x, y) := un(i/Nn, j/Nn) +D2

Nnun(i/Nn, j/Nn) · (y − j/Nn).

In what follows k ∈ {1, 2}. Note vkn ∈ BV (T2). We denote the densities of
the absolutely continuous (with respect to Lebesgue measure) part of the
measures ∇xv1

n and ∇yv2
n by ∂v1

n
∂x and ∂v2

n
∂y respectively. Then in the interior

of Si,jN , for (x, y) ∈ (Si,jN )◦, we have

∂v1
n

∂x
(x, y) = D1

Nnun(i/Nn, j/Nn) and
∂v2

n

∂y
(x, y) = D2

Nnun(i/Nn, j/Nn).

We deduce vkn → u in L1(T2) as n→∞ from

‖vkn − u‖L1(T2) ≤ ‖vkn − un‖L1(T2) + ‖un − u‖L1(T2).

The latter term converges to zero by assumption. The former we bound
by ‖vkn − un‖L2(T2) using Hölder’s inequality. We then note that from the
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uniform bound on {kNn,ε(un)}∞n=1 we have

Nn∑
i,j=1

[
Dk
Nnun(i/Nn, j/Nn)

]2
≤ CN2

n

for some C > 0, and hence (if k = 1; similarly for k = 2)∫
T2

(v1
n − un)2 =

Nn∑
i,j=1

∫
Si,jNn

[
D1
Nnun(i/Nn, j/Nn)(x− i/Nn)

]2
dy dx

= N−1
n

Nn∑
i,j=1

[
D1
Nnun(i/Nn, j/Nn)

]2 ∫ (i+1)/Nn

i/Nn

(x− i/Nn)2 dx ≤ C

3
N−2
n .

For H1-a.e. y ∈ T2
1, the slice (v1

n)1,y ∈ W 1,2(T2
1,y). By Fubini’s theorem and

Fatou’s lemma

lim inf
n→∞

∫
T2

(∂v1
n

∂x

)2
= lim inf

n→∞

∫
T2

1

∫
T2

1,y

|(v1
n)′1,y|2 dt dy

≥
∫

T2
1

lim inf
n→∞

∫
T2

1,y

|(v1
n)′1,y|2 dt dy.

Because

lim inf
n→∞

∫
T2

(∂v1
n

∂x

)2
≤ lim inf

n→∞
kNn,ε(uNn) <∞, (5.6)

we have that, after possibly going to a subsequence, for H1-a.e. y ∈ T2
1

the sequence {‖(v1
n)′1,y‖L2(T2

1,y)}∞n=1 is bounded and hence weakly convergent

in L2(T2
1,y). Since for H1-a.e. y ∈ T2

1 we have (v1
n)1,y → u1,y in L1(T2

1,y),
we identify the limit as (v1

n)′1,y ⇀ u′1,y in L2(T2
1,y), for H1-a.e. y ∈ T2

1 (see
Lemma B.1 in Appendix B for details). Hence, by the weak lower semiconti-
nuity of the L2 norm, Fatou’s lemma, and the completely analogous results
for u2,x and ∂v2

n
∂y , we get

lim inf
n→∞

∫
T2

[(∂v1
n

∂x

)2
+
(∂v2

n

∂y

)2]
≥
∫

T2
1

∫
T2

1,y

|u′1,y|2 dt dy+
∫

T2
2

∫
T2

2,x

|u′2,x|2 dt dy.

Putting the slices back together using [32, 4.9.2 Theorem 2]), we deduce that

lim inf
n→∞

∫
T2

[(∂v1
n

∂x

)2
+
(∂v2

n

∂y

)2]
≥
∫

T2

|∇u|2. (5.7)
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For the other term in the functional we use Fatou’s lemma, the continuity
of W , and the almost-everywhere pointwise convergence of un to u to find

lim inf
n→∞

∫
T2

W (un) ≥
∫

T2

lim inf
n→∞

W (un) =
∫

T2

W (u).

This proves the result for u ∈W 1,2(T2).
Now consider the case where u ∈ L1(T2) \W 1,2(T2). Assume that

lim inf
n→∞

kNn,ε(un) <∞;

then after possibly going to a subsequence for each n ∈ N, un ∈ ANn and
the sequences

{∫
T2(Dk

Nn
un)2

}∞
n=1

are bounded. We can follow the same slic-
ing method as applied above up to equation (5.6). Again we find that for
H1-a.e. y ∈ T2

1 the sequence {‖(v1
n)′1,y‖L2(T2

1,y)}∞n=1 is bounded, and com-

bined with (v1
n)1,y → u1,y in L1(T2

1,y) for H1-a.e. y ∈ T2
1 we deduce that

u1,y ∈ W 1,2(T2
1,y) for H1-a.e. y ∈ T2

1 (see Lemma B.1 in Appendix B for
details). We then continue as above to arrive at (5.7) and conclude that
u ∈ W 1,2(T2), which contradicts the assumption that u 6∈ W 1,2(T2). Hence
lim inf
n→∞

kNn,ε(un) =∞, which concludes the proof. �

Next we prove (UB′) (see Section 2.4).

Lemma 5.5 (Upper bound). Let u ∈ L1(T2) and {Nn}∞n=1 ⊂ N be such that
Nn →∞ as n→∞, and let k′′ε be the Γ-upper limit of kNn,ε as n→∞ with
respect to the L2(T2) topology; then k′′ε (u) ≤ k∞,ε(u).

Proof. This proof is an adaptation of the ideas in [5, Proposition 3.5].
The case where u ∈ L1(T2) \ W 1,2(T2) is trivial. For the case where

u ∈W 1,2(T2) we first assume that u ∈ C∞(T2). Define a sequence {un}∞n=1

such that for each n ∈ N, un ∈ ANn in the following way. If (x, y) ∈ Si,jNn
then un(x) := u(i/Nn, j/Nn). Then (by a Taylor series argument) un → u

in L2(T2) as n→∞. Let νi,jNn := (i/Nn, j/Nn) ∈ GNn ; then

D1
Nnun(νi,jNn) =

∫ 1

0

∂u

∂x
(νi,jNn + se1/Nn) ds.

Jensen’s inequality then gives

(D1
Nnun(νi,jNn))2 =

(∫ 1

0

∂u

∂x
(νi,jNn+se1/Nn) ds

)2
≤
∫ 1

0

(∂u
∂x

(νi,jNn+se1/Nn)
)2
ds.

Because u is smooth the Taylor series with remainder gives for z ∈ T2

∂u

∂x
(νi,jNn + se1/Nn) =

∂u

∂x
(z + se1/Nn) +∇∂u

∂x
((1− c)x+ cνi,jNn) · (νi,jNn − z),
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for some c ∈ [0, 1]. Using the fact that u and all its derivatives are bounded,
we find for some constants Cu > 0 and C̃u > 0 depending only on u that

N−2
n

∫ 1

0

(∂u
∂x

(νi,jNn + se1/Nn)
)2
ds =

∫
Si,jNn

∫ 1

0

(∂u
∂x

(νi,jNn + se1/Nn)
)2
ds dx

≤
∫
Si,jNn

∫ 1

0

[(∂u
∂x

(z + se1/Nn)
)2

+ Cu|νi,jNn − z|+ C̃u|νi,jNn − z|
2
]
ds dz

≤
∫ 1

0

∫
Si,jNn+se1/Nn

(∂u
∂x

)2
(z) dz ds+ Cu (Nn)−3 + C̃u (Nn)−4 .

Analogous estimates hold for D2
Nn
un(νi,jNn).

Note that the sets Si,jNn + sek/Nn, k ∈ {1, 2}, are just the squares Si,jNn
shifted a distance s/Nn over the coordinate axes. Because we are working
on the torus we get for some Cu > 0 depending only on u

N−2
n

∑
i,j∈INn

[ (
D1
Nnun

)2 (νi,jNn) +
(
D2
Nnun

)2 (νi,jNn)
]

≤
∫ 1

0

∑
i,j∈INn

[ ∫
Si,jNn+se1/Nn

(∂u
∂x

)2
(z) dz +

∫
Si,jNn+se2/Nn

(∂u
∂y

)2
(z) dz

]
ds

+ Cu
(

(Nn)−1 + (Nn)−2 ) =
∫

T2

|∇u|2 + Cu
(

(Nn)−1 + (Nn)−2 ).
We deduce that

lim sup
n→∞

∫
T2

(
D1
Nnun

)2 +
(
D2
Nnun

)2 ≤ ∫
T2

|∇u|2.

Because u ∈ C∞(T2), u is bounded on T2 and hence {|un|}∞n=1 is uniformly
bounded on T2. Therefore there exists Ĉ > 0 such that for all n ∈ N,
W (un) ≤ Ĉ. Because the constant Ĉ is integrable on T2 we can use the
dominated convergence theorem (or the reverse Fatou’s lemma) and the
continuity of W to deduce

lim sup
n→∞

∫
T2

W (un) ≤
∫

T2

lim sup
n→∞

W (un) =
∫

T2

W (u)

(or use
∫

T2

(
W (un)−W (u)

)
dx =

∫
T2

∫ u
un
W ′(s) ds dx ≤ C

∫
T2 |un − u| dx).

Combining the two inequalities above leads to

lim sup
n→∞

kNn,ε(un)
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≤ ε lim sup
n→∞

∫
T2

(
D1
Nnun

)2 +
(
D2
Nnun

)2 + ε−1 lim sup
n→∞

∫
T2

W (un)

≤ ε
∫

T2

|∇u|2 + ε−1

∫
T2

W (u) = k∞,ε(u). (5.8)

In the terminology of Γ-upper limit of Section 2.4 we have proven that
k′′∞,ε(u) ≤ k∞,ε(u) for u ∈ C∞(T2). Since C∞(T2) is dense in W 1,2(T2) (us-
ing W 1,2(T2) convergence) we use the lower semicontinuity of the Γ-upper
limit to conclude (UB′) for all u ∈ W 1,2(T2) as follows. Let {un}∞n=1 ⊂
C∞(T2) be a sequence such that un → u in W 1,2(T2) as n→∞; then it also
converges in L2(T2); hence,

k′′ε (u) ≤ lim inf
n→∞

k′′ε (un) ≤ lim inf
n→∞

k∞,ε(un).

Up to taking a subsequence, un → u pointwise almost everywhere; hence,
W (un)→W (u) pointwise almost everywhere. Thus, by possibly redefining u
on a set of measure zero for n large enough, we have that W (un) ≤W (u)+C̃
for some C̃ > 0. We can assume k∞,ε(u) < ∞; hence, W (u) is integrable
on T2. Now we can again use the dominated convergence theorem or the
reverse Fatou’s lemma and the continuity of W to find

lim sup
n→∞

∫
T 2

W (un) ≤
∫

T2

lim sup
n→∞

W (un) =
∫

T2

W (u).

Since un → u in W 1,2(T2) we have

lim sup
n→∞

∫
T2

|∇un|2 =
∫

T2

|∇u|2;

hence,

k′′ε (u) ≤ lim inf
n→∞

k∞,ε(un) ≤ lim sup
n→∞

k∞,ε(un) ≤ k∞,ε(u). �

Proof of Theorem 5.2. Combining Lemmas 5.4 and 5.5 proves the Γ-
convergence result. Note in particular that we have proven the lower bound
for sequences converging in L1(T2), and the recovery sequence for the upper
bound converges in L2(T2); hence, we can conclude Γ-convergence in both
topologies. �

Using a technique from [31, 5.8.2 Theorem 3] we also get compactness for
kN,ε.
Proof of Theorem 5.3. In what follows, k ∈ {1, 2}. By (5.5) we have for
all n ∈ N, un ∈ ANn and

ε

∫
T2

[
(D1

Nnun)2 + (D2
Nnun)2

]
+ ε−1

∫
T2

W (un) ≤ C.



1150 Yves van Gennip and Andrea L. Bertozzi

By assumption (W2) on W we find that {‖un‖L2(T2)}∞n=1 is uniformly boun-
ded; hence, there is a subsequence of {un}∞n=1 (again labelled by n) and
a u ∈ L2(T2) such that un ⇀ u in L2(T2) as n → ∞. Moreover, we
see that {‖Dk

Nn
un‖L2(T2)}∞n=1 is uniformly bounded, and hence there is a

further subsequence {un′}∞n′=1 ⊂ {un}∞n=1 and a w ∈ L2(T2; R2) such that
Dk
Nn′

un ⇀ wk in L2(T2) as n′ →∞. Let φ ∈ C∞c (T2); then∫
T2

un′D
k
Nn′

φ = Nn′

∫
T2

un′(x)[φ(x+ ek/Nn′)− φ(x)] dx

= Nn′

∫
T2

[un′(x− ek/Nn′)− un′(x)]φ(x)dx = −
∫

T2

φDk
Nn′

un′ .

By (5.3) we have
∫

T2

(
Dk
Nn′

φ −∇φ · ek
)2 = KN−2

n′ , for some K > 0; hence,
Dk
Nn′

φ→ ∇φ · ek in L2(T2) as n′ →∞. Combining this strong convergence
for the difference quotient of φ with the weak convergence for un′ and its
difference quotient, we deduce that∫

T2

u∇φ · ek = lim
n′→∞

∫
T2

un′D
k
Nn′

φ = − lim
n′→∞

∫
T2

φDk
Nn′

un′ = −
∫

T2

φwk.

Hence |∇u| = |w| ∈ L2(T2). We conclude that u ∈W 1,2(T2).
Finally, the strong convergence un′ → u in L2(T2) follows from the bound

on Dk
Nn′

un by a discrete version of the Rellich–Kondrachov compactness
theorem (see Lemma B.2 in Appendix B for details). �

5.2. Simultaneous scaling Γ-limit for kαN . In Section 5.1 we studied the
Γ-limits of kN,ε by first taking N → ∞ and then ε → 0. We will now show
we can take both limits at once if we scale ε correctly in terms of N . This is
particularly relevant for numerical applications. We set ε = N−α for some
α ∈ (0, 2

q+3), where q is the degree of polynomial growth of W ′ in condition
(W4), and take the limit N →∞ of kαN in (5.2).

Note that in contrast to the case for hαN the order of the limits ε→ 0 and
N → ∞ are reversed, and thus we have an upper bound on α instead of a
lower bound.

We prove a compactness and Γ-convergence result.

Theorem 5.6 (Compactness). Assume W satisfies (W3) and (W4) for given
p ≥ 2 and q > 0, and α ∈ (0, 2

q+3). Let {Nn}∞n=1 ⊂ N satisfy Nn → ∞ as
n→∞, and let {un}∞n=1 ⊂ L1(T2) be a sequence for which there is a constant
C > 0 such that for all n ∈ N, kαNn(un) ≤ C. Then there exists a subsequence
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{un′}∞n′=1 ⊂ {un}∞n=1 and a u ∈ BV (T2, {0, 1}) such that un′ → u in L2(T2)
as n′ →∞.

Theorem 5.7 (Γ-convergence). Let W satisfy (W3) and (W4) for given
p, q > 0, and assume α ∈ (0, 2

q+3). Then kαN
Γ→ k∞,0 as N → ∞ in either

the L1(T2) or L2(T2) topology.

Using the difference quotient notation from (5.4) we can mimic (5.5) and
write

kαNn(u) =

 N−α
∫

T2

[
(D1

Nu)2 + (D2
Nu)2

]
+Nα

∫
T2

W (u) if u ∈ AN ,

+∞ otherwise.

The proofs of this section make repeated use of the Modica–Mortola re-
sults [49, 47, 48, 56], which show (L1 and L2) compactness and convergence10

for FGLN−α
Γ→ FGL0 as N → ∞. Note that condition (W3) with p ≥ 2 on the

double-well potential W is needed for the compactness result to hold (see
e.g. [56, Proposition 3]).
Proof of Theorem 5.6. Let {un}∞n=1 ⊂ L1(T2) be a sequence such that
kαNn(un) ≤ C. Below we will prove the claim that there is a sequence
{vn}∞n=1 ⊂W 1,2(T2) such that ‖vn − un‖L2(T2) → 0 as n→∞ and

kαNn(un) ≥ FGL
N−αn

(vn) +Rn, lim
n→∞

Rn = 0. (5.9)

Given the veracity of this claim, it follows by the Modica–Mortola compact-
ness result for FGL

N−αn
[49, 47, 48, 56] that there is a subsequence of {vn}∞n=1

(again labeled by n) such that vn → u in L2(T2) for a u ∈ BV (T2, {0, 1})
(here we need condition (W3) on W with p ≥ 2). Using the triangle inequal-
ity and the fact that ‖vn − un‖L2(T2) → 0 as n→∞, we then conclude that
there is a subsequence of {un}∞n=1 converging in L2(T2) to u.

To prove the claim, first we show that ‖un‖L∞(T2) = O(Nα/2
n ). Assume

not, and let γ > α
2 ; then there is a subsequence (labeled again by n) such that

10As remarked in an earlier footnote, results are usually stated in the L1 topology, but
for example [53, 15, 25] note that the Γ-convergence can be stated in the L2 topology
as well. Compactness in L2 follows from compactness in L1 combined with the binary
nature of the limit function. Finally, note that the original results on bounded domains
are easily adapted for the torus. Compactness is not hindered by the periodicity because
no regularity beyond BV (T2; {0, 1}) is needed for the limit. The lower bound generalizes
immediately by restriction to sequences of periodic functions. The important properties
of the recovery sequence for the upper bound are local properties near the boundary of
suppu and so are also satisfied on a periodic domain.
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for each n there is a square Si,jNn on which |(un)i,j | ≥ Nγ
n . For definiteness

assume (un)i,j = Nγ
n . By the uniform bound on kαNn(un), we have

N−αn (Nγ
n − (un)i+1,j)2 ≤ C; (5.10)

hence, ui+1,j = Θ(Nγ
n ). By induction over all the squares Si,jNn we find

that un = Θ(Nγ
n ). Therefore ‖un‖pLp(T2)

= Θ(Npγ
n ), but by the coercivity

condition (W3) on W (for any p > 0) the uniform bound on kαNn(un) demands

c1‖un‖pLp(T2)
≤
∫

T2

W (un) ≤ CN−αn ,

which is a contradiction.
Now for any un let vn be its bilinear interpolation: For (x, y) ∈ Si,jNn define

vn(x,y) := N2
n

[
(un)i,j

( i+ 1
Nn

− x
)(j + 1

Nn
− y
)

+ (un)i+1,j

(
x− i

Nn

)(j + 1
Nn

− y
)

+ (un)i,j+1

( i+ 1
Nn

− x
)(
y − j

Nn

)
+ (un)i+1,j+1

(
x− i

Nn

)(
y − j

Nn

)]
,

where for notational convenience we have identified un ∈ ANn with its coun-
terpart in VNn . Thus defined, vn is continuous and ‖vn‖L∞(T2) = ‖un‖L∞(T2).
A straightforward computation shows∫

T2

(vn − un)2 =
1
18
N−2
n

Nn∑
i,j=1

[7
2
(
(un)i,j − (un)i+1,j

)2
+

7
2
(
(un)i,j − (un)i,j+1)

)2 + 4
(
(un)i,j − (un)i+1,j+1

)2
− 1

2
(
(un)i+1,j − (un)i,j+1

)2 − ((un)i+1,j − (un)i+1,j+1

)2
−
(
(un)i,j+1 − (un)i+1,j+1

)2]
.

First we note that there is a C > 0 such that(
(un)i,j − (un)i+1,j+1

)2
≤ C

[(
(un)i,j − (un)i+1,j

)2 +
(
(un)i+1,j − (un)i+1,j+1

)2]
,(

(un)i+1,j − (un)i,j+1

)2
≤ C

[(
(un)i+1,j − (un)i,j

)2 +
(
(un)i,j − (un)i,j+1

)2]
.
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Next we use periodicity to deduce
Nn∑
i,j=1

(
(un)i+1,j − (un)i+1,j+1

)2 =
Nn∑
i,j=1

(
(un)i,j − (un)i,j+1

)2
,

and analogously for similar terms. Using the uniform bound on kαNn(un) we
find∫

T2

(vn − un)2 ≤ CN−2
n

Nn∑
i,j=1

[(
(un)i+1,j − (un)i,j

)2 +
(
(un)i,j+1 − (un)i,j

)2]
≤ CN−2+α

n .

Thus, ‖vn − un‖L2(T2) → 0 as n→∞. Another computation gives∫
T2

(∂vn
∂x

)2
=

1
3

Nn∑
i,j=1

[(
(un)i+1,j − (un)i,j

)2 +
(
(un)i+1,j+1 − (un)i,j+1

)2
+
(
(un)i+1,j − (un)i,j

)(
(un)i+1,j+1 − (un)i,j+1

)]
.

Using periodicity as above in combination with the inequality(
(un)i+1,j − (un)i,j

)(
(un)i+1,j+1 − (un)i,j+1

)
≤ 1

2

((
(un)i+1,j − (un)i,j

)2 +
(
(un)i+1,j+1 − (un)i,j+1

)2)
,

we deduce ∫
T2

(∂vn
∂x

)2
≤

Nn∑
i,j=1

(
(un)i+1,j − (un)i,j

)2
and the analogous result for

∫
T2

(
∂vn
∂y

)2.
Finally we note that

Nα
n

∫
T2

W (un) = Nα
n

∫
T2

W (vn) +Rn,

where

Rn = Nα
n

∫
T2

(
W (un)−W (vn)

)
≤ Nα

nM
W ′
n ‖un − vn‖L1(T2) (5.11)

≤ Nα
nM

W ′
n ‖un − vn‖L2(T2) ≤MW ′

n N
3
2
α−1

n .

Here
MW ′
n := max

x∈T2
max

s∈[vn(x),un(x)]
|W ′(s)|.
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By construction, since ‖un‖L∞(T2) = O(Nα/2
n ), we have

‖vn‖L∞(T2) = O(Nα/2
n ).

Hence, the maximum over s is achieved for some s = O(Nα/2
n ). By the

regularity of W ′ and its polynomial growth condition (W4), we then have
MW ′
n = O(Nαq/2

n ); hence, Rn → 0 as n→∞ by the choice of α.
The inequalities above prove the claim and hence finish the proof. �

Remark 5.8. Clearly, the L2(T2) convergence in Theorem 5.6 can be re-
placed by L1(T2) convergence if desired.

Lemma 5.9 (Lower bound). Assume W satisfies (W3) and (W4) for given
p > 0 and q > 0, and α ∈ (0, 2

q+3). Let u ∈ L1(T2), and let {un}∞n=1 ⊂
L1(T2) and {Nn}∞n=1 ⊂ N be such that un → u in L1(T2) and Nn → ∞ as
n→∞; then

k∞,0(u) ≤ lim inf
n→∞

kαNn(un).

Proof. Without loss of generality we can assume that kαNn(un) is uniformly
bounded. In the proof of Theorem 5.6 we established that then estimate
(5.9) follows, where the vn are the bilinear interpolations of un that converge
to u in L1(T2). Using the Γ-convergence result of Modica and Mortola
[49, 47, 48, 56], specifically their lower bound, we find

lim inf
n→∞

kαNn(un) ≥ lim inf
n→∞

(
FGL
N−αn

(vn) +Rn

)
≥ k∞,0(u). �

Remark 5.10. As noted earlier in Remark 5.1 our results (and proofs)
generalize to Td if the terms in kαN are rescaled properly depending on the
dimension d. In this case we carefully need to reexamine the admissible range
for α in Theorem 5.6 and Lemma 5.9 (and hence by extension Theorem 5.7).
In particular, (5.10) becomes

N2−d−α
n (Nγ

n − (un)i+1,j)2 ≤ C,

and hence we need to choose γ > α+d−2
2 and deduce that ‖un‖L∞(T2) =

O(N
α+d−2

2
n ). Generalizing (5.11) and the discussion that follows then leads

to the conclusion that the admissible range of α is α ∈
(
0, 2q−2(d−2)

q(q+3)

)
. In

particular, q in condition (W4) should be chosen larger than d− 2.

Lemma 5.11 (Upper bound). Let α ∈ (0, 1), u ∈ L1(T2), and {Nn}∞n=1 ⊂ N
be such that Nn → ∞ as n → ∞, and let k′′ be the Γ-upper limit of kαNn as
n→∞ with respect to the L2(T2) topology; then k′′(u) ≤ k∞,0(u).
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Proof. The case where u ∈ L1(T2) \ BV (T2; {0, 1}) is trivial, so assume
u ∈ BV (T2; {0, 1}). First assume that suppu has smooth boundary ∂ suppu.

By the classical Modica–Mortola results used before, k∞,ε Γ-converges in
both the L1(T2) and L2(T2) topology to k∞,0. Let {vn}∞n=1 be the recovery
sequence for this convergence with ε = N−αn (see e.g. [47, Proposition 2],
[16, §7.2.1]); then each vn ∈ W 1,2(T2) is a Lipschitz-continuous function,
vn → u in L2(T2) as n→∞, and lim sup

n→∞
k∞,N−αn (vn) ≤ k∞,0(u). We denote

the Lipschitz constant of vn by Kn and note that Kn = O(Nα
n ) as n→∞.

We now follow a similar line of reasoning as in the proof of Lemma 5.5,
but need to be more careful to deal with the lesser regularity of vn (only
Lipschitz continuous instead of C∞). For each i, j ∈ IN and each n ∈ N,
define

νi,jNn := argmin
z∈Si,jNn

[
(D1

Nnvn(z))2 + (D2
Nnvn(z))2

]
,

where we used the difference-quotient notation from (5.4). Note that since
vNn is continuous and Si,jNn is compact, the minimum is attained. Note that

it may be that νi,jNn ∈ Si,jNn \ S
i,j
Nn

. Now define a sequence {un}∞n=1 such
that for each n ∈ N, un ∈ ANn in the following way. If x ∈ Si,jNn , then
un(x) := vn(νi,jNn). Note that by construction

(D1
Nnun(x))2 + (D2

Nnun(x))2 ≤ (D1
Nnvn(x))2 + (D2

Nnvn(x))2.

First we check that un → u in L2(T2). We estimate ‖un − u‖L2(T2) ≤
‖un − vn‖L2(T2) + ‖vn − u‖L2(T2). We know that vn → u in L2(T2); for the
first term on the right we use the Lipschitz continuity of vn to compute

‖un − vn‖2L2(T2) =
∫

T2

|un(x)− vn(x)|2dx =
∑

i,j∈INn

∫
Si,jNn

|vn(νi,jNn)− vn(x)|2 dx

≤ K2
n

∑
i,j∈INn

∫
Si,jNn

|νi,jNn − x|
2 dx ≤

√
2K2

nN
2
nN
−2
n N−2

n .

Here we have used that there are N2
n nodes in the grid, the area of each

square Si,jNn is N−2
n , and for x ∈ Si,jNn we have |νi,jNn − x| ≤

√
2N−1

n . Since
Kn = O(Nα

n ) as n→∞ and α < 1, we have ‖un− vn‖2L2(T2) → 0 as n→∞,
and hence un → u in L2(T2).

Since vNn : T2 → R is Lipschitz continuous, if we fix either y ∈ T or x ∈ T
so are vNn(·, y) : T→ R and vNn(x, ·) : T→ R. Therefore by Rademacher’s
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theorem the partial derivatives of vNn exist almost everywhere on horizontal
and vertical lines; hence, we have, for almost every x ∈ T2,

D1
Nnvn(x) =

∫ 1

0

∂vn
∂x

(x+se1/Nn) ds, D2
Nnvn(x) =

∫ 1

0

∂vn
∂y

(x+se2/Nn) ds.

By Jensen’s inequality,

(D1
Nnvn(x))2 =

(∫ 1

0

∂vn
∂x

(x+ se1/Nn) ds
)2
≤
∫ 1

0

(∂vn
∂x

(x+ se1/Nn)
)2
ds,

and similarly for D2
Nn
vn(x). For the finite-difference terms in kαNn(un) we

now find, by construction of un,∫
T2

[
(D1

Nnun(x))2 + (D2
Nnun(x))2

]
dx

=
∑

i,j∈INn

∫
Si,jNn

[
(D1

Nnun(x))2 + (D2
Nnun(x))2

]
dx

≤
∑

i,j∈INn

∫
Si,jNn

[
(D1

Nnvn(x))2 + (D2
Nnvn(x))2

]
dx

≤
∑

i,j∈INn

∫
Si,jNn

∫ 1

0

[(∂vn
∂x

(x+ se1/Nn)
)2

+
(∂vn
∂y

(x+ se2/Nn)
)2]

ds dx

=
∫ 1

0

∑
i,j∈INn

[ ∫
Si,jNn+se1/Nn

(∂vn
∂x

(x)
)2
dx+

∫
Si,jNn+se2/Nn

(∂vn
∂y

(x)
)2
dx
]
ds

=
∫

T2

|∇vn|2,

where we have used Fubini’s theorem and the fact that we are working on a
torus, so the union of all sets of the form Si,jNn + sek/Nn (for either k = 1 or
k = 2) is the same as the union of all Si,jNn , i.e., T2.

To deal with the double-well potential term in kαNn , we first note that for
each x ∈ T2 and each n ∈ N, vn(x) ∈ [0, 1]; hence, W ′ is bounded on intervals
of the form [vn(x), vn(νi,jNn)] by some C > 0. Therefore, for x ∈ Si,jNn ,

W (un(x))−W (vn(x)) = W (vn(νi,jNn))−W (vn(x)) =
∫ vn(νi,jNn )

vn(x))
W ′(s) ds

≤ C|vn(νi,jNn)− vn(x)| ≤ CKn|νi,jNn − x|.
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We thus find∫
T2

W (un)(x) dx =
∫

T2

W (vn(x)) dx+ CKn

∑
i,j∈INn

∫
Si,jNn

|νi,jNn − x| dx

≤
∫

T2

W (vn(x)) dx+ CKnN
2
nN
−2
n N−1

n .

Hence
∫

T2 W (un)(x) dx ≤
∫

T2 W (vn(x)) dx + Rn, where Rn = O(Nα−1
n ).

Since α < 1, Rn → 0 as n→∞.
Combining both terms in kαNn we find kαNn(un) ≤ k∞,N−αn (vn) + Rn. We

already know that lim sup
n→∞

k∞,N−αn (vn) ≤ k∞,0(u), so we have proved that for

u ∈ BV (T2; {0, 1}) with smooth ∂ suppu we have lim sup
n→∞

kαNn(un) ≤ k∞,0(u),

or in terms of the Γ-upper limit, k′′(u) ≤ k∞,0(u).
Now let u ∈ BV (T2; {0, 1}), not necessarily with the smoothness con-

dition on the boundary. Then by [9, Theorem 3.42] there is a sequence
{ûn}∞n=1 ⊂ BV (T2; {0, 1}) such that each suppun has smooth boundary and
lim
n→∞

k∞,0(ûn) = k∞,0(u). Hence by lower semicontinuity of the Γ-upper

limit k′′ we conclude

k′′(u) ≤ lim inf
n→∞

k′′(ûn) ≤ lim inf
n→∞

k∞,0(ûn) = k∞,0(u). �

Proof of Theorem 5.7. Since we have used L1(T2) convergence in (LB)
in Lemma 5.9 and L2(T2) convergence in Lemma 5.11 for (UB′), we can now
conclude Γ-convergence in either of these two topologies. �

5.3. Discussion of the range of α. The range of admissible α in the
results in the previous section is not only of theoretical interest, but is also
important for computations. In simulations, choosing ε of the right order is
a hard problem. If ε is too small in gradient flow simulation, this leads to
the phenomenon of “pinning,” where the initial condition gets pinned down
into the wells of W without changing its geometry. On the other hand,
an ε which is too large leads to immediate diffusion of the initial condition
and loss of some relevant features. Our results do not directly address the
gradient flow, but are in the same spirit.

In the proof of compactness and the lower bound above we have assumed
α ∈ (0, 2

q+3), where q is the degree of polynomial growth of W ′. There
are some reasons to believe this restriction could possibly be relaxed to
α ∈ (0, 2

q+2), but we have not found a proof for this statement.
First note that the dependence on q in the range of α comes from the

discrete nature of the problem. Fundamentally it can be traced back to the
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lack of a chain rule for discrete differentiation. Trying to copy the classical
Modica–Mortola result, we can define wn :=

∫ un
0

√
W (s) ds and estimate

∫
T2

|∇wn| = N−1
n

Nn∑
i,j=1

|(wn)i+1,j − (wn)i,j |+ |(wn)i,j+1 − (wn)i,j |

≤ 2N−1
n

Nn∑
i,j=1

([
((wn)i+1,j − (wn)i,j)2 + ((wn)i,j+1 − (wn)i,j)2

]) 1
2

= 2N−1
n

Nn∑
i,j=1

((∫ (un)i+1,j

(un)i,j

√
W (s) ds

)2
+
(∫ (un)i,j+1

(un)i,j

√
W (s) ds

)2
) 1

2

= 2N−1
n

Nn∑
i,j=1

([
((un)i+1,j − (un)i,j)2W ((u∗n)i+1,j)

+ ((un)i,j+1 − (un)i,j)2W ((u∗n)i,j+1)
]) 1

2

,

where (u∗n)i+1,j ∈ [(un)i,j , (un)i+1,j ] and (u∗n)i,j+1 ∈ [(un)i,j , (un)i,j+1] come
from the mean-value theorem. If we had control over the behavior of W
in between grid points, we could use Cauchy’s inequality to bound the ex-
pression above by kαNn(un). Without condition (W4) this control is lacking.
We could do without this condition if we would somehow have an a priori
L∞ bound for the sequence {un}∞n=1. This reflects a similar situation in the
continuum case [56, Remark 1.35], where condition (W3) with p ≥ 2 can be
dropped from the assumptions needed for compactness if an a priori L∞

bound is available. By construction, a uniform bound on ‖un‖L∞(T2) gives a
similar bound on ‖vn‖L∞(T2); hence, under such an a priori bound we could
drop conditions (W3) and (W4) from our assumptions and eleminate q (i.e.,
q = 0) from the restriction on α. The difference with the continuum case is
that in our case (in the absence of an L∞ bound) we need control over W
and its derivative W ′. The scale of the discretization, N−1, should be fine
enough to resolve the variations in W ′.

Next note that in the proof of the upper bound we only use α ∈ (0, 1).
This restriction has a natural interpretation: If we interpret N−1 as the
discretization spacing, then ε = N−α for 0 < α < 1 tells us that the dis-
cretization should be fine enough to “resolve the diffuse interface,” which, in
the continuum case, has width of order ε. The following example shows that
for α > 1 the lower bound fails. Let u ∈ BV (T2, {0, 1}) be equal to zero on
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half the torus (say on [0, 1/2] × [0, 1)) and equal to one on the other half,
and let {un}∞n=1 be a sequence converging to u in L1(T2) obtained by simply
discretizing u on the grid GNn for a sequence {Nn}∞n=1, Nn →∞ as n→∞.
Then W (un) ≡ 0 for all n. The finite difference term in kαNn(un) only has
nonzero contributions along the boundary between the parts of the torus
where u = 0 and u = 1. Thus there are 2N jumps of order 1, and hence
kαNn(un) = 2N1−α

n . If α > 1 this converges to zero, but the limit functional
k∞,0(u) > 0, which contradicts (LB).

Finally, note that in (5.11) our estimate is not sharp since we use Hölder’s
inequality to go from ‖un− vn‖L1(T2) to ‖un− vn‖L2(T2). If instead a bound
‖un−vn‖L1(T2) = O(N−1

n ) could be proved, possibly using the uniform bound
on kαNn(un), then in (5.11) the condition on α relaxes to α ∈ (0, 2

q+2), which
in the absence of q would reduce to α ∈ (0, 1). We therefore conjecture that
α ∈ (0, 2

q+2) is in fact the natural restriction for α (on T2; see Remark 5.10 for
a discussion about the range of α in general dimensions), or, if an a priori
L∞ bound is available, α ∈ (0, 1). However, it might be the case that a
bilinear interpolation is not the right interpolation to attain this bound.

5.4. Constraints. In this section we show that addition of a fidelity term
or imposing a mass constraint are compatible with the three Γ-limits we
established, i.e., N →∞ for kN,ε, ε→ 0 for k∞,ε, and N →∞ for kαN .

The Modica–Mortola limit k∞,ε
Γ→ k∞,0 as N → ∞ in the Lp(T2) topol-

ogy, p ∈ {1, 2}, is known to be compatible with a mass constraint, e.g. [47,
Proposition 2], [56, Theorem 1], and [15, Proposition 6.6]. Furthermore,
since an Lp(T2) fidelity term, p ∈ {1, 2}, is clearly continuous with respect
to Lp(T2) convergence, it is also compatible with the Γ-limit. The theorem
below addresses the other two Γ-limits for kN,ε and kαN .

Theorem 5.12 (Constraints). (1) kN,ε+λN−2|·−fN |pp
Γ→ k∞,ε+λ

∫
T2 |·−f |pp

for N → ∞ in the Lp(T2) topology, where p ∈ {1, 2}, λ > 0, f ∈ C1(T2),
and fN ∈ AN is the sampling of f on the grid GN (f , fN , and their norms
can also be defined on subsets of T2 and GN as in Theorem 4.13, part 4.13).
A compactness result for kN,ε + λN−2| · −f |pp as in Theorem 5.3 holds.

If instead, for fixed M ∈ [0, 1], the domain of definition of kN,ε is restricted
to VMN (i.e., VM from Theorem 3.6 on the grid GN ), then the Γ-convergence
and compactness results for N → 0 remain valid, with the domain of k∞,0
restricted to VM .

(2) kαN + λN−2| · −fN |pp
Γ→ k∞,0 + λ

∫
T2 | · −f |pp for N →∞ in the Lp(T2)

topology, where p ∈ {1, 2}; λ, f , and fN are as in part 5.12; and α ∈ (0, 2
q+3)
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is as in Theorem 5.7. A compactness result for kαN + λN−2| · −f |pp as in
Theorem 5.6 and Remark 5.8 holds.

If instead, for fixed M ∈ [0, 1], the domain of definition of kαN is restricted
to VMN , then the Γ-convergence and compactness results for N → 0 remain
valid, with the domain of k∞,0 restricted to VM .

We give a sketch of the proofs.
(1) The compatibility of the fidelity term with the Γ-convergence and

compactness follows as in the proof of Theorem 4.13, part 4.13. As in that
theorem, the mass constraint is preserved under Lp(T2) convergence and so
is compatible with both (LB) and compactness11. To show that the mass
constraint is compatible with (UB′) as well, we need to check two condi-
tions. First, the recovery sequence which was constructed (in the proof of
Lemma 5.5) for u ∈ C∞(T2) should either satisfy or be able to be adapted
to satisfy the mass constraint. Second, for each u ∈ W 1,2(T2) there should
be an approximating sequence {un}∞n=1 ⊂ C∞(T2) which has constant mass.
The latter follows directly by the use of normalized mollifiers to construct
the approximating sequence. For the former condition we follow an argu-
ment reminiscent of the proof that a mass constraint is compatible with the
Modica–Mortola Γ-convergence result for the continuum Ginzburg–Landau
functional; see e.g. [47, 56, 15]. Assume that

∫
T2 u = M for some M > 0.

Because u is smooth it has bounded derivatives on T2; hence (using the
notation Si,jNn from (2.2)),∫

T2

un − u =
Nn∑
i,j=1

∫
Si,jNn

[u(i/Nn, j/Nn)− u(x)] dx

≤ Cu
Nn∑
i,j=1

∫
Si,jNn

|(i/Nn, j/Nn)− x|2 dx ≤ C̃uN−1
n ,

for some constants Cu and C̃u, depending only on u. Hence for each n ∈ N
there is a δn = O(N−1

n ) such that ũn := un + δn satisfies
∫

T2 ũn = M . For
this new proposed recovery sequence we compute

kNn,ε(ũn) = kNn,ε(un) + ε−1

∫
T2

[W (ũn)−W (un)] .

11Both the fidelity term and the mass constraint are not only compatible with the
compactness result, but even help with concluding uniform boundedness of either L1(T2)
or L2(T2) norm and hence can replace assumption (W2) in Theorem 5.3 when compactness
with respect to the correct topology is considered.
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By Taylor’s theorem, for x ∈ T2, W (ũn(x)) − W (un(x)) = W ′(cn(x))δn,
where cn(x) ∈ [un, un + δn]. Since u is continuous and hence bounded on
T2, the sequence {un}∞n=1 is equibounded, and hence, because W ∈ C2(R),
W ′(cn) is equibounded. Therefore, the sequence {ũn}∞n=1 is indeed a recovery
sequence for (UB) with u ∈ C∞(T2) and satisfies the mass constraint.

(2) As in part 5.12, the addition of fidelity terms is compatible with the
Γ-limit and compactness and the mass constraint is compatible with both
(LB) and compactness. For compatibility with (UB′) again we check two
things: First that the recovery sequence which was constructed (in the proof
of Lemma 5.11) for u ∈ BV (T2; {0, 1}) with ∂ suppu smooth either satisfies
or can be adapted to satisfy the mass constraint, and second that for each
u ∈ BV (T2; {0, 1}) an approximating sequence {un}∞n=1 ⊂ BV (T2; {0, 1})
can be chosen for which ∂ suppun is smooth and which has constant mass.
The latter condition is satisfied if we use the approximating sequence as in
[9, Theorem 3.42] and then introduce a small dilation, diminishing along
the sequence, of the support of each un so that the mass remains fixed (see
e.g. [52, Proposition 7.1]). The former condition follows in a way similar to
that of construction above in the case N →∞ for kN,ε.

5.5. Gradient flow for kN,ε with constraints. To minimize kN,ε either
under a mass constraint or with a fidelity term we can use a gradient flow.
First consider the latter case: kN,ε,λ := kN,ε + λ| · −f |22. For u, v ∈ VN we
compute grad(kN,ε,λ)(u) ∈ VN via

d

dt
kN,ε,λ(u+ tv)

∣∣∣
t=0

= 〈grad(kN,ε λ)(u), v〉V

and then set for all i, j ∈ IN
∂ui,j
∂t

= −
(

grad(kN,ε,λ)(u)
)
i,j
.

This leads to the equation

∂ui,j
∂t

= −4−r
[
2ε

∑
(k,l)∈N (i,j)

(ui,j−uk,l)+ε−1N−2W ′(ui,j)+2λ(ui,j−fi,j)
]
, (5.12)

where the set of indices of neighbors of (i, j) is given by N (i, j) = {(i −
1, j), (i+ 1, j), (i, j−1), (i, j+ 1)}. The overall prefactor 4−r comes from the
factor d−rij , which is needed to cancel the factor dri,j in the VN inner product.
Here we assume the weights in this case to be equal to 1 (on existing edges).
Equation (5.12) is the discretized analogue of the continuum Allen–Cahn
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equation with data fidelity

∂u

∂t
= 2ε∆u− ε−1W ′(u)− 2λ(u− f),

which is the L2 gradient flow of FGLε (u) + λ‖u− f‖2L2(T2).
If instead of the fidelity term a mass constraint is imposed; the term

2λ(ui,j − fi,j) gets replaced by a Lagrange multiplier

κ = ε−1N−4
N∑

i,j=1

W ′(ui,j).

To illustrate we show simulation results using a fidelity term with f the
characteristic function of a square. We use a one-step forward-in-time finite-
difference scheme to discretize the time derivative, i.e.,

un+1
i,j = uni,j − 4−rdt

[
2ε

∑
(k,l)∈N (i,j)

(uni,j −unk,l) + ε−1N−2W ′(uni,j) + 2λ(uni,j − fi,j)
]
.

Here dt is the discrete time step and the superscript n labels the time step.
We start with a random initial condition u0. We use the inner product
structure on VN corresponding to the unnormalized Laplacian (r = 0). Using
the structure corresponding to the random-walk Laplacian (r = 1) instead
only gives an overall multiplicative factor 1

4 in the right-hand side of the
gradient flow in (5.12), and hence is effectively just a time rescaling leading
to qualitatively the same behavior.

In Figure 1 we use the following parameter values: N = 100, ε = 5,
λ = 0.1, and dt = 0.01. We use W (s) = s2(s− 1)2 for the potential and f is
data prescribed to be 1 in a square region and 0 outside that region.

Note that W ′ satisfies the growth condition (W4) with q = 3; hence,
according to Theorems 5.6 and 5.7, N and ε should satisfy the relation
N−α = ε for an α ∈ (0, 1/3). The combination N = 100 and ε = 5 used in
Figure 1 falls outside this range (α ≈ −0.35), but the simulations still give
a good result. Our theoretical results give a good guideline for choosing α
(especially the upper bound), but in practice different values of α, and hence
ε, can produce good gradient flow simulations. We have chosen this larger
value of ε for our figures to show a stronger diffusion.

6. The continuum limit of nonlocal means

In this section we study the nonlocal means functional gN from (1.6) for a
given fixed Φ ∈ C∞(T2). Remember that the weights are ωL,N := e−d

2
L,N/σ

2
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u at time 0
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Figure 1. (A)–(G) show snapshots of the gradient flow
(5.12) using the parameters in the text. (H) shows the corre-
sponding time evolution of kN,ε,λ(u).

with σ, L > 0 constants (possibly depending on N) and dL,N defined in (1.7).
We define the limit weights ωL,σ, ω`,c ∈ L∞(T2 × T2) as

ωL,σ(x, y) := e−
4L2

σ2

(
Φ(x)−Φ(y)

)2

, ω`,c(x, y) := e
−c2

R
S`

(
Φ(x+z)−Φ(y+z)

)2
dz
,

where `, c > 0 and S` := {z ∈ R2 : |z1| + |z2| ≤ `}. The limit functionals
gL∞ : L1(T2)→ R and g`∞ : L1(T2)→ R are

gL∞(u) :=
∫

T2

∫
T2

ωL,σ(x, y)|u(x)− u(y)| dx dy,
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g`∞(u) :=
∫

T2

∫
T2

ω`,c(x, y)|u(x)− u(y)| dx dy.

We prove a Γ-convergence result.

Theorem 6.1 (Γ-convergence). (1) If σ, L > 0 are fixed, then gN
Γ→ gL∞ as

N →∞, in the L1(T2) topology.
(2) If σ = N

c for some c > 0 and L is such that L/N → ` as N →∞ for

some ` ∈ (0, 1/2), then gN
Γ→ g`∞ as N →∞, in the L1(T2) topology.

As explained in Remark 6.5 we do not have compactness in this case.
Note that gN is the functional f0 from Theorem 3.1, where the graph G is

the grid GN and the choices χ = N−4 and ω = ωL,N have been made. Two
main differences between this functional and the previous functionals on the
grid GN we considered are that the graph is now completely connected and
the weights are not uniform over the edges. For the latter reason it is useful
to introduce notation for the space of graph weights on GN . Given a weight
function ω and nodes ni,j , nk,l ∈ VN we write ωi,j,k,l := ω(ni,j , nk,l). Define

WN := {ω : VN × VN → [0,∞) : for all i, j, k, l ∈ IN2 , ωi,j,k,l = ωk,l,i,j}.
Completely analogous to the identification between VN and AN that was
introduced in Section 4.1, we can identify WN with

ΩN := {ω : T2 × T2 → [0,∞) : for all x, y ∈ T2, ω(x, y) = ω(y, x)}.

Identifying ωL,N ∈ WN with the corresponding ωL,N ∈ ΩN and u ∈ VbN with
the corresponding u ∈ AbN , we can write

gN (u) =


∫

T2

∫
T2

ωL,N (x, y)|u(x)− u(y)| dx dy if u ∈ AbN ,

+∞ if u ∈ L1(T2) \ AbN .
We prove Theorem 6.1 in two steps. First we show that uniform conver-

gence of the weights suffices for Γ-convergence of gN , and then we show that
uniform convergence holds.

Lemma 6.2. Let {ωN}∞N=1 be such that ωN ∈ ΩN and ωN → ω uniformly
as N → ∞ for some ω ∈ L∞(T2 × T2). For N ∈ N define the functional
g∞ : L1(T2)→ R by

g∞(u) :=
∫

T2

∫
T2

ω(x, y)|u(x)− u(y)| dx dy;

then gN
Γ→ g∞ as N →∞ in the L1(T2) topology.
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Proof. Let {Nn}∞n=1 ⊂ N be such that Nn → ∞ as n → ∞, and let u ∈
L1(T2) and {un}∞n=1 ⊂ L1(T2) be such that un → u in L1(T2) as n → ∞.
Assume that for each n ∈ N, un ∈ AbNn . Then∣∣∣ ∫

T2

∫
T2

ωNn(x, y)|un(x)− un(y)| dx dy −
∫

T2

∫
T2

ω(x, y)|u(x)− u(y)| dx dy
∣∣∣

=
∣∣∣ ∫

T2

∫
T2

(ωNn(x, y)− ω(x, y))|un(x)− un(y)| dx dy

+
∫

T2

∫
T2

ω(x, y) (|un(x)− un(y)| − |u(x)− u(y)|) dx dy
∣∣∣

≤ I1 +
∫

T2

∫
T2

ω(x, y)|un(x)− un(y)− u(x) + u(y)| dx dy ≤ I1 + 2I2,

where for simplicity we have used the notation

I1(u) :=
∫

T2

∫
T2

|ωNn(x, y)− ω(x, y)||un(x)− un(y)| dx dy

I2(u) :=
∫

T2

∫
T2

ω(x, y)|un(x)− u(x)| dx dy.

Since ωNn → ω uniformly as n → ∞, there is a sequence of constants
Cn > 0 such that for n large enough |ωNn(x, y)− ω(x, y)| ≤ Cn and Cn → 0
as n→∞. Hence,

I1 ≤ Cn
∫

T2

∫
T 2

|un(x)− un(y)| dx dy.

Because un ∈ AbNn , we have |un(x)−un(y)| ≤ 2 for almost all (x, y) ∈ T2×T2,
and hence I1 → 0 as n → ∞. Furthermore, I2 ≤ ‖ω‖L∞(T2)‖un − u‖L1(T2),
and thus I2 → 0 as n → ∞. We conclude that lim

n→∞
gNn(un) = g∞(u) for

any sequence {un}∞n=1 such that un ∈ AbNn and un → u in L1(T2) as n→∞.
In particular, (LB) is proven. To prove (UB′), all that remains is to show
that there exists such a sequence.

First assume u ∈ C∞(T2) and define un(x) := u(i/Nn, j/Nn), where
i, j ∈ IN are such that x ∈ Si,jNn from (2.2). This sequence satisfies the
required conditions; hence, (UB′) is proved for u ∈ C∞(T2). We conclude
the argument by using the lower semicontinuity of the upper Γ-limit and
density of C∞(T2) in L1(T2) as in the proof of Theorems 5.5 and 5.11 to
deduce (UB′) for u ∈ L1(T2). �

Remark 6.3. Note that gN does not converge uniformly to g∞, because if
u ∈ L1(T2) is such that for all N ∈ N u 6∈ AbN , then |gN (u)− g∞(u)| =∞.
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If we would restrict the domains of gN and g∞ to continuous u and define
gN to be

gN (u) :=
∫

T2

∫
T2

ωN (x, y)|uN (x)− uN (y)| dx dy,

where uN (x) = u(i/N, j/N) where i and j are such that x ∈ Si,jNn , then
gN → g∞ uniformly by the estimates in the proof of Lemma 6.2. By [28,
Proposition 5.2], gN then Γ-converges to the lower-semicontinuous envelope
of g∞.

Lemma 6.4. (1) If σ, L > 0 are fixed, then ωL,N → ωL,σ uniformly as
N →∞.

(2) If σ = N
c for some c > 0 and L is such that L/N → ` as N →∞ for

some ` ∈ (0, 1/2), then ωL,N → ω`,c uniformly as N →∞.

We defer the relatively straightforward proof to Appendix B.
Proof of Theorem 6.1. Combining Lemmas 6.2 and 6.4, the result follows
directly. �
Remark 6.5. It is important to note that for gN we do not have a com-
pactness result in the L1(T2) topology. If we have sequences {Nn}∞n=1 and
{un}∞n=1 such that Nn → ∞ as n → ∞ and un ∈ AbNn , the bound on
‖un‖L∞(T2) allows us to conclude that un

∗
⇀ u for some subsequence (la-

belled again by n) and some u ∈ L∞(T2). In order to deduce L1(T2)
convergence we would need some information on the derivatives (or finite
differences), which we do not have when the weights ω are nonsingular. A
uniform bound on gNn(un) adds no useful information since gNn(un) ≤ 1 per
definition, if un ∈ AbNn .

A simple counterexample is the case where Φ is constant, hence the graph
weight function ω ≡ 1. Let uN ∈ AbN be a checkerboard pattern on GN (i.e.,
as a function in VbN , (uN )0,0 = 0 and (uN )i,j 6= (uN )i+1,j = (uN )i,j+1 for all
i, j); then

gN (uN ) =
∫

T2

∫
T2

|uN (x)− uN (y)| dx dy = 2| suppuN | |(suppuN )c| ≤ 2.

However, no subsequence of {uN}N converges in L1(T2), as can be seen as
follows. Let M � N ; then the square Si,jN contains O

((
M
N

)2) squares of size

M−1 by M−1. On approximately half (at least O(1)) of these uM 6= uN , so∫
T2

|uN − uM | = N2M−2O
((M
N

)2)O(1) = O(1).
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7. Discussion and open questions

In this paper we have shown various Γ-convergence results. The con-
vergence of fε in Section 3 shows that we can extend the classical Modica–
Mortola Γ-convergence result for the Ginzburg–Landau functional to graphs,
if we are careful about the precise scaling. The discrete nature of a graph
forces us to not include an ε in the finite-difference term, unlike the ε in the
gradient term for the continuum Ginzburg–Landau functional. As has been
shown on a specific regular square grid in Section 4, this has consequences
for the limit functional, which now behaves like an anisotropic instead of
isotropic total variation. We recovered the isotropic total variation for the
regular grid case in Section 5 by taking an approach reminiscent of classical
numerical analytic results, instead of graph-based results. Specifically, to do
this we need to choose a scaling in line with standard finite-difference and
quadrature methods and make the limit N → ∞ dominant over the limit
ε→ 0 such that, in a sense, we first get back to the continuum case, before
passing to the total variation. The lesson in here is twofold. On the one
hand it shows that one has to be careful when discretizing on a grid not to
pick up grid direction, which has been known to numerical analysts for a
long time. On the other hand, however, it entices us to look at graph-based
functionals and nonlinear partial differential equations in their own right,
because they can behave in surprising ways if the topology of the graph is
allowed to interact with the functional or PDE. This conclusion is reminis-
cent of the behavior which is found in [41]. In that paper the authors study
the limit of the graph Laplacian on a graph which is constructed by sampling
points from a manifold. They find the limit is independent of the sampling
distribution only for a specific scaling of the graph Laplacian.

In Section 6 we studied the limit of a functional of nonlinear means type
on graphs, showing that while the limit exists, the nonlocal nature of the
functional leads to loss of compactness. This is not expected to be a specific
problem of the graph-based nature of the functional, but of the nonlocality,
and as such is expected to be present for a continuum version of gN as well.

One question raised in Section 5.3 is whether the range of α under which
Γ-convergence and compactness of kαN can be proven, can be extended to
(0, 1). This is an important question in practice when running gradient flow
simulations. A choice of ε which is too small or large can lead to either
pinning or too-fast diffusion respectively.

The Γ-convergence results for hN,ε and kN,ε naturally lead to the question
of the limit behavior for other graphs. In order to have a good interpretation
for that question it is in the first place necessary to have a structured way
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in which to increase m, the number of nodes for the graph. A triangulation
might be the natural next step. A random Erdős–Rényi graph [30] also
carries a natural rule on how to connect new nodes to the graph and may be
an interesting exploration into the question whether the Ginzburg–Landau
functional on a graph without explicit spatial embedding can possibly have
“continuum” limit. For arbitrary graphs it is less clear how to add new nodes
in a structured way. One option could be to construct a sequence of graphs
where in each next step each existing edge is bisected by a new node.

A question that is very relevant for the applications of the Ginzburg–
Landau functional is that of stability of minimizers with respect to per-
turbations of the graph (e.g., perturb the weights or add or delete nodes).
For example, in data analysis, if the nodes represent data points and the
edge weights measure similarity, it is quite likely that noise is present in the
weights.
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Appendix

A. Choice of Hilbert space and difference structure

In this section we will give some background information and derivations
concerning the choices made in Section 2.2 that defined our graph operators
and functionals.

We start by associating V and E with the finite-dimensional vector spaces
Rm and Rm(m−1)/2 respectively. We will turn these vector spaces into Hilbert
spaces by defining inner products on them. We follow the procedure de-
scribed in [41, Section 2]12. For u, v ∈ V and ϕ, φ ∈ E we define

〈u, v〉V :=
∑
i∈Im

uiviα(di), 〈ϕ, φ〉E :=
1
2

∑
i,j∈Im

ϕijφijβ(ωij),

12We slightly deviate from [41]. Instead of sums
Pm
i=1 they use averages 1

m

Pm
i=1,

which is a choice not unanimously adopted in the literature, but which leads to cleaner
convergence statements in [41]. We could adopt this convention in this paper, but it would
not significantly alter our results, mutatis mutandis.
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where α, β : [0,∞) → [0,∞) are functions yet to be determined. Note that
a priori we allow α and β to take the value zero, which means that the above
“inner products” might be positive semidefinite and not positive definite. We
will get back to this issue after we have decided on our choices of α and β13.

As in [35] we also define the dot product for ϕ, φ ∈ E as

(ϕ · φ)i :=
1
2

∑
j∈Im

ϕijφijβ(ωij).

Note that ϕ · φ ∈ V. As explained in [41] we can now define the difference
operator or gradient ∇ : V → E as

(∇u)ij := γ(ωij)(uj − ui),
where γ : [0,∞]→ [0,∞] is a third yet-to-be-determined function. With this
choice for the gradient we find that its adjoint, the divergence div : E → V,
is given by [41, Lemma 3]:

(divϕ)i :=
1

2α(di)

∑
j∈Im

β(ωij)γ(ωij)(ϕji − ϕij).

This expression follows from the defining property of the adjoint: 〈∇u, ϕ〉E =
〈u,divϕ〉V for all u ∈ V and all ϕ ∈ E .

Now that we have inner products, a gradient operator, and a divergence
operator, we can define the following objects:
• Inner product norms ‖u‖V :=

√
〈u, u〉V and ‖ϕ‖E :=

√
〈ϕ,ϕ〉E .

• Maximum norms14 ‖u‖V,∞ := max{|ui| : i ∈ Im} and
‖ϕ‖E,∞ := max{|ϕij | : i, j ∈ Im}.
• The norm corresponding to the dot product ‖ϕ‖i :=

√
(ϕ · ϕ)i.

Note that ‖ · ‖E,dot ∈ V.
• The Dirichlet energy 1

2‖∇u‖
2
E .

13Note that if α and β are such that positive definiteness is satisfied, these inner prod-
ucts do indeed turn V and E into Hilbert spaces, since convergence with respect to the
induced E norm preserves skew-symmetry.

14To justify these definitions and convince ourselves that there should be no β or γ
included in the maximum norms we define ‖ϕ‖pE,p := 1

2

P
i,j∈Im ϕ2

ijβ(ωij). Adapting the

proofs in the continuum case in e.g. [1, Theorems 2.3 and 2.8] to the graph situation,
we can prove a Hölder inequality ‖ϕφ‖E,1 ≤ ‖ϕ‖E,p‖φ‖E,q for 1 < p, q < ∞ such that

1
p

+ 1
q

= 1, an embedding theorem of the form ‖ϕ‖E,p ≤
“1

2

X
i,j∈Im

β(ωij)
” 1

p
− 1

q ‖ϕ‖E,q for

1 ≤ p ≤ q ≤ ∞, and the limit lim
p→∞

‖ϕ‖E,p = ‖ϕ‖E,∞. A similar result holds for the norms

on V.
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• The graph Laplacian ∆ := div ◦∇ : V → V. So

(∆u)i :=
1

α(di)

∑
j∈Im

β(ωij)γ2(ωij)(ui − uj).

• The isotropic and anisotropic total variation TV : V → R and TVa :
V → R respectively:

TV(u) := max{〈divϕ, u〉V : ϕ ∈ E , max
i∈Im

‖ϕ‖i ≤ 1}.

TVa(u) := max{〈divϕ, u〉V : ϕ ∈ E , ‖ϕ‖E,∞ ≤ 1}.

We note that by the property of the adjoint we can also use 〈∇u, ϕ〉E in the
definitions above instead of 〈divϕ, u〉V . In this finite-dimensional setting
these maxima over unit balls will be achieved; hence, we are justified in
using max instead of sup.

Before we start making specific choices for α, β, and γ, it is interesting to
make some general observations which do not depend on these choices.
• We can alternatively derive the Laplacian via the variational principle

from the Dirichlet energy as follows. Consider u, v ∈ V and t ∈ R; then

d

dt

1
2
‖∇u+ tv‖2E

∣∣∣∣
t=0

=
1
2

∑
i,j∈Im

β(ωij)γ2(ωij)(ui − uj)(vi − vj)

=
∑
i,j∈Im

β(ωij)γ2(ωij)(ui − uj)vi

=
∑
i,j∈Im

β(ωij)γ2(ωij)
α(di)

(ui − uj)viα(di) = 〈∆u, v〉V .

If we choose v = u, this also shows that an analogue of “integration by parts”
holds:

〈∆u, u〉V =
1
2

∑
i,j∈Im

β(ωij)γ2(ωij)(ui − uj)2 = ‖∇u‖2E .

• We can also give a variational TV-type formulation of the Dirichlet
energy itself via

‖∇u‖E = max{〈divϕ, u〉V : ϕ ∈ E , ‖ϕ‖E ≤ 1}.

To see why this holds we first remember that 〈∇u, ϕ〉E = 〈divϕ, u〉V . Then
we see that by the Cauchy–Schwarz inequality,

〈∇u, ϕ〉E ≤ ‖∇u‖E‖ϕ‖E ≤ ‖∇u‖E .
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Equality is achieved when

ϕ = ϕE(u) :=
{ ∇u
‖∇u‖E if ‖∇u‖E 6= 0,
0 if ‖∇u‖E = 0,

which is permissible since ‖ϕE(u)‖E ≤ 1.
We will now make particular choices for α, β, and γ. Our choices will be

driven by the desire to satisfy the following properties.
(1) We will consider a family of graph Laplacians indexed by a parameter

r ≤ 1 (not to be confused with the p-Laplacian from the literature). As
it turns out, only the choice of α is influenced by the choice of r. The
Laplacians we consider are

(∆ru)i := d1−r
i ui −

∑
j∈Im

ωij
dri
uj =

∑
j∈Im

ωij
dri

(ui − uj).

As explained in Section 2.2, by choosing either r = 0 or r = 1 we recover
the unnormalized or random-walk Laplacian respectively. To construct the
symmetric normalized Laplacian as it appears in the literature requires a
gradient of the form

(∇u)ij = γ(ωij)
( uj√

dj
− ui√

di

)
(cf. [41]). This falls outside our current framework, and hence we will not
consider it here.15 Some discussion of the pros and cons of different graph
Laplacians can be found in e.g. [43, 58].

(2) The Dirichlet energy is given by 1
2‖∇u‖

2
E = 1

4

∑
i,j∈Im ωij(ui − uj)

2,
independently of the choice of r in the Laplacian.

(3) The isotropic total variation is

TV(u) =
∑
i∈Im

‖∇u‖i =
1
2

√
2
∑
i∈Im

√∑
j∈Im

ωij(ui − uj)2

(cf. [35] where TV is called nonlocal TV because the graph is assumed to
be embedded in a Euclidean space and so what is local on the graph (neigh-
boring vertices) might not be local in the embedding space).

15As a word of caution we note that the use of the symmetric Laplacian in Allen-Cahn
type equations in combination with a double-well potential W with wells that are not
symmetrically placed around 0 (as in the case where the wells are at 0 and 1) causes an
asymmetry between the two phases that is typically unwanted.
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(4) We will consider a family of anisotropic total variations parametrized
by the parameter q ∈ [1/2, 1]16:

TVaq(u) = 〈∇u, sgn(∇u)〉E =
1
2

∑
i,j∈Im

ωqij |ui − uj |.

The parameter q comes in via the definitions of β and γ and the signum
function is understood to act element-wise on the elements of ∇u.

Let us consider all the points above to find out what conditions we have
to impose on α, β, and γ to satisfy this list of requirements.

(1) As can be seen in the definition of the Laplacian (cf. also [41, Defi-
nition 7]), in order to get the desired Laplacians we have to choose
α, β, and γ such that for each ωij and each di,

β(ωij)γ2(ωij)
α(di)

=
ωij
dri
.

Specifically, β(ωij)γ2(ωij) = ωij for any choice of r and α(di) = dri .
We will see below that the choice of α is irrelevant for the points 2–4,
and hence all choices of r are compatible with what follows.

(2) For the Dirichlet energy we compute

1
2
‖∇u‖2E =

1
4

∑
i,j∈Im

(ui − uj)2β(ωij)γ2(ωij) =
1
4

∑
i,j∈Im

ωij(ui − uj)2.

Since the graph Laplacian appears as the natural operator in the
Euler–Lagrange equation associated with the Dirichlet energy, it is
not surprising that we do not get any extra conditions on α, β,
or γ from the Dirichlet energy that we didn’t already get from the
Laplacian. It is interesting to note, though, that the Dirichlet energy
does not depend on the choice of α (and hence r in the Laplacian)
at all.

(3) For the isotropic total variation TV we use the Cauchy–Schwarz
inequality on the dot product norm to get 〈∇u, ϕ〉E =

∑
i∈Im(∇u ·

ϕ)i ≤
∑

i∈Im ‖∇u‖i‖ϕ‖i ≤
∑

i∈Im ‖∇u‖i. To achieve equality17 let

ϕij = ϕTV
ij (u) :=

{
(∇u)ij
‖∇u‖i if ‖∇u‖i 6= 0,
0 if ‖∇u‖i = 0

. Again, we do not require

16We can take q ∈ R if we interpret ωqij as zero whenever ωij = 0.
17Note that demanding ϕTV to achieve equality does not determine it uniquely on the

set of vertices for which ‖∇u‖i = 0.
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extra conditions on β and γ. They will be determined by the last
requirement18.

(4) To compute TVa we use the bound on the maximum norm of ϕ to
find

〈∇u, ϕ〉E =
1
2

∑
i,j∈Im

ϕij(uj − ui)β(ωij)γ(ωij)

≤ 1
2

∑
i,j∈Im

|ϕij ||ui − uj |β(ωij)γ(ωij)

≤ 1
2

∑
i,j∈Im

|ui − uj |β(ωij)γ(ωij).

To achieve equality we can choose ϕ = ϕa := sgn(∇u); i.e., ϕaij =
sgn(uj−ui) for i and j such that γ(ωij) > 0 and ϕaij = 0 otherwise19.
Hence

TVa(u) =
1
2

∑
i,j∈Im

|ui − uj |β(ωij)γ(ωij).

If we now choose β(ωij) = ω2q−1
ij and γ(ωij) = ω1−q

ij , then TVa =
TVaq while β and γ satisfy the necessary condition β(ωij)γ2(ωij) =
ωij from the previous points.

These choices for α, β, and γ lead to the inner products (or semidefinite
sesquilinear forms), operators, and functions presented in Section 2.2.

It is interesting to consider the conditions under which ‖∇u‖E = 0 and
‖∇u‖i = 0:

‖∇u‖E = 0⇔
∑
i,j∈Im

ωij(ui − uj)2 ⇔ ∀(i, j) ∈ I2
m [ωij = 0 ∨ ui = uj ].

This means that ‖∇u‖E = 0 if and only if u is constant on connected com-
ponents of the graph. Similarly,

‖∇u‖i = 0⇔
∑
j∈Im

ωij(ui − uj)2 ⇔ ∀j ∈ Im [ωij = 0 ∨ ui = uj ];

18If we had defined the dot product (ϕ · φ)i := 1
2

P
j∈Im ϕijφijδ(ωij) for a function

δ possibly different than β, the requirement on TV would have led to the condition
β2(ωij)γ2(ωij)

δ(ωij)
= ωij . Together with β(ωij)γ

2(ωij) = ωij from point 1 this gives δ = β

as we have assumed all along.
19Note that we can change ϕa on the set of vertices for which ∇u = 0 without losing

equality. See also footnote 17.
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hence, ‖∇u‖i = 0 if and only if u is constant on the set {nj ∈ V : j =
i ∨ eij ∈ E} consisting of neighboring vertices of the ith vertex plus the ith

vertex itself.
We see that these conditions do what we would hope and expect them to

do, even if the choice of q has made the E-sesquilinear form semidefinite; i.e.,
‖∇u‖E = 0 gives global (per connected component) constants and ‖∇u‖i = 0
gives local constancy.

B. Deferred proofs

The next lemma was used in the proof of Lemma 5.4.

Lemma B.1. Let {un}∞n=1 ⊂ L1(T) be a such that un → u in L1(T) for a
u ∈ L1(T2) and u′n ⇀ v in L2(T) for a v ∈ L2(T). Then v = u′ (and thus
u ∈W 1,2(T)).

Note in the proof below that this result in fact does not depend on the
dimension and holds on Td.

Proof of Lemma B.1. Let ϕ ∈ C∞c (T); then

0 = lim
n→∞

∫
T
ϕ(v − u′n) = lim

n→∞

∫
T

[
ϕv − ϕ′u− ϕu′n + ϕ′u

]
.

There is a C > 0 such that

lim
n→∞

∫
T

[
−ϕ′u− ϕu′n

]
= lim

n→∞

∫
T
ϕ′ [un − u] ≤ lim

n→∞
C‖un − u‖L1(T) = 0;

hence, we conclude
∫

T ϕv = −
∫

T ϕ
′u. �

The next lemma is a discrete Rellich–Kondrachov-type compactness result
used in the proof of Theorem 5.3.

Lemma B.2 (Discrete Rellich-Kondrachov compactness result). Let {un}∞n=1

⊂ L2(T2) and {Nn}∞n=1 ⊂ (0,∞) be sequences such that as n→∞ we have
Nn → ∞, un ⇀ u in L2(T2) for some u ∈ L2(T2), and the difference quo-
tients (see (5.4)) ‖Dk

Nn
un‖L2(T2) (k ∈ {1, 2}) are uniformly bounded. Then

un → u in L2(T2).

Proof. For ε > 0, let uεn := Jεun ∈ C∞(T2) be a mollified function on the
torus, defined to be the solution to the heat equation after time ε with initial
condition un:

Jεun(x) =
∑
k∈Z2

ûn(k)e−ε
2|k|2+2πik·x,
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where ûn(k) =
∫

T2 un(x)e−2πik·x dx. We proceed in two steps. First we need
to prove some properties of the mollifier, then we will prove the statement
of the lemma.

Step 1: From [38, Appendix B] and [39, Lemma1], we get that there is
a C > 0 such that ‖uεn‖L2(T2) ≤ C‖un‖L2(T2). Additionally, Jε is a linear
operator. [38, 39] also give ‖Jεf − f‖L2(T2) ≤ ε‖f‖H1(T2) for f ∈ H1(T2).
un is not regular enough to use this estimate, so we need a discrete version
of this.

As in the references above, using that 1 − e−θ2 ≤ |θ|2 for θ ∈ C, we find
that ∣∣∣(1− e−ε2|k|2)2

1 + |k|2
∣∣∣ < { ε2δ2 if |k| < δ,

δ−2 if |k| ≥ δ.
Hence,

‖uεn − un‖2L2(T2) =
∑
k∈Z2

(
1− e−ε2|k|2

)2|ûn(k)|2

≤
(

sup
k∈Z2

∣∣∣(1− e−ε2|k|2)2

1 + |k|2
∣∣∣) ∑

k∈Z2

(
1 + |k|2

)
|ûn(k)|2

≤ ε2
∑
k∈Z2

(
1 + |k|2

)
|ûn(k)|2.

By Plancherel’s/Parseval’s identity we get immediately
∑

k∈Z2 |ûn(k)|2 =
‖un‖L2(T2). Furthermore,

‖DNnun‖2L2(T2) =
∫

T2

[(
D1
Nnun(x)

)2 +
(
D2
Nnun(x)

)2 ]
dx

= N2
n

∑
k∈Z2

(∣∣∣ ̂(u+1
n − un)(k)

∣∣∣2 +
∣∣∣ ̂(u+2

n − un)(k)
∣∣∣2),

where u+j
n (x) := un(x+Nnej) for standard basis vectors ej , j ∈ {1, 2}. It’s

easily computed that û+j
n (k) = ûn(k)e2πikj/Nn ; hence,

‖DNnun‖2L2(T2) =
∑
k∈Z2

|ûn(k)|2
[∣∣∣Nn(e2πik1/Nn − 1)

∣∣∣2 +
∣∣∣Nn(e2πik2/Nn − 1)

∣∣∣2].
Recognizing the difference quotient

Nn

(
e2πik1/Nn − 1

)
= 2πik1

e2πik1/Nn − e0

2πik1/Nn
= 2πik1 +O(N−1

n ),



1176 Yves van Gennip and Andrea L. Bertozzi

we deduce

‖DNnun‖2L2(T2) = 4π2
∑
k∈Z2

|k|2|ûn(k)|2 + Cn
∑
k∈Z2

|ûn(k)|2,

where Cn = O(N−1
n ). On the last term we can use again Parseval’s formula.

By the uniform bounds on ‖un‖L2(T2) and ‖DNnun‖L2(T2) we then find that

‖uεn − un‖2L2(T2) ≤ Cε
2, uniformly in n for n large enough. (B1)

Next we compute an estimate on the derivatives of uεn:

∂

∂x1
uεn(x) = 2πi

∑
k∈Z2

k1ûn(k)e−ε
2|k|2+2πik·x,

and hence, since |ûn(k)| ≤ ‖un‖L1(T2),∣∣∣ ∂
∂x1

Jεun(x)
∣∣∣ ≤ 2π‖v‖L1(T2)

∑
k∈Z2

|k1|e−ε
2|k|2 .

We compute∑
k2∈Z

e−ε
2k2

2 ≤ 2
∞∑
k2=0

e−ε
2k2

2 ≤ 2
∫ ∞

0
e−ε

2k2
2 dk2 + 1 =

√
πε−1 + 1

and∑
k1∈Z
|k1|e−ε

2k2
1 =2

∞∑
k1=0

k1e
−ε2k2

2≤2
∫ ∞

0
k1e
−ε2k2

1dk1 =ε−2

∫ ∞
0

x2e−x
2
dx=ε−2.

Because ‖un‖L1(T2) ≤ ‖un‖L2(T2) is uniformly bounded, we conclude (for ε
small enough) there is a C > 0 such that ‖∇Jεun(x) · ek‖L∞(T2) ≤ Cε−3,
k ∈ {1, 2}.

Step 2: Let η > 0, and let n be large enough for the bounds proved in
Step 1 to hold. Fix ε > 0 small enough such that, by (B1), for each n we
have ‖un − uεn‖L2(T2) ≤ η/3.

By the bounds from Step 1, both ‖uεn‖L2(T2) and ‖∇Jεun(x) ·ek‖L2(T2) are
uniformly (in n, for fixed ε) bounded, and hence by the Rellich–Kondrachov
compactness theorem [31, Section 5.7 Theorem 1], [1, Theorem 6.2] the se-
quence {uεn}∞n=1 converges strongly in L2(T2) as n→∞. In particular, it is
a Cauchy sequence in L2(T2), so choose Mε > 0 such that for all n,m > Mε

we have ‖uεn − uεm‖L2(T2) ≤ η/3. Then for such n and m,

‖un−um‖L2(T2) ≤ ‖un−uεn‖L2(T2) +‖um−uεm‖L2(T2) +‖uεn−uεm‖L2(T2) ≤ η.
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Thus, {un}∞n=1 is a Cauchy sequence in L2(T2) and therefore converges
strongly in L2(T2). By the uniqueness of the limit it converges to u. �

Proof of Lemma 6.4. In both cases we assume without loss of generality
that N is large enough such that L

N < 1
2 . For fixed N > 0 and i, j, k, l ∈ IN2 ,

let x = (i/N, j/N) and y = (k/N, j/N). For z ∈ T2, write fx,y(z) =(
f(x− z)− f(y − z)

)2; then from (1.7),

(d2
L,N )i,j,k,l =

L∑
r,s=−L

fx,y(r/N, s/N).

Also define SL,N := {z ∈ T2 : |z1| + |z2| ≤ L/N}. By repeated use of the
trapezoidal rule for approximating integrals, we then find

N−2(d2
L,N )i,j,k,l =

∫
SL,N

fx,y(z) dz − L

6N3

∫ L/N

−L/N

∂2fx,y

∂z2
2

(z1, ζ2) dz1

− L

6N4

L∑
s=−L

∂2fx,y

∂z2
1

(ζ1, s/N)

=:
∫
SL,N

fx,y(z) dz +RL,N , (B2)

where (ζ1, ζ2) ∈ SL,N . By smoothness of f and compactness of T2, we have
|RL,N | ≤ Cf L

2

N4 for some constant Cf > 0 depending on f .
For the first statement in the lemma we now find

(d2
L,N )i,j,k,l =N2

∫
SL,N

fx,y(z) dz +N2RL,N =
4L2

|SL,N |

∫
SL,N

fx,y(z) dz +N2RL,N

→ 4L2fx,y(0) = 4L2
(
f(x)− f(y)

)2 uniformly as N →∞.

The uniformity of the convergence follows by the bound of the smooth f on
the compact domain T2. This proves the claim (since the composition of
a continuous function and a uniformly converging sequence of functions is
uniformly converging to the composition of the continuous function and the
limit of the sequence).

For the second statement the bound on f allows us to conclude that∫
SL,N

fx,y(z) dz →
∫
S`

fx,y(z) dz uniformly as N →∞.

The claim then follows by taking the limit N →∞ in (B2). �
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