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Abstract— Autonomous robotic systems (observers) equipped
with range sensors must be able to discover their surroundings,
in an initially unknown environment, for navigational pur-
poses. We present an implementation of a recent environment-
mapping algorithm [1] based on Essentially Non-oscillatory
(ENO) interpolation [2]. An economical cooperative control
tank-based platform [3] is used to validate our algorithm. Each
vehicle on the test-bed is equipped with a flexible caterpillar
drive, range sensor, limited onboard computing, and wireless
communication.

I. INTRODUCTION

In this paper we present an implementation of a path-
planning algorithm which allows a group of autonomous
vehicles equipped with range-sensors (observers) to explore
an unknown bounded region and construct the map of the
explored environment. This algorithm was introduced in [1]
and is based on determining visible portions of a bounded
two-dimensional region from a given vantage point. To test
the robustness of our algorithm, we consider the problem
of mapping an unknown environment using multiple mobile
inexpensive sensors where noise is an issue.

The outline of the paper is as follows. In section II we
present some of the existing algorithms for generating visi-
bility in an unknown environment and visibility based path-
planning. Then, in section III we describe the Visibility In-
terpolation algorithm first introduced in [1] and its extension
for multiple observers. Section IV discusses environment
navigation algorithm based on Visibility Interpolation. In
section V we introduce the test-bed and the robot-vehicles
used for navigation as well as the range sensors. Finally,
section VI contains the results of implementation on the test-
bed.
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II. PREVIOUS WORK

In this section we provide a brief survey of related work
in the area of visibility based navigation, sensing, and coop-
erative control. Computational geometry and combinatorics
are currently the main tools for solving visibility-based
navigation problems [4], [5], [6]. The combinatorial approach
is mainly concerned with defining visibility on polygons
and other special types of planar environments. Simplified
planar polygonal environment is the main limitation of
combinatorial approach.

In [7] a visibility function and obstacle boundaries are
represented by level set functions [8]. This formulation is
used in [9] to solve various optimization problems related
to visibility. The method works on general types of en-
vironment, however, it requires a priori knowledge of the
occluding objects to construct a level set representation. Such
information may not be available in some real applications.

In [10], an algorithm extracting planar information from
point clouds is introduced and used in mapping outdoor
environment. In [11], depth to the occluding objects is
estimated by a trinocular stereo vision system and is then
combined with a predetermined “potential” function so that
a robot can move to the desired location without crashing
into obstacles.

Motivation for the visibility formulation and subsequent
navigation algorithms in [1] comes from work of Tovar et
al. [12], [13], [14], [15], and [16]. In [16], a single robot
(observer) must be able to navigate through an unknown sim-
ply or multiply connected piecewise-analytic environment.
The robot is equipped with a sensor that maps onto a circle
relative locations of discontinuities in depth information
(gaps) in the order of their appearance with respect to the
robot’s heading. Each gap corresponds to a connected portion
of space that is not visible to the robot.

To navigate the environment, the robot approaches one
of the gaps. No distance or angular information is utilized
unlike in [1], where an additional map of the original domain
in cartesian coordinates is used to aid the path planning.

The Gap Navigation Tree (GNT), described in [12], en-
codes paths from the current position of the robot to any
place in the environment and is updated dynamically as
the robot moves. The exploration is complete when all the
gaps have been approached. A minimal representation of
the environment is constructed in form of the dynamic tree
based on gaps. In contrast, in [1], an implicit representation
of the obstacles in the environment is reconstructed at the
termination of the path.



In [13] the GNT based algorithm [16] was tested on a
Pioneer 2-DX platform equipped with two SICK laser range
sensors which provide an omnidirectional view. The gap
sensor implementation combined the data of these two sen-
sors. Simple test environments were chosen to be within the
sensor range. Wall-following capabilities were implemented
to avoid collisions.

Another wall-following control algorithm is discussed in
[17]. In this work, curvature-based control algorithms from
[18] are tested using real range sensors. Curvature is com-
puted from the range data obtained by SICK LMS-200 laser
range sensors. Unlike range sensors used in our experiment,
the range-finder in [17] has a range of 10 m and relative
error less then 0.8%.

Even with such a high precision, curvature estimates have
significant inaccuracies in the absence of filtering. The noise
in curvature computations is related to the computation of
derivatives of the range data which are prone to noise. To deal
with this problem, ENO interpolation was introduced in [1],
to obtain high order representation of the range data, so that
derivatives can be easily estimated away from discontinuities
(see Fig. 2).

In another work [19], a multiple vehicle cooperative con-
trol algorithm is described. The model problem is extended
from the classical Art Gallery Problem [6]. Here, each robot
must find a location in a non-convex polygonal environment,
so that each point of the environment is visible to at least
one robot. In [19] the visibility-based deployment problem is
solved under the assumption that all the vehicles are initially
collocated.

In this paper we describe a multiple vehicle environment
exploration algorithm based on a Visibility Interpolation for-
mulation introduced in [1]. This algorithm works on general
types of environment and is easy to scale for an arbitrary
number of observers. As a result of the exploration a map
of the environment is produced, where obstacle boundaries
are represented by high order polynomial curves.

III. VISIBILITY INTERPOLATION

The visibility formulation from [1] is described below. It
is then applied to the problem of environment exploration by
single and multiple observers.

The range-sensor attached to an autonomous vehicle is
used to sample data from opaque objects in the environment.
The obtained point cloud is then sampled onto a sphere
centered at the observing location and interpolated to accu-
rately represent visible boundaries of occluding objects. The
following construction of visibility was introduced in [1].

Assume a point cloud P is uniformly sampled from the
occluding surfaces in the bounded domain Ω by the range
sensing device. Given a vantage point x0 and a point x in
Ω, let ν(x0, x) := (x − x0)/|x − x0| be the view direction
from x0 to x. For any direction defined by a unit vector p
construct a piecewise continuous function on a unit sphere:

ρx0(p) :=
{

minx∈Ω{|x− x0| : ν (x0, x) = p}, if exists
∞, otherwise

(1)

Define the visibility indicator

Ξ(x, x0) := ρx0(ν(x, x0))− |x− x0|, (2)

such that {Ξ(x, x0) ≥ 0} is the set of visible regions and
{Ξ(x, x0) < 0} is the set of invisible regions from x0.

Enumerate all the points yi ∈ P . Define a projection
operator πx0 : Rd → Sd−1, mapping a point onto a unit
sphere centered at x0. Then define a piecewise constant
approximation to ρx0 by

ρ̃x0(z) := min{ρx0(z), |x0−yi|}, for every yi ∈ πx0B(yi, ε),
(3)

where ε > 0 is chosen as in [1].
Analytically, ρ is piecewise continuous with jumps cor-

responding to the location of horizons, i.e. points where
ν(x, x0) · n(x) = 0, n(x) is outer normal vector to the
occluder’s boundary. Smoothness of ρ in each its contin-
uous piece corresponds to smoothness of visible portion
of the occluding surface. We use discontinuity preserving
Essentially Non-oscillatory (ENO) interpolation introduced
by Harten et al. [2] to construct a piecewise p-th order
polynomial approximation ρ

ENO(p)
x0 to ρx0 from ρ̃x0 . Our

approximation ρ
ENO(p)
x0 is then used to compute derivatives

on the occluding surfaces (away from the edges) and easily
extract various geometric quantities, such as curvature. Fig.
1 depicts visibility map obtained via (2) and Fig. 2 illustrates
corresponding ρENO(4), its derivatives, and curvature.

Fig. 1. Visibility map generated from artificial data: dark regions - invisible,
light regions - visible, red star - vantage point (−0.2, 0.4), magenta circles
- visible boundary, yellow circles - horizon points.

IV. APPLICATION OF VISIBILITY INTERPOLATION TO
NAVIGATION PROBLEM

In this paper we consider application of Visibility Interpo-
lation to the problem of exploration of an unknown bounded
two-dimensional region which may contain obstacles. Simi-
larly to [16], we navigate in the environment by approaching
one of the edges corresponding to horizons of the visibility
function ρ defined on a unit circle. The shape of obstacles
may be arbitrary. During exploration we construct a map of
“seen” environment, i.e. boundaries of obstacles.

We set the following restrictions on the path traveled by
the observer: the path should be continuous and consist of
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Fig. 2. ENO interpolated visibility function ρENO(4)(θ) corresponding to
Fig. 1 with edges marked by red circles; first and second derivatives of
ρENO(4)(θ), and the curvature.

discrete steps; the number of steps should be finite, and
the total distance traveled must be finite. Below we first
introduce the basic algorithm for a single observer. Then
we describe its extension to multiple observers.

Algorithm 1 (Single observer).
1) For the given x0 outside the occluding objects con-

struct the visibility function ρx0(θ);
2) Find all the discontinuities (edges) on the (θ, ρx0(θ))

map and choose the edge to approach, say, in the
direction of θe (store unexplored edges in a list). The
choice of an edge depends on particular aspects of the
problem and will be discussed below.

If ρx0(θe) < ρx0(θe + δ), choose the direction
θe + δ;

Else choose the direction θe − δ;
here δ is chosen so that the observer does not approach
the obstacle closer then some fixed distance parameter
λ.

3) Move x0 along the chosen direction by amount r =
min{tan

(
π
3

)
1
κ , d}, where κ is the curvature of an edge

and d is a parameter controlling the maximum step-
size. If κ = 0, shift x0 by small amount to see the
next edge.

4) Finish when all the edges are “removed” from the list;
otherwise proceed to Step 1 with current location of
x0.

The above algorithm always converges. Its optimality
depends on the choice of edge in Step 2. In [1], the
nearest edge to the observer at x0 is chosen, as opposed
to the random edge in [16]. Another alternative would be to
approach the edge with corresponding largest curvature κ,
which maximizes the area revealed.

In our experiments, the choice of the next edge to approach
in Step 2 is dictated by the specifics of the sensor design
described in section V. We prefer to move around the
obstacles in the counter-clockwise fashion to minimize the
effects of errors produced by the sensors. Thus, in Step 2 of
Algorithm 1 we choose the right-most edge of the object.

Consider the following extension for multiple observers.
Let {xj}n

j=1 be a set of observing locations. Also, let Ξj be
a visibility indicator map defined by (2) corresponding to xj .
In addition, let Θj = {θj,1, . . . , θj,k} be a set of edges visible
from the vantage point at xj . The algorithm for multiple
observers is as follows.

Algorithm 2 (Multiple observers).
1) For each xj outside the occluding objects construct the

visibility function ρxj (θ);
2) Compute Ξ = maxj{Ξj};
3) Find the set of edges Θj corresponding to each xj . For

each j, exclude those θj,k for which Ξ ≥ 0;
4) If there remain edges for observer at xj to

approach, do so as in Algorithm 1, Steps 2
and 3;

Else move observer at xj in the direction perpen-
dicular to the direction of the nearest xi to see
new edges;

5) Finish when all the edges are “explored”; otherwise go
to Step 1 with current locations xj .

Note that in Step 3 of the above algorithm we are
excluding those edges corresponding to xj , which are visible
by another observer xi and thus do not need to be further
explored. The perpendicular move in Step 4 is chosen to
maximize chance of “seeing” more new area.

We would like to remark on different modes of execution
of Algorithm 2. In concurrent mode all observers process
sensor data simultaneously. This way, the next vantage point
of each observer depends only on their previous positions.
In sequential mode the observers are ordered as a sequence,
and only one may move at a time. In this situation, position
of the next observer depends on new positions of previous
observers. The ordering may change according to decision to
optimize joint visibility. Further details on these algorithms
will be reported in a forthcoming paper [20]. In our experi-
ments, we implement the concurrent mode.

Results of implementation of Algorithm 2 will be dis-
cussed in detail in section VI.

V. TEST-BED AND RANGE SENSORS

The results in this paper were obtained using the second
generation [3] of an economical micro car test-bed developed



in [21]. The purpose of the test-bed is to design a cost
effective platform to study cooperative control strategies. The
dimensions of the test-bed floor are 200×160 cm. The second
generation vehicles communicate at 30 Hz and possess
onboard processing and onboard range sensing. Tank-based
vehicles with caterpillar-style drive are used to allow for a
zero turning radius. The tank has dimensions 7× 3.8 × 4.6
cm and weighs 65 g with batteries. Such a tank is depicted
in Fig. 3. The position of the vehicles is tracked by overhead
cameras. An off-board computer is used for communication
with the overhead cameras and for processing sensor data
from the vehicles. All the basic motion maneuver, sensor
acquisition, and communication routine is processed on-
board by a 16 MHz Atmel (Atmega 8) microprocessor. The
tank drives two belts independently, resulting in turns of
arbitrary radius, while moving forward and backward. One
can obtain more details about the test-bed and the vehicles
in [3].

Fig. 3. Tank with the attached sensor.

Now we shall describe the range sensors used in our
experiments. We work with sensors manufactured by Sharp
(model 2YOAO2 F58) of range 20 − 150 cm. The sensors
are equipped with a PSD onto which the light is focused. IR
EM radiation is emitted via LED at the front of the sensor.
The wavelength range in use is 850 nm± 70 nm. The half-
intensity angle of the device is 1.5◦. See Fig. 4 for schematic
sensor layout.

Fig. 4. Schematic sensor layout and ray patterns.

The sensor must be mounted so that the line between LED
output and receiver is parallel to the ground (see Fig. 3) to
minimize the effect of sensor sensitivities to the boundaries,
i.e. sharp differences in texture or color of the object. For
simplicity, we have idealized our environment by covering
the occluding objects with white paper for uniformity in
color, texture, and reflected ambient light.

Here we describe the process of sensor data calibration.
The sensor takes readings at a rate 25 Hz. Sensor readings
are produced by Analog Digital Converter (ADC), which
outputs values proportional to voltage output (V×204.8). The
raw data obtained from the sensor over a period of several
seconds is depicted in Fig. 5. We use the most frequent
reading as the value at current position. In Fig. 6 we plot
values at given distances from the object measured along
the normal to the surface of an object.
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Fig. 5. Sensor ADC output 60 cm away from the object; green line
corresponds to the most frequent value.
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Fig. 6. Sensor ADC output corresponding to distance to reflective object
measured along the normal to the surface; green vertical lines mark working
sensor range.

In Fig. 7 we show several range curves constructed from
different angles to the surface of the object. As one can see
from Fig. 7, the range calibration curves are shifted with
respect to one another for different viewing angles (upward,
when the object is viewed from the right, downward, when
object is viewed from the left). This results in the same
sensor output value for two different sensor positions. For
example, sensor output at a distance of 90 cm from the object
at an angle −85◦ to the normal to the surface is the same as
the sensor output at a distance of 45 cm at an angle +75◦

and yet the same as the output at a distance of 60 cm along
the normal to the surface.

If we take as a reference the range curve measured along
the normal to the surface of reflective object, we obtain
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Fig. 7. Sensor ADC output corresponding to distance to reflective object
measured along different angles to the normal to the surface; red marks
correspond to points on the range curves with similar sensor output.

inaccuracies when looking at an object from a different angle.
For example, one can see from Fig. 8 the tilt in the measured
surface position with respect to the actual one.

The results may be improved by taking several measure-
ments along a given direction. This way we can find a
matching range curve from which we can deduce the distance
to the object and the incident angle. However, this solution
is too expensive and thus we did not implement it.

In addition, we note that the shift is only significant when
looking at an object from the right. Thus, a path-planning
algorithm is modified with a bias towards moving in a
counter-clockwise manner. See Fig. 8 for an example.

VI. RESULTS AND CONCLUSION

In summary, we implement a multi-vehicle environment
mapping algorithm based on a Visibility Interpolation formu-
lation introduced in [1]. The algorithm does not require any
shape priors for the occluding objects. We use two boxes as
our sample obstacles for easy representation. The positions,
shapes, and quantities of obstacles are unknowns.

Two tank-based vehicles equipped with the range sensors
are initially positioned on the test-bed floor outside the
obstacles. Each tank makes a 360◦ sweep to gather range
data from its surrounding environment. About 80 samples
are taken in one sweep. Each sweep takes less then a minute
to complete. Then, a visibility map and next position of each
vehicle is computed off-board based on sensor output. The
next observer’s position is transmitted to the robots and they
proceed to collect data from new vantage point. This process
is repeated until the whole region has been explored as in
Algorithm 2 above. In the example, exploration took two
steps by each observer.

The obtained range data is fit to the range calibration curve
in Fig. 6 via cubic interpolation. Then the data is processed
in the following way. Whenever we get a hit which is outside
of the range of the sensor or its x, y position is outside the
test-bed floor, we assign the value of “infinity”, which is set
to be at 120 cm.

Joint visibility maps after each step are depicted in Fig. 8.
Actual obstacle boundaries are represented by yellow lines
on each figure. Red stars represent positions of the robots

after each step. The red lines mark the path of each vehicle up
until its current location. Dark regions are invisible at current
step and lighter regions are visible. Magenta circles represent
shadow boundary obtained via ENO high order interpolation
of the obtained range data. Black circles represent horizon
points which will be approached in the next step.

The complete visibility map is depicted in Fig. 9. It is
constructed by taking the union of visibility maps of all
observers at all steps. From this map, one can estimate the
quantity, size, and locations of the obstacles. However, the
boundaries are not accurately represented due to low sensor
accuracy and small number of samples.

As was mentioned above, the results may be improved by
correcting for the angle of incidence of the IR beam. Overall,
the quality of the results is satisfactory taking into account
hardware limitations.

Fig. 8. Exploration of environment with 2 observers. Red stars are
observers’ positions; magenta circles are the sensor output converted to
range data; big dark circles are the next edges to be approached; yellow
boxes are the actual obstacle outlines; dark regions are currently invisible;
light regions are currently visible.
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