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Abstract—This paper introduces the use of compressed sens-
ing for autonomous robots performing environmental mapping
in order to reduce data collection, storage, and transmission
requirements. A prototype robot sends data collected over
adaptively updated straight-line paths to a server, which
reconstructs an image of the environment variable using Split-
Bregman iteration. The amount of data collected is only 10%
of the amount of data in the final map, yet the relative error
is only 20%.

I. INTRODUCTION

Environmental mapping is essential to making truly
autonomous robots and is critical for robotic exploration
and discovery underwater, outdoors, within buildings, and
in space [1]. However, the necessarily limited capabilities
of mobile robots and inherent communication challenges of
certain environments conspire to complicate the problem of
mapping, even when the location of the robot(s) is known.
For instance, autonomous underwater vehicles would be im-
mensely useful for mapping natural resources and scientific
data collection in the ocean [2], but returning the information
to a land-based server is difficult because radio communica-
tion is impractical underwater [3]. Acoustic communication
is possible, but has greater bandwidth constraints and power
requirements [4], hence there is a need to minimize data
transmission. One approach would be to collect as much
data as necessary and compress it prior to transmission, but
this has significant drawbacks, as cost increases with the
number of sensor nodes in a network and mobile robots are
limited in their physical speed and data storage capability. A
more promising solution is compressed sensing, a technique
in which a relatively small amount of data is collected in
order to reconstruct a higher-resolution signal or map. [5]
considers the use of Random Access Compressed Sensing to
create an energy-efficient network of static sensor nodes for
oceanographic data collection, but in certain scenarios, such
as exploration of unchartered territory, autonomous robots
are clearly preferably to a network of fixed sensors. In this
paper, we pioneer the use of mobile robots for compressed
sensing environmental mapping. Section II describes the
testbed hardware: a small wheeled robot tracked by an
overhead camera measures the reflectivity of the testbed
surface and sends the data to a central server. Section III
documents the algorithm used by the server to reconstruct
a complete map of the surface from the incomplete data
collected by the robot. In Section IV we describe both
simulated and physical simulation results, and we conclude

in Section V.

II. TESTBED CONFIGURATIONS AND
COMMUNICATIONS

The experimental setup consists of four main compo-
nents: a testbed surface, a mobile robot, two Overhead Imag-
ing Source DMK 21F04 1/4 Monochrome CCD cameras,
and a server hosted on a windows computer.

The testbed surface is a 1.5m x 2.0m sheet of black
asphalt felt paper with white paper patterns to be mapped.
The robot itself consists of 5 main components:

1) Arduino Uno: The Arduino Uno, powered by
a 9V battery, has very limited processing power
(16 MHz) and memory (32 KB Flash and 2 KB
SRAM). An Adafruit WiFi Shield allows the Ar-
duino to connect to a wireless network and thereby
communicate with the server.

2) Reflectance Sensor: The reflectance sensor yields
an analog voltage corresponding with the re-
flectance of the surface, which is then binarized:
sensor readings above an experimentally deter-
mined threshold are read as white and those below
are read as black.

3) Chassis: The chassis has four wheels, each directly
connected to a gearmotor powered by five onboard
AA rechargeable batteries.

4) Motor controller: The motor controller amplifies
the 5V, logic-level output of the Arduino to power
the motors with the AA batteries. The two motors
on the left and the two motors on the right are
connected in parallel to each other, enabling simple
tracked-vehicle (tank) steering.

5) Tag (Visual ID): A unique white rectangular tag
with a black-tape border and a black header strip
allows the overhead cameras to visually identify the
robot and determine the position of the reflectance
sensor.

The two 640x480 pixel cameras send 30 frames per
second to a processing computer via firewire. A python
script uses OpenCV to recognize the robot identification tag
and return the robot’s position and orientation to the server
over the serial port. Finally, the server reads the robot’s
location and orientation provided by the cameras, records
data collected by the robot, and sends instructions to the
robot. The logic and flow of data is illustrated in Figure 1.
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Fig. 1: The robot operates as a finite state machine. During state 1, the robot attempts to rotate to a start orientation
previously commanded by the server, then requests for the server to record its actual position from the video cameras. The
robot switches to state 0 upon confirmation, integrates sensor data along a straight path for a duration commanded by the
server, and requests for the server to record the actual final position.

III. ALGORITHM

A. Models and Assumptions

Without loss of generality, we assume the area to be
explored is a rectangle denoted by Ω, and the interested en-
vironment variable u(x, y) is a piece-wise constant function
defined on Ω. See Figure 2 for an illustration. Assume the
robot travels through n different paths, which are denoted
by C1, . . . , Cn. Along each path, the robot sensor reads the
value of u at each point, and an integration of u is performed
on-board by adding up the readings. Therefore, the robot
collects the integral of u along Ck, which is denoted by
bk. The robot sends bk to the server once it completes Ck.
Formally, bk is expressed as

bk =

∫
Ck

u(x, y) dΓ, k = 1, . . . , n. (1)

Fig. 2: An illustration of the paths of robots. The shaded
regions denote the area of interest (unknown), where the
values of environment variable u is significantly different
from the surroundings. The size of the unit pixel (each small
rectangle) is determined by the accuracy of the positioning
system.

For computational purpose, the whole domain is dis-
cretized into rectangular pixels (See Figure 2). Each path
Ck defines a weight ak,ij for each pixel (i, j). If Ck does
not intersect with pixel (i, j), then ak,ij = 0, otherwise

ak,ij is defined to be the length of the part of Ck that falls
within pixel (i, j). It is also assumed that the value of u is
a constant within each pixel (i, j), which is denoted by uij .
After discretization, Eq (1) becomes

bk =
∑
i

∑
j

ak,ijuij . (2)

Let b = (b1, . . . , bn)t, u = (uij), then b and u have a linear
relation, which is written as

Au = b, (3)

where the linear operator A is specified in Eq (2). Eq (3)
is the model equation, which poses an inverse problem.
In this equation, A is determined from the paths that the
robot travelled in - it travels in straight line paths, hence
we only need the start and end locations to determine
its trajectory. Each path contributes one row to A. b is
obtained from the experiment, and is the vector of the
integral of sensor values as the robot travelled along each of
its paths. u is the variable that we want to solve. Of course,
if the paths form a complete raster scan over the whole
domain, then theoretically Eq (3) has a unique solution.
For economical reasons, it is desirable to use much fewer
paths and still being able to reconstruct a solution for u.
The problem is well suited for compressed sensing based
image reconstruction techniques, which provide a way to
solve these underdetermined systems.

B. Solving the Inverse Problem

Based on the observation that the image u to be re-
constructed is piecewise constant, its directional gradients,
∇xu and ∇yu, are sparse over the domain. Also we assume
that the interesting feature of the image is relatively small
compared to the whole domain to be explored. Therefore, we
postulate that the solution u minimize the energy functional

E0(u) = α|u|0 + β (|∇xu|0 + |∇yu|0) , (4)

subject to the data fitting constraint (3). Here | · |0 denotes
the `0 norm. α and β are parameters balancing the weights
of the sparsity of the gradients and the feature. We note that



minimizing `0 norm is generally considered intractible, we
replace it with `p (p > 0) norm, which still enforces sparsity
and much easier to solve:

Ep(u) = α|u|p + β (|∇xu|p + |∇yu|p) . (5)

Prior work in the field of compressed sensing and sparse
image reconstruction normally chooses p = 1 [6], and some
theoretical work has demonstrated its efficiency [7]. One
popular algorithm for solving `1 minimization problems is
based on Bregman iteration, which is carefully described in
[8]. And we follow this method to solve our problem.

Although it is a nonconvex optimization problem in the
case 0 < p < 1, some work such as [9], [10] has shown
that it can also be solved using the Bregman-type method,
and that the solution converges to the global minimum of
the associated `0 formulation.

C. Path Planning Algorithm

The server program generates the next path for the robot
every time the robot is in State 1 (see Figure 1). Without
any prior information about the distribution of features in
the domain to be explored, it is natural to choose random
paths that are uniformly distributed over the whole domain.
Although we would demonstrate later that it should work,
it is desirable to adopt an adaptive path planning strategy
based on the data already collected by the robot as it moves
around.

Initially, the robot collects data along some constant
number of uniformly distributed random paths. Then all the
data that have already been collected are processed off-board
on the server, and a coarse resolution image is reconstructed.
Based on this image, the server program would segment
interesting areas that contain more features than elsewhere.
And it generate a new set of paths, still random but with
higher probability passing through those interesting areas.
As the robot travels more paths and collects more data, the
resolution of the reconstructed image would improve, and
the new paths based on that would be more likely directed
into areas rich in features.

The segmentation of interesting areas consists of two
steps. First a simple thresholding is applied to zero out small
pixel values. Then it finds connected components containing
more than n pixels and put them into the set of interesting
areas. Every new path passes through the current location
and the next location. The next location is chosen randomly
from all viable pixels, with probability p1 of being one
inside interesting areas, and p0 for non-interesting areas. It is
required that p0 < p1 and the probabilities add up to 1. The
pseudocode for adaptive path planning is in Algorithm 1.

With the adaptive path planning, the workflow of our
algorithm is in Algorithm 2.

IV. EXPERIMENT

A. Simulated Results

Before actually using the robot to collect data, we run
simulated reconstructions. Figure 3a is a 50x50 test image

Algorithm 1 Adaptive path selection
1: function ADAPTIVEPATHS(u, Ω, p0, p1, max num, n)
2: for i = 1 to max num do
3: u1 ← THRESHOLDING(u, threshold)
4: Ω1 ← CONNECTEDCOMPONENTS(Ω, u1, n)
5: Pi ← NEWPOINT(Ω,Ω1, p0, p1)
6: Ci ← NEWPATH(Ω, Pi−1, Pi)
7: Cnew ← Cnew ∪ {Ci}
8: end for
9: return new paths Cnew

10: end function

Algorithm 2 Envirionment Mapping Algorithm
1: procedure ENVIRIONMENTMAPPING
2: initialize u, A, b with zeros
3: while ‖uold − unew‖ < tol do
4: Cnew ← ADAPTIVEPATHS(unew,Ω, p0, p1, num, n)
5: bnew ← COLLECTNEWDATA(Cnew) . on-board
6: A, b← UPDATESYSTEM(Ω, A,Cnew, b, bnew)
7: uold ← unew
8: unew ← SPLITBREGMAN(A, b, α, β)
9: end while

10: u← unew
11: return u
12: end procedure

for simulations. We note that he test image has multiple
gray scales. In our experiment the robot can only distinguish
black and white colors since it is equipped with a binary
sensor. With more advanced sensor our method should work
as well.

Figure 3b is a reconstruction of a 50x50 image from
100 random paths, with data to unknowns ratio of 1:25.
The shape and the intensity of the region of interest are
successfully identified. Figure 3c illustrates the paths for
the robot, with each one generated by connecting current
position and randomly selected target position while ensur-
ing the robot stays within the testbed. In the figure, brighter
pixels represent points that are visited more times. Figure 3d
shows the difference between the original image and the
reconstructed one. It shows that most of the error in the
reconstruction is around the edges of the region of interest.
The relative error of the reconstruction is 0.19715.

B. Comparison with Other Approaches

In order to judge the effectiveness of our approach, we
examine other methods of collecting data and reconstructing
an image. An intuitive one is to sample individual pixels
and try to reconstruct the image from these samples. One
reconstruction approach is to use the same Split Bregman
iteration that we are using for reconstruction from path
integrals by assuming that each path is degenerated to a
sample point. Alternatively, we can take the value found at
each sampled pixel and assign the same value to nearby
pixels, a method that we refer to as pixel expansion.

Figures 4 and 5 present reconstructions of the previously
shown 50x50 test image, Figure 3a, using these approaches,



(a) 50x50 test image. (b) Simulated reconstruc-
tion.

(c) 100 random paths used
for simulated reconstruc-
tion.

(d) Difference between the
original image and the re-
construction.

Fig. 3: Simulated reconstruction using random paths.

(a) Reconstruction using
points sampled randomly
(Random Point Recon-
struction).

(b) Reconstruction using
points sampled on a grid
(Grid Point Reconstruc-
tion).

Fig. 4: Values are found at sampled points, and Split
Bregman iteration is used to reconstruct the image.

both with randomly sampled points and points sampled on
a grid. In all cases, 100 pixels are sampled, and the sampled
points are colored white.

In Figure 4, Split Bregman iteration was used with the
collected data for reconstruction. By comparing Figures 4a
and 4b, it seems that the reconstruction is more accurate
when the points are sampled on a grid. This is reasonable
because by sampling on a grid, the spread of sampled
points is very even and well distributed. When the points
are sampled randomly, certain areas will be less thoroughly
investigated than others, hindering accurate reconstruction.

Figure 5 illustrates pixel expansion. This process creates

(a) Expansion of points
sampled randomly (Ran-
dom Point Expansion).

(b) Expansion of points
sampled on a grid (Grid
Point Expansion).

Fig. 5: Values are found at sampled points, and those values
fill the area surrounding the sampled points.
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Fig. 6: Plot of error for the various methods of reconstruction
with respect to the number of data samples used.

expanded pixels of a single color around each sampled pixel.
When the pixels are sampled on a grid, the even distribution
causes the expanded pixels to simply be squares, essentially
creating a low resolution version of the image, as in Figure
5b. Figure 5a is a result of pixel expansion with randomly
sampled pixels. The unpredictable spread of sampled pixels
causes the expanded pixels to vary widely in shape and size,
and the reconstruction does a poor job of determining the
shape of the region of interest.

To quantitatively compare these methods, Figure 6 plots
the errors of reconstruction, with respect to the number
of data points collected. The reconstruction from randomly
generated path integrals achieve lower error than the other
methods for a small number of data points. As the number
of data points grows, all methods converge to similar error;
this is expected because enough data would turn the problem
from under-determined to fully-determined. Worth noting is
that while pixel expansion from samples on a grid appears to
do better than random path integrals for some of the low data
situations, the effectiveness of grid point expansion is highly
variable, and as such, its overall usefulness is limited. The
accuracy of reconstruction is very dependent on how well the
grid aligns with the given image, and choosing the best grid
size for a given environment would require prior knowledge
of the environment. Another flaw with pixel expansion
is the dependence on accurate sampling; pixel expansion



(a) Image of the testbed,
sized at 70x90.

(b) Simulated reconstruc-
tion from the 178 paths
that the robot travelled.

(c) Reconstruction from
the data collected by the
robot.

(d) Reconstruction from
the data collected by the
robot using tuned parame-
ters.

Fig. 7: Reconstruction using the data collected by the robot.

will be very heavily affected by noise. If a pixel value
is read inaccurately, the entire expanded pixel associated
with that sample will be inaccurately reconstructed. Using
path integrals mitigates the impact of inaccurate reading of
individual pixels.

C. Experimental Results

We proceeded to carry out experimental testing with the
actual robot. Figure 7a shows a testbed that we used. The
testbed is modeled as a 70x90 image.

As a means of comparison, we first carried out the
reconstruction as a simulation, shown in Figure 7b. This
simulated reconstruction uses the same set of 178 paths that
the robot travelled along. Thus, this reconstruction is an ideal
reconstruction.

The actual reconstruction from the robot collected data
is shown in Figure 7c. Clearly, this reconstruction is more
noisy, giving black spots in the middle of the region and
creating white spots where it should be black. This is due
to the fact that the data collection by the robot is not as
perfect as the data in simulation. To make the model more
robust against the noise, we retry the reconstruction with
a lowered data fidelity parameter. This yields Figure 7d. It
does a reasonably good job of showing the region of interest.

(a) 100 x 100 pixel test
image with features in
bottom right.

(b) Simulated reconstruc-
tion from the 200 paths

(c) The 200 randomly
generated paths.

(d) Difference between the
original image and the re-
construction

Fig. 8: Simulated reconstruction using uniformly distributed
random paths.

(a) Simulated re-
construction from
200 adaptive paths.

(b) The 200 adap-
tive paths.

(c) The difference
between the recon-
struction and origi-
nal image.

Fig. 9: Reconstruction using the adaptive paths.

D. Adaptive Pathing

We first run simulations on a test image as in Figure 8a.
As a comparison, we run the reconstruction using uniformly
chosen random paths as well as adaptive paths as described
in Sec III-C. Each method uses the same Split-Bregman
algorithm with the same number of paths.

Figure 8c shows the 200 uniformly random paths for the
simulation. The reconstruction obtained with these paths is
shown in Figure 9a. This reconstruction is able to recover
successfully generally the region of interest and the size
of the area, but is not able to ascertain some of the more
detailed information about the shape and boundary of the
area accurately. Figure 8d shows the difference between the



(a) Image of the testbed,
sized at 70x90

(b) The 224 adaptive paths
traveled by the robot

(c) Simulated reconstruc-
tion for the adaptive paths
traveled by the robot

(d) Image reconstruction
using robot collected data
with tuned parameters

Fig. 10: Experimental results of adaptive pathing using robot
collected data

the reconstructed image and the ground truth. The error
is primarly along the edges but more prominent along the
bottom edge. The relative error of the reconstruction is
0.5023.

We compare these results against those displayed in
Figure 9, which are generated by the adaptive pathing
algorithm on the same test image in 8a. Figure 9b shows
the 200 adaptive paths taken by the simulation. There are
visibly clustered near the bottom of the image, where it
identified early on had the area of interest. Figure 9a then
shows the results of the Split Bregman reconstruction with
the data collected from the adaptive paths. Because the paths
tend to cluster in the region of interest, the reconstruction is
able to more accurately capture the curve along the borders
and thus the shape of the area itself. This is illustrated
in Figure 9c, which shows the difference between this
reconstruction and the original test image. The relative error
of the reconstruction is .19614, which is nearly half as that
for uniformly random paths.

We implement adaptive path planning for the robot and
the results are shown in Figure 10. Figure 10a is an image of
the original testbed, sized to 70x90, which contains multiple
areas of interest that are away from the center of the test bed
and have sharply defined edges. Figure 9b shows the 224
straight line paths the robot vehicle traveled on the testbed
and it can be observed that it did not travel often to black
areas or corners where there were no areas of interest. We

then generate Figure 10c, which is an ideal reconstruction
assuming no error in data collection. If we run the same
reconstruction with robot data, the resulting reconstruction
is significantly affected by the noise, as shown in Figure
10d. It is close to the reconstruction with ideal data.

V. CONCLUSION

We have demonstrated a simple yet useful prototype
autonomous robot for mapping environment variables. It can
be applied to existing robot platforms that are equipped
with wireless communication and tracking systems. The
required computing power of the robot is only onboard
addition and a storage big enough to hold one data point.
The data collection strategy based on compressed sensing
enables minimal data communication. It is further improved
by adopting adaptive path planning using already collected
data. The image reconstruction algorithm minimizes the data
fitting error plus the `1 norm of the gradient of the image,
which captures piecewise constant features. Split-Bregman
algorithm is efficient for solving the minimization problem.
Future work includes improving data processing methods
that incorporates statistical methods such as cross validation
and outlier pursuit, so that the reconstruction is more robust
against the noise. Another work that can be done is to use
sensors that can distinguish multiple levels of intensities,
or even trying to use multiple sensors on the same robot.
We also note that our method is scalable to using multiple
robots, as long as the path planning can make robots avoid
collisions.
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