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Abstract

We present an experimental study which investigates the motion of bi-disperse suspensions

consisting of ceramic and glass beads in PDMS oil flowing down an inclined plane under the

influence of gravity. We perform a parametric study in which we vary the inclination angle of

the plane, the total particle volume fraction, and the relative ratio of glass to ceramic beads. Both

types of beads used are denser than the oil. Mono-disperse suspensions of negatively buoyant

particles give rise to three regimes: a ‘settled’ regime in which particles settle to the substrate,

a ‘ridged’ regime in which particles settle to the front of the flow, and a transient, ‘well-mixed’

regime in which settling does not occur. A similar trend is observed in the current study in

which lower inclination angles and higher concentrations of the ceramic beads favor the settled

regime. Furthermore, the addition of a second particle species induces a striking effect in which

the heavier ceramic beads migrate on top of the lighter glass beads; this phenomenon is thought

to be the result of competing forces in the direction normal to the flow arising from gravitational

settling and shear-induced migration. We also discuss the effect of experimental parameters on

the location of the front versus time, as well as changes in the fingering instability.
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1 IMPACT

The flow of particle-laden films has applications in a variety of fields, ranging from geophysics

to industrial mining to the pharmaceutical industry. Geophysically significant slurries, including

lahars and other debris flows, occur commonly, and in industry particle separators are used to refine

slurries into their constituent parts. Past work building a theoretical framework of the behavior of

these slurries has focused on pure granular flows and pure viscous liquid flows. Relatively few have

dealt with the gravity-driven flow of particle-laden films. In order to fully characterize the flow of a

slurry down an incline, models must take into account the propagation of particles within a mixture,

which often differs from the overall flow of the fluid due to migration effects. This leads to variation

in the concentration of particles within the thin film and to deviations from the clear fluid model.
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2 BACKGROUND

Herbert E. Huppert produced an accurate model for fluid flow velocity and front wavelength1. A

fluid’s position on the ramp is predicted to be directly proportional to t
1
3 . This model relies on the

lubrication theory2 and the approximations underlying it. Huppert predicts that the position of the

front, x, is less than xN = (9A2g sinα/4ν)
1
3 t

1
3 (eqn. 9) derived below.

The momentum equation for a fluid moving down an incline plane is given by

0 = g sinα + νuzz (1)

when ignoring the surface tension and contact line effects. The momentum of the fluid is dependent

on the incline angle α, the fluids dynamic viscosity coefficient ν, and shear acceleration uzz. Using

conservation laws for volume and momentum a nonlinear partial differential equation for the height

of the fluid is written

0 = ht + (g sin(α/ν))h2hx (2)

or equivalently

h(x, t) =

(
− ht
Hxg

csc(α/ν)

)1/2

(3)

This equation leads to a continuity equation calculating the cross sectional area A of the fluid

A =

∫ xN (t)

0

H(x, t)dx (4)

1Huppert, ”Flow and instability of a viscous current down a slope”, Nature 1982
2Batchelor, G. K. An introduction to fluid Dynamics,Cambridge University Press
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The limits of integration go from the starting position x to the current position, xn(t), the position at

a given time. By rearranging equation 2 the velocity of the fluid can be determined

dx

dt
= (g sin(α/ν))h2 (5)

Given an initial height, h(x, 0) = f(x), and initial position, x0, the position of the flow is given as

x = x0 + (g sin(α/ν))f(x)2(x0)t. (6)

Equation 2 thus has a solution

h =

[
1

t

ν(x− x0)
g sinα

]1/2
(7)

At the limit x0 << x equation 7 becomes

h→
[

1

t

νx

g sinα

]1/2
. (8)

Equation 8, in conjunction with equation 4, produces a means of evaluating the length of the current

0 ≤ x ≤ xN =

(
9A

1
2 g

sinα

4ν

) 1
3

t
1
3 (9)

This may be written as a simple proportionality equation be combining the fluid dependent constant

as ĈN = t̂/x̂N
1
3

x̂N =

(
t̂

ĈN

)1/3

(10)
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At xn the profile of the current ends with the height of hn(t) = 1.5A/xn. The solution may be

smoothed by including higher order terms to account for the effects of surface tension.
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Figure 1: Experimental apparatus with adjustable incline

3 METHODS

3.1 EXPERIMENTAL SETUP

Figure 1 depicts the setup that is used to preform all the experiments. It consists of an acrylic

track with adjustable inclination angle, α, which has a range of 5◦ - 80◦. The track is 0.90m long

and 0.14m wide, with 0.02m side walls. A liquid and particle mixture is produced in preparation

for the run. This mixture is poured into the reservoir situated at the top of the track immediately

before a run. The reservoir of dimensions height × width × length = 0.04m × 0.14m × 0.10m

has a much larger volume than the prepared mixture. To begin the run the gate is lifted, allowing

the mixture to flow down the track, with the contact line initially straight. Here, we only focus on

experiments with finite, constant suspension volume. The evolution of the flow is monitored using

a digital camera, which is positioned above the track and captures a video of the moving front.

Using the setup shown in figure 2, we are able to monitor the film’s motion, starting from 0.1 cm

down the track, until the front has reached approximately 0.8 m down the track. This video is
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Figure 2: Pictured is the actual incline and positioned cammera

converted into still images by taking 1 frame from every 1 second interval of the video. Images and

video are subsequently analyzed, and each experimental run is classified quantitatively by regime,

the number of fingers, wavelength, the local particle concentration and if the two types of beads

have separated. Our experiments involve two different particles, which are glass beads (GSB-5) and

ceramic beads, mixed into silicon oil. The properties of the particles, which vary in density and

diameter, are summarized in Table 1. The values represented are average densities and average sizes

since the particles are polydisperse. In an attempt to purely examine the effect of a difference in

the densities of the 2 types of particular the two types of beads were chosen to have smiler size and

shape. Both types of particulate have a spherical shape and are of smiler size. The silicon oil used

is polydimethylsiloxane (PDMS) with a kinematic viscosity of 1000cSt.

Suspensions are prepared by first weighing the particles and PDMS individually, pouring PDMS

into a container, and then adding particles; slow manual stirring is used until uniform mixture is

obtained. This is stired untill the mixture is emtyed into the reservoir. The two types of beads

were dyed useing food coloring. After testing multiple colors on both ceramic and glass beads the

two colors that provided the most contrast between the ceramic and GSB-5. This was done useing
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Table 1: Particle Specifications

Particle ρ(g/cm3) diameter (mm)

Ceramic 3.8 0.3 ± 0.1
GSB-5 2.475 0.39 ± 0.14

Matlab, of the average RGB values of picture of the beades was comapred. We wanted to get the 2

most distinct colors after dyeing.

3.2 IMAGE ANALYSIS AND PROCESSING

Automatic Ruler Line Detection

We use an custom algorithm utilizing image registration via normalized cross-correlation and

image-subset selection to determine the location of ruler tick marks. These tick marks are then used

to calculate a cubic fit to determine real-world distances while taking into account visual aberra-

tion due to the camera angle. The algorithm is written as a MATLAB function whose input is an

RGB image and whose output includes cubic fit coefficients and conversions between pixels and

centimeters. Selection of the image subset containing the ruler lines is done manually until either

the program finds all the ruler lines correctly or the user opts to manually input their locations. The

algorithm converts the RGB image to a grayscale one and creates a binary image of the edges via

MATLAB’s built-in Prewitt edge detection. The normalized cross-correlation of each pixel in the bi-

nary image is then calculated with respect to a customized binary straightedge. The highest matches

are then assumed to be ruler lines.

Automatic Bi-Modal Thresholding

Another custom algorithm implemented automatic bi-modal thresholding to create a binary im-

age of the slurry versus the background. Conscecutive RGB frames were subtracted, converted to
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Figure 3: Example of the program finding all ruler lines automatically.

grayscale, and thresholded using Otsu’s method. The resulting binary image was then filtered using

MATLAB’s default Wiener filter and a pre-set number of median filters to reduce noise and preserve

the integrity of the slurry front. The algorithm then reads the locations of the slurry front and created

plots of the instantaneous velocity and position of the slurry with respect to time. A linearized plot

of the position versus time data was also generated to determine the time exponent of the fluids in

the experiments for comparison with Huppert’s model.

Issues with Settled Regimes

This was largely succesful in well-mixed and ridged regimes without large concentrations of

GSB-5. Automatic bi-modal thresholding largely failed to accurately discern the slurry front for the

settled regime because the front tracked was the clear oil. The edge of the oil was indicated by the

reflection of light, which was problematic due to the inconsistency of the lighting. Thus, in settled

cases, the front was tracked very poorly.

To track the front more accurately in settled regimes, we used MATLAB’s built-in Canny edge
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Figure 4: Example of the algorithm thresholding slurry and non-slurry.

detection algorithm with increased thresholds. While the slurry front was tracked more effectively

in some settled cases, often no edge would be detected. Therefore, settled regimes pose a special

problem to our image analysis algorithms.

Unanticipated problems encountered with image analysis also included the fluorescent lighting.

The lights illuminating the slurry flicker at about 50 Hz. When the camera’s shutter speed is not syn-

chronized with the flickering of the lights, the difference between consecutive video frames shows

these lighting differences. Thus, the binary images produced suffered from noise that impeded both

thresholding and edge detection in the analysis of settled regimes.
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Figure 5: Example of the Canny edge detection algorithm’s result with increased thresholds.
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4 EXPERIMENTAL RESULTS

4.1 QUALITATIVE RESULTS

4.1.1 Flow Regimes

As the slurry mixture flowed down the track, we found that the particles within the slurry migrated

in such ways that the overall flow would have different behavior depending on the initial conditions.

We thus classified each run into one of three different qualitative regimes. The first regime we called

‘settled’, in this case, the particles settle on the substrate and separate from the fluid, which travels

faster than the particles and allows for the formation of clear fingers. The second regime we call

‘ridged;’ in this regime, the particles travel to the front of the flow, creating a region of high particle

density in the flow front. In the most extreme cases of this regime the particle concentration at the

front reaches such high values, that portions of the flow break off and fall down the track. A third

regime, which qualitatively falls in between the ‘settled’ and ‘ridged’ ones, was observed, in which

the particles remain relatively homogeneously mixed with the fluid; we call this the ‘well-mixed’

regime. This ‘well-mixed’ regime is found to be a transient one: all runs start off in the well-mixed

regime and then, depending on the initial conditions, the flow will go into either the ridged or the

settled case. Figure 6 shows an example screenshot of each of the regimes.

We also classified each run into whether the glass and ceramic beads separated from each other:

in some cases, the glass beads traveled faster than the ceramic ones, creating two clearly differen-

tiable fronts. Figure 7 shows a separated and a mixed case.

Having classified each run into its respective flow regime and whether the particles separated or

not (in the cases where only one bead species was present, the run was classified as ‘separated’), we
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(a) (b) (c)

Figure 6: Screenshots of the three different possible regimes. All runs shown were done at an
inclination angle of 30◦ and a total volume fraction of 0.4. (a) 0% GSB-5, settled regime, (b)
50% GSB-5, well-mixed, and (c) 100% GSB-5, ridged.

plotted the results according to their total volume fraction. Figure 8 shows the created plots

From Figure 8, we see that high angles and high GSB-5 beads ratio favor the ridged regime,

whereas low angles and low GSB-5 ratio favor the settled regime. In the case of a 0.2 volume

fraction (Figure 8 (a)), we see that for most angles the flow falls into the settled regime. With a

0.5 volume fraction (Figure 8 (c)), however, the flow mostly falls in the ridged regime. From this

we see that low total volume fraction favors the settled regimes, whereas high total volume fraction

favors the ridged regime, as is the case with mono-disperse flows 3. However, the transient region

3Murisic et al., ”Particle-laden viscous thin-film flows on an incline: Experiments compared with a theory based on
shear-induced migration and particle settling.” Physica D, 2011.
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(a) (b)

Figure 7: Screenshots of the separated and mixed cases. Both runs were done with a volume
fraction of 0.4 and a GSB-5:ceramic bead ratio of 50:50. (a) Inclination angle: 40◦, separated,
(b) Inclination angle: 30◦, mixed.

(where we have the well-mixed regime) is found to be much smaller for the bi-disperse case than for

the mono-disperse, suggesting that the flow when more than one beads species is present achieves

its regime faster.

4.1.2 Particle distribution in the normal direction

An unexpected result was obtained when we noticed that the heavier ceramic beads seemed to be

consistently on top of the lighter glass beads throughout the flow. This phenomenon was first seen

when we dyed the GSB-5 red, and the ceramic beads blue. However, to rule out a possible optical

illusion, we switched the color of each bead specied and did another run. The result was even clearer:
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the ceramic beads migrted to the top of the flow, while the glass beads fell to the bottom. Figure 9

shows this phenomenon.

While the exact physics behind this result is unknown, this phenomenon is thought to be the

result of competing forces in the direction normal to the flow arising from gravitational settling and

shear-induced migration. In the direction of the flow, however, the lighter GSB-5 tend to travel faster

than the heavier ceramic beads.
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(a) φ = 0.2

(b) φ = 0.4

(c) φ = 0.5

Figure 8: Angle vs. GSB-5 % showing the flowing regime in which a given run falls for different
total volume fractions φ.
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(a) (b) (c)

Figure 9: Photographs showing the heavier ceramic beads on top of the lighter GSB-5. (a)
ceramic beads dyed blue, glass beads dyed red, (b) ceramic beads dyed red, glass beads dyed
blue, (a) scoop on spoon of ceramic beads dyed red, glass beads dyed blue.
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4.2 QUANTITATIVE RESULTS

4.2.1 Time Exponent and Velocity Results

We used MATLAB to output plots of the slurry front’s average position versus time and log-position-

log-time plots to compare the time exponent of the experiments with Huppert’s model. We obtained

average velocities as command window output. An example output from MATLAB for a run at 30

degrees, 0.5 volume fraction, and 75 percent GSB-5 relative to ceramic beads:

Figure 10: Example plot output from MATLAB.

In figure 10, it can be seen that the time exponent of this run was 0.3627 (a linear fit was used to

determine this value). Note that only the last quarter of points were plotted when finding the linear

fit because of the slowing of the slurry with time and a coding error which repeatedly produced an

unusually high position for the first frame.
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Using the exponent data collected from many of such graphs, we created a plot of the exponent

values versus particle concentration to investigate the relationship between the concentration of each

type of bead and the time exponent. Currently, we have completed such analysis for runs at 30

degrees, 0.4 volume fraction (settled and mixed regimes):

Figure 11: The miniscule slope indicates independence between percentage GSB-5 and the time
exponent of the slurry.

The miniscule slope in figure 11 indicates that the time exponents (with the error bars showing

one standard deviation) are not strongly affected by the percentage GSB-5 and is not significantly

different from Huppert’s value of 1
3

for the time exponent. For settled regimes, we would expect the

exponent to be 1
3

because the front is clear fluid.

We also created plots of the average velocities (figure 12) versus the particle concentration to

investigate the relationship between the concentration of each type of bead and the average velocity

of the slurry front. Again, we have completed such analysis for runs at 30 degrees, 0.4 volume

fraction (settled and mixed regimes):

As shown in figure 12, the slope is once again miniscule, indicating that the average velocities

(with the error bars showing one standard deviation) are not strongly affected by the percentage
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GSB-5. This may suggest that changing the bead concentrations did not significantly change the

viscosity of the slurry.

4.2.2 Concentration Variations

In addition to tracking the average front position, we tracked the position of the GSB-5 and ceramic

fronts separately using the red channel as a proxy for the GSB-5 beads and the blue as a proxy for

the ceramic beads. To do this, we computed the average RGB values across the width of the slurry

as a function of distance down the track. The resulting red and blue pixel profiles for three different

times during the slurry flow are shown in figure 13. The position of each front approximately

corresponds to the position of the sudden drop-off in pixel values (this is most clear for the red

channel in figure 13), which has been identified by finding the x-coordinate with a pixel value equal

to or greater than 87.5% of the maximum pixel value. This technique avoids the complication that

the lighting is brightest halfway down the track, which prevents us from using the position of the

maximum pixel value to track the position of the front. As the pixel values were averaged across the

width of the slurry, heterogeneity in R and B values along the width of the slurry are not taken into

account.

Using this technique, the location of the GSB-5 and ceramic fronts can be compared with each

other. Plots of the front positions for two different runs are shown in figure 14. Both fronts follow

the same general trend as the average front position did in figure 10, and in fact the time-dependence

can be quantified using the same model.

The resulting time-dependence exponents for each run are shown in table 2. Note that these

exponents cannot be directly compared with the average front position exponents, as the front posi-

tion is calculated very differently in each case. Additionally, since Huppert’s model holds for fluid
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fingers and not ridged slurry flow, the exponent is not expected to be 1/3. Though the exponents

cannot be compared with average front position or with analytic and/or numerical results, they do

give an estimation of how much the slurry is separating along its length: the run with 75% GSB-5

is visibly more separated than the run with 25% GSB-5, and this effect is mirrored in the difference

between the ceramic and GSB-5 exponents for each run.

4.2.3 Average Wavelength

The average wavelength of a slurry is defined as the average distance between finger tips. We

calculated this by determining the distance between the outermost two fingers and dividing by the

total number of fingers minus one. This means that the maximum average wavelength is limited

by the total track width, 13.97 cm. It is also affected by the total number of fingers, which ranged

between 2 and 6 with a median of 3, though since the outermost finger tips do not always occur along

the edges of the track, the total number of fingers does not fully determine the average wavelength.

The average wavelength across all of the 0.4 volume fraction trials ranged from 2 − 8.5 cm, with a

mean of 3.99 cm and a median of 3.94 cm. The relationship between average wavelength and GSB-5

concentration is shown in figure 15. We do not yet have a theoretical prediction for the dependence

of average wavlength upon GSB-5 concentration.

Time-Dependence Exponent
25% GSB-5 50% GSB-5 75% GSB-5

GSB-5 0.42 0.391 0.404
ceramic 0.416 0.319 0.325

Table 2: Table of the exponent relatiing the front position to the time, as in Huppert’s model.
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Figure 12: The miniscule slope indicates independence between percentage GSB-5 and the
average velocity of the slurry.
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Figure 13: Average red and blue pixel values as a function of length along the track for three
different images of the slurry flowing. Each profile corresponds to a different time in the flow
of the slurry, with the earliest profile occuring the fartherst to the right. High x-coordinates
correspond to the beginning of the track, and low to the end.
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Figure 14: Plots of GSB-5 (red) and ceramic (blue) front positions as a function of time: (c)
25% GSB-5, which is well-mixed, and (d) 75% GSB-5, which is separated. Both runs were done
at a 30 deg angle with 0.4 volume fraction.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 15: Plots showing the dependence on average wavelength on GSB-5 concentration. All
runs have a volume fraction of 0.4.
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5 FINAL MODELING

We study a dense suspension flow on an incline, consisting of negatively buoyant particles with

uniform size in a viscous suspending liquid. For modeling purposes we concentrate on the settled

regime, where gravity drives the flow down an incline and leads to stratification of the suspension.

The model is based on Stoke’s equations for an incompressible variable-viscosity suspension and

the conservation of total mass of particles. We consider the continuum limit, including the effects of

hindered settling and shear-induced migration. Due to the difference in the relevant timescales, a fast

one for the settling and a slow one for the suspension flow, we assume that the particle distribution

is in equilibrium along the direction normal to the solid substrate while the particles are transported

along the solid substrate.

Figure 16: Schematic of inclined plane with particle slurry

Figure 16 shows the set up. The z and x-coordinates are in the directions normal to and along

the solid substrate respectively. The solid substrate is located at z = 0 and the free surface of the

suspension at z = h(x,t). The angle of inclination of the solid is α. We focus on the settled regime for

which a dense sedimentation layer of particles forms close to the substrate with a clear fluid layer

on top of it. At each time, t, and point (x,z) the particle volume fraction, 0 <= φ(t, x, z) < 1, and
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the volume averaged velocity, u(t,x,z) = ( u(t,x,z), w(t,x,z) ), are defined. The upper bound for φ

constitutes the maximum random packing volume fraction. This was estimated experimentally 4 as

φm = 0.61.

5.1 TWO-PHASE MODEL AND LUBRICATION EQUATIONS

We begin with the following system of PDEs for the particle volume fraction φ ∈ [0, φm] and the

suspension velocity u.

∇ ·Π = f (11)

φt + u · ∇φ+∇ · J = 0 (12)

The first equation 11 represents a balance of linear momentum for the suspension, where Π is the

stress tensor and the buoyancy is taken into account via f = (ρpφ+ρl(1−φ)) g with the acceleration

of gravity given by g =g(sin(α),− cos(α)). The dependence of the suspension viscosity on φ is

included through the Krieger-Dougherty relation µ = µl(1− φ
φm

)−2 5 and 6. The second equation 12

represents the conservation of particle mass, where the particle fluxes are defined as in Murisic et al.

J = Jgrav + Jcoll + Jvisc (13)

where,
4Murisic et al, 2011, Physica D: Nonlinear Phenomena 240, 1661
5Van Der Werff and De Kruif (1989) J. Rheol. 33
6Brady (1993) J. Chem. Phys. 99, 567.
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Jgrav =
d2φ(ρp − ρl)

18µl
f(φ)g

Jcoll = −Kcd
2

4
(φ∇γ̇ + φγ̇∇φ) (14)

Jvisc = −Kvd
2

4µ
φ2γ̇µφ∇φ.

The terms in the first brackets take into account the effects of shear-induced migration while the

terms in the second bracket represent the hindered settling of particles due to gravity. Kc and Kv are

empirical constants for which we use Kc = 0.41 and Kv = 0.62 7. The particle diameter is d and the

shear rate is given by γ̇ = 1
4
‖∇u +∇uT‖

Equations 11 and 12 are accompanied by the incompressibility condition:

∇ · u = 0 (15)

and the following boundary conditions: no-slip and impermeability at the solid substrate, u = w = 0

at z = 0; the zero shear stress condition at the free surface, t ·Πn = 0 at z = h; and the zero particle

flux conditions at both interfaces, J·n = 0 at z = 0 and z = h; where n is the outward pointing normal

vector and t is the tangential unit vector at the free surface. The free surface evolves according to

the kinematic condition ∂th = w − u∂xh at z = h.

Equations 11 and 12 are then scaled using the lubrication approximation. 8 In order for the

equilibrium assumption to hold we require that the typical distance a particle travel in the x-direction

is asymptotically smaller than the lubrication length scale [x] = H
ε

where H is the typical scaling in

7Phillips et al. (1992) Phys. Fluids A 4, 30
8Kondic and Bertozzi, 1999 Phys. Fluids 11, 3560l.
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the normal direction and ε is the small lubrication parameter. Hence we need to consider:

ε << η2 << 1 (16)

where η = d
H

. We can achieve this by setting εβ = η2 . Applying the scales to conservation of

total mass of particles gives:

φt + uφx + wφz =
−εβρs

18

[
(φf(φ))x − ε

−1 cotα (φf(φ))z

]
+

εβKc

4

[
ε
(
φ2γ̇x + φγ̇φx

)
x

+ ε−1
(
φ2γ̇z + φγ̇φz

)
z

]
+

εβKv

4

[
ε

(
φ2

µ
γ
dµ

dφ
φx

)
x

+ ε−1
(
φ2

µ
γ
dµ

dφ
φz

)
z

]
, (17)

keeping leading order terms, i.e. O(εβ−1) we obtain:

σφ′
[
1 +

2φ

(φ− φm)

(
Kv −Kc

Kc

)]
+ φσ′ +

2ρs cotα

9Kc

(1− φ) = 0. (18)

Similarly, from the Stokes equations we obtain the following ODE for the shear stress, σ

σ′ = −(1 + ρsφ) (19)

where prime denotes differentiation with respect to z.

We now have two explicit ODEs for the total volume fraction (18) φ and the shear stress σ (19)

which can be solved in Matlab.
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5.2 BI-DISPERSE MODEL

In order to produce numerical simulations for the bi-disperse flow we concentrate on the settled

regime. We assume a layered model with separation in the z-direction: At the boundaries between

Figure 17: Layered model

each of the layers we match both the velocity and the shear stress.

There are two cases we will consider: lighter particles on top as expected intuitively and heavier

particles on top as observed in the experiments.

Figure 18: Heavier ceramic beads settle to the bottom of the flow

The system of ODEs (18) and (19) are solved in Matlab for each height h1 and height h2, where

h1 varies linearly between ε (10−12) and 0.9 and h2 varies linearly between h1 + ε and 1 − ε, both

in 50 steps. The individual volume fractions (φ1, φ2), velocity, and various fluxes of interest. We

concentrate on the velocity profiles to see whether the numerical simulations will produce the same

phenomena seen in our experiments, i.e. can we have the heavier ceramic beads on top with the
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Figure 19: Heavier ceramic beads on the top of the flow - as seen in the experiments

lighter GSB-5s moving faster?

Below are the velocity profiles obtained for simulations with a volume fraction of 0.2, an angle

of 30 degrees, and ceramic to GSB-5 particle ratios of 25:75, 50:50 and 75:25 respectively. The first

set of figures is with the heavier ceramic beads on top of the lighter GSB-5s and the second set is

with the GSB-5s on top of the ceramic beads.

Figure 20: Velocity profile for heavier beads on top, with a particle ratio of 25:75, ceramic to
GSB-5

With the ceramic beads at the top of the flow, the velocity profiles show the ceramic beads to be

moving at a higher velocity than the GSB-5s beneath them. This is contradictory to our experimental
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Figure 21: Velocity profile for heavier beads on top, with a particle ratio of 50:50, ceramic to
GSB-5

Figure 22: Velocity profile for heavier beads on top, with a particle ratio of 75:25, ceramic to
GSB-5

results, where the GSB-5s would always be seen to be moving faster than the ceramic beads. In

contrast, with the GSB-5 beads on top of the ceramic beads, the velocity profiles show that the

GSB-5s do indeed have a greater velocity than the ceramic beads, agreeing with the trend seen in

the experiments. In this instance, however, the order of the layering of the beads does not match
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Figure 23: Velocity profile for lighter beads on top, with a particle ratio of 25:75, ceramic to
GSB-5

Figure 24: Velocity profile for lighter beads on top, with a particle ratio of 50:50, ceramic to
GSB-5

that seen experimentally and therefore neither set of results demonstrate the phenomena seen in the

experiments.
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Figure 25: Velocity profile for lighter beads on top, with a particle ratio of 75:25, ceramic to
GSB-5
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6 CONCLUSION AND FUTURE WORK

Among our most relevant experimental results, we found that the lighter GSB-5, if they separate

from the ceramic beads, tend to travel faster down the incline than the ceramic beads. We also

found that the ceramic beads, while heavier, migrated above the lighter glass beads. While this

phenomenon is not entirely understood, we found enough evidence to hold it as true. Another

property we found about the ceramic beads was that they induce settling of the flow, that is, while

a flow of glass beads would normally go into the ridged regime, as we increase the proportion of

ceramic beads we go through the well-mixed, and into the settled regime.

While the current model takes into account the presence of three different layers, it takes them

as three pure layers, each with either fluid, or ceramic or glass beads. In reality, however, the beads

are mixed throughout the flow, especially towards the beginning of each run, where all flows start

off as well-mixed. Thus, an improvement of this model is sought in the future. During this project,

we also experimented using beads of different sizes. Once the physics of the experiments presented

are better understood, we plan to move on and introduce yet another variable: bead size.


