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Abstract

Dendritic cells (DC) are important immunostimulatory cells that facilitate antigen
transport to lymphoid tissues and provide stimulation of cytotoxic T lymphocyte (CTL)
cells. In this paper, we attempt to understand the details of the regulation and kinetics
of the DC-CTL interaction in the DC-based immunotherapeutic treatment of human
melanoma cancer. We study a previously defined model, which integrates dendritic
cell populations in the blood, spleen, and the tumor. Ultimately, we are interested in
applying analysis of the model towards higher rates of efficacy of DC treatment.

1 Introduction

Dendritic cell treatment is a recently developed immunotherapy for cancer. Immunother-
apies boost a patient’s immune response to a pathogen by administering vaccinations or
introducing antibodies. In the case of dendritic cell therapy, the vaccination consists of
dendritic cells.

Dendritic cells (DCs) act as messengers between a specific pathogen and cytotoxic T-
lymphocytes (CTLs), which are the fighter cells of the immune system. After encountering
a tumor, DCs travel to the lymphoid organs and present the tumor-specific antigen to
naive CTLs. The naive CTLs then either develop into activated CTLs or memory CTLs.
The activated CTLs travel to the tumor site and fight the pathogen, killing tumor cells via
apoptosis. Memory CTLs circulate in the blood and lymphoid organs, prepared for a future
attack on the body by the same pathogen.

Previous biological studies have demonstrated the efficacy of dendritic cell treatment
on field mice. In these clinical trials, researchers cultivate a subject’s immature DCs ex
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vivo and load them with tumor-specific antigens. This culture is used as a patient-specific
vaccine, injected to boost the native response against tumor cells. Success of these studies
has led to FDA approval of the first dendritic cell vaccine for prostate cancer. However, it
has proven difficult to predict how different patients will react to DC treatment. In this
paper we are concerned with analyzing a mathematical model of the immune response with
DC treatment in order to determine an optimal treatment regimen and to understand how
this might vary from patient to patient.

Ludewig et al. presented results from murine experiments of DC treatment in the form
of data and a mathematical model of DC-CTL interactions. In their experiments, mice
received injections of melanoma-specific DCs. No tumor was present in their bodies. So,
the resulting model is one of DC trafficking in the body–specifically in the lung, liver, spleen,
and blood. DePillis et al. modified and extended Ludewig et al.’s model by combining all
the lymphoid organs into a single compartment which they call the spleen and by including
a tumor compartment. The result is a model of the immune response to DC treatment in
the presence of a tumor, allowing for analysis of varying DC treatments in terms of tumor
growth and patients’ particular parameter values. The values we have used in our analysis
are those estimated by DePillis et al. to fit experimental data from Ludewig et al.

2 The Model

We are studying DC trafficking and immune activity between the spleen and the tumor via
the blood. Dendritic cells and active CTLs move between both the spleen and the tumor,
while memory CTLs do not travel to the tumor (remaining in the blood and spleen in case
of future attack). The following diagrams explain the body’s native immune response to a
tumor.
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The model developed by DePillis et al. [2] is a compartment model involving three
compartments: the blood, spleen, and tumor. It involves nine state variables and boils
down to a system of nine first order non-linear differential equations. The variables are:

Dblood Number of dendritic cells in the blood;
Dspleen Number of dendritic cells in the spleen;
Eablood Number of activated CTLs in the blood;
Easpleen Number of activated CTLs in the spleen;

Emblood Number of memory CTLs in the blood;
Emspleen Number of memory CTLs in the spleen;

Eatumor Number of activated CTLs in the tumor;
T Number of tumor cells;
Dtumor Number of melanoma infiltrating dendritic cells (MIDCs).

Notice that the model tracks four different types of cells: dendritic cells, activated CTLs,
memory CTLs, and tumor cells. Most of the terms in the equations model death of the cells
or their migration from one organ to another. These terms all follow the pattern of a rate
coefficient multiplying a variable; the first two terms in Equation (1) are two simple exam-
ples. Some of the percentage rates of change are not constant but depend on other variables,
as in the first term in Equation (2). Other terms represent the growth or production of
cells and the injection of DCs through vaccination. We will examine each compartment and
equation separately (see Table 1 in the Appendix for a complete list of parameters).

Blood Compartment

d

dt
Dblood = −µBDblood + µTBDtumor + vblood(t) (1)

d

dt
Eablood = µSB(Dspleen)Easpleen − µBBEablood (2)

d

dt
Emblood = µSB(Dspleen)Emspleen − µBBEmblood (3)

Equation (1) provides a good example of the general pattern of the model. The first
term models the number of DCs leaving the blood and traveling to all lymphoid organs in
the body. This includes the spleen, so jumping ahead to (4), we see how the DC transfer
rate from blood to spleen (µBS) is a small portion of the emigration rate of DCs out of the
blood (µB). Our second term is a straight trafficking term, modeling the transfer of DCs
from tumor to blood. This term corresponds to the second term in (9). The last term of (1)
indicates the therapeutic injection of dendritic cells into the blood. This term is typically
piecewise constant.

The first term in Equation (2) is a trafficking term indicating the migration of active
CTLs from spleen to blood. It corresponds to the second term in Equation (5). However,
we see that the percentage rate at which these cells move from the spleen is a function that

4



depends on Dspleen:

µSB(Dspleen) = µ∗SB +
∆µ

1 +
Dspleen
θshut

where ∆µ = µNormalSB − µ∗SB

This term comes from Ludewig et al. and models the empirical observation that active
CTLs are held back in the spleen when there are a large number of DCs there. The graph
of µSB(Dspleen) is shown in Figure 1. Notice that it drops very rapidly and is essentially
equal to µ∗SB for any value of Dspleen more than about 50. The second term models the

Figure 1: The percentage rate at which active CTLS migrate from the spleen to the blood is
close to µNormalSB when Dspleen is very small but decays rapidly to µ∗SB as Dspleen increases.

migration of active CTLs out of the blood, traveling to all other parts of the body among
which are the spleen and tumor. This term corresponds to the first terms in Equation (5)
and (7) where we notice that µBTE(T ) < µBB for all T , so µBSE + µBTE(T ) < µBB.

Equation (3) follows equation (2), with memory CTLs substituted for active CTLs;
biologically, in fluctuation between spleen and blood, active and memory cells are treated
the same.

Spleen Compartment
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d

dt
Dspleen =

(
MaxD(1− e(

−µBSDblood
MaxD

)
)
− aDDspleen − bDEEaspleenDspleen (4)

d

dt
Easpleen = µBSEE

a
blood − µSB(Dspleen)Easpleen + baDspleenE

m
spleen

− aEaSEaspleen + aEaSDCon(Dspleen)Enaive − ramEaspleen

+ bp
Dspleen(t− τD)Easpleen(t− τD)

θD +Dspleen(t− τD)
(5)

d

dt
Emspleen = ramE

a
spleen − aEmEmspleen − baDspleenE

m
spleen − µSB(Dspleen)Emspleen

+ µBSEE
m
blood (6)

The first term of Equation (4) models the migration of dendritic cells in the blood to
the spleen. It stands out as the only migration term in the model that is written as a the
transfer rate of DCs from the blood to the spleen, instead of as a percentage rate multiplied
by Dblood. The graph of this term is shown in Figure 2. The term is a modification of the

Figure 2: When Dblood is close to 0, the transfer rate of DCs from blood to spleen is close to
µBS . When Dblood is large, the actual rate (and not the percentage rate) is close to MaxD
(this means the percentage rate tends to 0 as Dblood →∞).

Ludewig et al. model by DePillis et al., accounting for the existence of a maximum rate at
which DCs enter the spleen [2]. Through model simulation and fit to experimental data,
DePillis et al. found this rate to be limited to about 400 cells per day: MaxD = 400 [2].
Notice that the percentage rate at which DCs enter the spleen from the blood is

MaxD(1− e(
−µBSDblood

MaxD
))

Dblood
< µBS .
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As mentioned in the explanation of the first term in Equation (1), µBS < µB because that
term also includes migration of DCs into other organs of the body. The second term of
Equation (4) models the death of dendritic cells in the spleen. When dendritic cells meet
active CTLs in the spleen they are consumed enabling the proliferation of more active CTLs.
The third term in Equation (4) models this and it corresponds to the last term in Equation
(5).

Equation (5) has many components, including two new and exciting terms. It begins
with the migration of active CTLs from blood to spleen, which we previously discussed in
Equation (2). Similarly, the second term is a trafficking term modeling the migration of
active CTLs from spleen to blood and corresponds to the second term in Equation 2. The
third term is another trafficking term, modeling the conversion of memory CTLs to active
CTLs in the presence of DCs. It corresponds to the third term in Equation (6). Moving to
the second line, the fourth term models the death of active CTLs in the spleen. The fifth
term models the conversion of naive CTLs to active CTLs in the presence of dendritic cells.
Note that Enaive is the number of naive CTLs in the spleen–a constant in this model and
not a variable. The function DCon is a step function:

DCon(Dspleen) =

{
0 if Dspleen = 0
1 if Dspleen > 0

DePillis et al. introduced DCon(Dspleen) to prevent the creation of tumor-specific CTLs
before there are any DCs to present the antigen to the naive T-cells. We find it a little
strange that the coefficient in this term, aEaS , is the same as the percentage rate at which
active CTLs die; this assumption seems tenuous at the moment, meriting further exploration
and potential modification. However, we don’t expect any modification to yield substantive
differences in our analysis, so for now we have accepted that the rates are the same. Just as
DCs cause some memory CTLs to activate, some activated CTLs revert to memory CTLs.
This reversion from active to memory CTLs is modeled by the sixth term in the equation.
It is a trafficking term, so we see it again as the first term of Equation (6).

The final term of (5) incorporates a time delay, which presents considerable challenges
in the analysis. Biologically, the delay represents the time that DCs and naive CTLs in the
spleen need to be in contact before proliferation of active CTLs begins [2]. Accordingly,
this last term models the proliferation of more active CTLs from some active CTLs. Recall
from Equation (4) that active CTLs kill some DCs in the spleen in order to proliferate The
percentage rate of profileration is equal to

bp
Dspleen(t− τD)

θD +Dspleen(t− τD)
.

When Dspleen(t − τD) = 0 there is no proliferation. As Dspleen(t − τD) increases the per-
centage rate of proliferation increases with a limiting value of bp.

Moving on to equation (6), we first observe the reversion of active CTLs to memory
CTLs. The second term models the natural death of memory CTLs in the spleen. With its
counterpart back in Equation (5), the third term models the activation of memory CTLs
by DCs. The fourth term is familiar–memory cells are transferred from spleen to blood in
the same way that active cells are (as seen in Equation (5))–and its counterpart is the first
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term in Equation 3. The last terms models the migration of memory CTLs from the blood
to the spleen and its counterpart is the second term in Equation 3.

Tumor Compartment

d

dt
Eatumor = µBTE(T )Eablood − aEaTEatumor − cEatumorT (7)

d

dt
T = rT

(
1− T

k

)
−D(Eatumor, T )T (8)

d

dt
Dtumor =

mT

q + T
− µTBDtumor − aDDtumor + vtumor(t) (9)

where

µBTE(T ) = µBB
T

α+ T

and D(Eatumor, T ) = d

(
Eatumor
T

)l
s+

(
Eatumor
T

)l (10)

We jump right into (7). The first term models the migration of active CTLs in the blood
to the tumor. The rate function µBTE(T ) can be understood as the a fraction of the total
elimination of CTLs from the blood, which increases as the number of tumor cells increases.
So when there are more tumor cells, a greater proportion of the active CTLs leaving the
blood will go to the tumor instead of traveling to other organs.As previously noted in our
discussion of the blood compartment, this term corresponds to a portion of emigration of
active CTLs from the blood in equation (2):

µBB
T

α+ T
< µBB.

The second term models the natural death of active CTLs in the tumor. The third term
models the inactivation of active CTLs by tumor cells; think of this as the tumor’s combat
of the immune system’s fighter cells.

The two terms of equation (8), the rate of change in number of tumor cells, are a growth
term and a decay term respectively. The growth term represents logistic growth, as used
in previous models and fit to experimental data [2]. The percentage rate at which tumor
cells grow is equal to the parameter r when T is small and decreases to 0 as T increases.
The percentage rate at which active CTLs kill tumor cells, D, depends on the “kill ratio”
of active CTLs in the tumor to tumor cells. Its graph is shown in Figure 3. This rate is
equal to 0 when there are no active CTLs and increases up to a maximum of d as the kill
ratio increases. Notice that D is not continuous when Eatumor = T = 0, so this term is not
differentiable in this 7-dimensional subspace of phase space.
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Figure 3: D is the percentage rate at which tumor cells are killed off; it ranges between 0
when

Eatumor
T is small to d when

Eatumor
T is large.

The first term in Equation (9) models the migration of DCs to the tumor due to the
native immune response. This rate increases as a saturation-limited function of the number
of tumor cells; the model assumes that the body has an infinite supply of dendritic cells
to send to the tumor site as dictated [2]. The second term accounts for DC transfer from
tumor to blood as well as natural death of DCs in the tumor. The transfer term here is
the negative side of the trafficking term we saw in Equation (1). The final term is another
injection function, as DePillis et al. ran simulations with both intravenous and intratumoral
DC injections.

Simulations
Simulations of the system indicate that all solutions tend to one of two equilibria. Figures
4 and 5, run for the same parameter values and different initial conditions, depict both of
these equilibria.

3 Equilibria

Consider the region of the 9-dimensional space where all the variables are non-negative. It
is easy to see that this region is invariant. We are only interested in solutions that live in
this part of the space, since other solutions are not physically meaningful. Notice that the
system is infinite-dimensional because of the delay; initial conditions consist of the values
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Figure 4: Initial condition: T = 105, all other variables 0

of the variables not just at t = 0 but at every value of t from −τ to 0. We would like to
understand which initial conditions and values of the parameters will yield solutions where
T → 0 as t → ∞. It may also be of interest to identify those initial conditions where T
remains small but we have not focused on this matter in this paper. Although ultimately
we would like to understand what injection regimens produce solutions where T → 0, in
this paper we have primarily restricted our analysis to the body’s native immune response
where vblood(t) ≡ vtumor(t) ≡ 0.

Notice that DCon(Dspleen) is discontinuous when Dspleen = 0. This means that there
could be more than one solution passing through a point in phase space where Dspleen = 0.
However, of particular interest to us are solutions where T > 0 for some t = t∗. Any such
solution will have Dspleen > 0 for t ≥ t∗, so DCon(Dspleen) will equal one and remain one as
t → ∞. For this reason, in our model analysis and simulations, we replace DCon(Dspleen)
with 1. Since Dspleen is the number of dendritic cells, it does not make sense for it to take
on fractional values, so in future work it may be appropriate to replace this function with
another function that is similar but continuous when Dspleen = 0. In summary, we study
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Figure 5: Initial condition: T = 2× 105, all other variables 0

the following system:

d

dt
Dblood = −µBDblood + µTBDtumor

d

dt
Eablood = µSB(Dspleen)Easpleen − µBBEablood

d

dt
Emblood = µSB(Dspleen)Emspleen − µBBEmblood

d

dt
Dspleen =

(
MaxD(1− e(

−µBSDblood
MaxD

)
)
− aDDspleen − bDEEaspleenDspleen

d

dt
Easpleen = µBSEE

a
blood − µSB(Dspleen)Easpleen + baDspleenE

m
spleen

+ aEaSEnaive − (aEaS + ram)Easpleen

+ bp
Dspleen(t− τD)Easpleen(t− τD)

θD +Dspleen(t− τD)

d

dt
Emspleen = ramE

a
spleen − aEmEmspleen + baDspleenE

m
spleen

+ µSB(Dspleen)Emspleen + µBSEE
m
blood

d

dt
Eatumor = µBTE(T )Eablood − aEaTEatumor − cEatumorT

d

dt
T =

[
r

(
1− T

k

)
−D(Eatumor, T )

]
T

d

dt
Dtumor =

mT

q + T
− (µTB + aD)Dtumor

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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We have primarily studied this system when the values of the parameters are those that
are given in the appendix. However, since we expect the parameters to vary from individual
to individual and we certainly expect the values of the parameters to be different for people
than they are for mice, we are interested in how the behavior of the solutions depends on
the parameters. In particular, we have noticed that the behavior of the solutions is sensitive
to the relative sizes of d and r.

DePillis et al. have found the equilibria of the system. We reproduce their work here for
completeness. To determine the equilibria we set the left hand side of equations (11)-(19)
equal to zero. From equation (18) we see that either T = 0 or

r

(
1− T

k

)
= d

(
Eatumor
T

)l
s+

(
Eatumor
T

)l . (20)

We first look for equilibria where T = 0. In this case we see from equations (17) and
(19) respectively that Dtumor = Eatumor = 0. From (11) we get that Dblood = 0 and from
(14) that Dspleen = 0 (since we are only interested in those equilibria that lie in that part
of the space where all the variables are non-negative). From equation (12) we have

Eablood =
µNormalSB

µBB
Easpleen.

Substituting this into equation (15) we get

Easpleen =
aEaSEnaive

µNormalSB + aEaS + ram − µBSE
µBB

µNormalSB

,

so

Eablood =
µNormalSB

µBB

(
aEaSEnaive

µNormalSB + aEaS + ram − µBSE
µBB

µNormalSB

)
.

From equation (13) we see that

Emblood =
µNormalSB

µBB
Emspleen.

Substituting this into equation (16) we get

Emspleen =

(
ram

aEm + µNormalSB − µBSE
µBB

µNormalSB

)(
aEaSEnaive

µNormalSB + aEaS + ram − µBSE
µBB

µNormalSB

)
,

so

Emblood =
µNormalSB

muBB

(
ram

aEm + µNormalSB − µBSE
µBB

µNormalSB

)(
aEaSEnaive

µNormalSB + aEaS + ram − µBSE
µBB

µNormalSB

)
.

Thus, there exists a unique equilibrium with T = 0. We call this equilibrium T ∗. When the
parameters take on the values given Table 1 in the Appendix, it is the point:
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Dblood = 0 Easpleen = 69.1191 Eatumor = 0

Dspleen = 0 Emblood = 0.1190 T = 0
Eablood = 6.2086 Emspleen = 1.3243 Dtumor = 0

To find the other equilibria, notice that the right-hand side of equation (20) is always a
number between 0 and d. This means that the equation has a positive solution if and only
if min{0, k(1− d/r)} < T ≤ k. For any such T , this equation is satisfied when

Eatumor =

(
sr
(
1− T

k

)
d− r

(
1− T

k

))1/l

T.

Substituting into equation (17) we see that it is satisfied if and only if

Eablood =
(aEaT + cT )(α+ T )

µBBT

(
sr
(
1− T

k

)
d− r

(
1− T

k

))1/l

T.

Similarly, equation (19) is satisfied if and only if

Dtumor =

(
mT

q + T

)(
1

µTB + aD

)
and then equation (11) is satisfied if and only if

Dblood =
muTB
µB

(
mT

q + T

)(
1

µTB + aD

)
.

Plugging these values back into equation (14), we obtain a quadratic equation from [2]:

0 = −θshut(µ∗SB + ∆µ)M

+ (θshutµ
∗
SBaD + ∆µθshutaD + θshutbDEµBBE

a
blood − µ∗SBM)Dspleen

+ (µ∗SB + bDEE
a
bloodµBB)(Dspleen)2

where
M = MaxD

(
1− e

−µBSDblood
MaxD

)
.

The quadratic equation has the general form

ax2 + bx+ c = 0

where
a = µ∗SB + bDEE

a
bloodµBB > 0

b = θshutµ
∗
SBaD + ∆µθshutaD + θshutbDEµBBE

a
blood − µ∗SBM > 0

and
c = −θshut(µ∗SB + ∆µ) < 0.

Discriminant ∆ = b2 − 4ac > 0, so this quadratic equation always yields two solutions, x1
and x2. However,

x1x2 =
c

a
< 0,
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which means one solution is negative while the other is positive. We are only interested in
the positive solution. From equation (16), we get a value for Em∗spleen,

Em∗spleen =
ramE

a∗
spleen

aEm + baD∗spleen + µSB(D∗spleen(1− µBSE/µBB)
.

Lastly, equation (13) gives Em∗blood in terms of Em∗spleen,

Em∗blood =
µBB

µSB(Dspleen)
Ea∗blood.

This completes the computation of all equilibrium values in term of T̃ . Notice that equation
(15) is never used through the calculation. By plugging in all values we will obtain another
equation of T̃ . Although it is not clear how many solutions of T̃ it will yield, simulation
exclusively indicates there is only one equilibrium, meaning only one solution for T̃ .

Recall that we are interested in those initial conditions for which T → 0 as t→∞. We
shall show in section 6 that every such solution actually converges to the equilibrium where
T = 0, T ∗, so it suffices to determine the basin of attraction of this equilibrium. Notice
that at this equilibrium we have T = Eatumor = 0, so the second term in equation (18) is not
differentiable. This means that we cannot linearize about this equilibrium and investigate
its stability in the usual way. Our general approach is outlined in Section 4 below. However,
there is one observation that we can make that doesn’t require much machinery. This deals
with the case when d < r and is outlined in the theorem below.

Theorem 1. If d < r, then T ∗ is unstable.

Proof. Notice that

T ′ =

[
r

(
1− T

k

)
− d

(
Eatumor
T )l

s+ (
Eatumor
T )l

]
T

≥
[
r

(
1− T

k

)
− d
]
T.

Since d < r, 1− d
r > 0, and if 0 < T < k

(
1− d

r

)
, then

T ′ >

[
r

(
1− k(1− d/r)

k

)
− d
]
T = 0

so T is increasing. The result follows.

The proof of Theorem 1 actually works in the full system where vtumot(t) and vblood(t) may
not be identically 0. In other words, when d < r, dendritic cell therapy cannot, by itself,
kill off the tumor.
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4 General Approach

The chart below shows which variables each of the other variables depends on. Notice that
the first six variables, Dblood through Emspleen, form the blood and spleen compartments.
They depend only on each other and one other variable, Dtumor. Similarly, the last three
variables, Eatumor, T , and Dtumor form the tumor compartment. They depend only on each
other and one other variable, Eablood.

D
bl
o
o
d

D
sp
le
en

E
a bl
o
o
d

E
a sp
le
en

E
m sp
le
en

E
m sl
p
ee
n

E
a tu
m
o
r

T D
tu
m
o
r

d

dt
Dblood X X

d

dt
Dspleen X X X

d

dt
Eablood X X X

d

dt
Easpleen X X X X

d

dt
Emblood X X X

d

dt
Emspleen X X X X

d

dt
Eatumor X X X

d

dt
T X

d

dt
Dtumor X X

Our approach is to study the behavior of the variables in the blood and spleen com-
partments where we treat Dtumor as an external function of time, and to study the three
variables in the tumor compartment where we treat Eablood as an external function of time.
Our hope is then to understand how these two subsystems feed into each other and thereby
understand the solutions to the complete system of nine differential equations (11) through
(19). We have had partial success to date.

5 The Blood and Spleen Compartments

In this section, we take a closer look at the blood and spleen compartments. We write the
model out explicitly below for future reference.
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d

dt
Dblood = −µBDblood + µTBDtumor(t) (21)

d

dt
Eablood = µSB(Dspleen)Easpleen − µBBEablood (22)

d

dt
Emblood = µSB(Dspleen)Emspleen − µBBEmblood (23)

d

dt
Dspleen =

(
MaxD(1− e(

−µBSDblood
MaxD

)
)
− aDDspleen − bDEEaspleenDspleen (24)

d

dt
Easpleen = µBSEE

a
blood − µSB(Dspleen)Easpleen + baDspleenE

m
spleen

+ aEaSEnaive − (aEaS + ram)Easpleen

+ bp
Dspleen(t− τD)Easpleen(t− τD)

θD +Dspleen(t− τD)
(25)

d

dt
Emspleen = ramE

a
spleen − aEmEmspleen + baDspleenE

m
spleen + µSB(Dspleen)Emspleen

+ µBSEE
m
blood (26)

Analysis of this system is difficult because of the delay, but we have some partial results.
Figures 6 and 7 show typical simulations where Dtumor is constant. Notice that in both
cases the solutions appear to converge to an equilibrium. In Figure 8 we zoom in on the
solutions in 6. We can see that the solutions oscillate as we might expect because of the
delay but they are at an amplitude that’s very small compared to the global behavior.

Our first result about this system is Theorem 2 which concerns the boundedness of
the solutions. We suspect that for any bounded function Dtumor(t), the conclusion of the
theorem is still valid and simulations appear to support this conjecture. Indeed, the model
would not be physically reasonable if solutions became unbounded, but a proof of this is
important in order to prove other results about the system. The proof in the case of a
general bounded function Dtumor(t) is elusive because we have to deal with the delay (in
Theorem 2 we are able to bound the delay term). It is sufficient to determine boundedness of
the solutions for functions Dtumor(t) that are bounded because Dtumor(t) is always bounded
in the full 9-variable model (see Section 6).

Let α = min{µBB − µBSE , aD, aEaS , aEm}. Also let

β =
−µBSµBMaxD

αµTB
ln

(
1− aDα

4bpMaxD

)
Note here that for parameter values in the appendix, aDα

4bpMaxD < 1.
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Figure 6: Dtumor = 1× 105

Theorem 2. If Dtumor(t) < β for all t then every solution to Equations (21) to (26) is
bounded for all time.

Proof. Note that D′blood < −µBDblood + µTBc, it follows that

Dblood(t) ≤ Dblood(0)e−µBt +
µTBc

µB
(1− e−µBt)→ µTBc

µB
.

Choose time T1 such that for all t > T1,

Dblood(t) <
2µTBc

µB
= −MaxD ln

(
1− aDα

4bpMaxD

)
.

Now notice that
D′spleen ≤MaxD

(
1− e

−µBSDblood
MaxD

)
− aDDspleen.

But for all t > T1,

MaxD
(

1− e
−µBSDblood

MaxD

)
< MaxD

(
1− e

−µBS2µTBc

MaxDµB

)
= MaxD

(
aDα

4bpMaxD

)
=
aDα

4bp
,
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Figure 7: Dtumor = 1× 103

so
D′spleen ≤

aDα

4bp
− aDDspleen.

Thus, for all t > T1,

Dspleen(t) ≤ Dspleen(T1)e
−aD(t−T1) +

α

4bp

(
1− e−aD(t−T1)

)
→ α

4bp
.

Choose T2 > T1 such that for all t > T2,

Dspleen(t) <
α

2bp
.

Let s = Eablood + Emblood + Easpleen + Emspleen. Then for all t > T2 + τD,

s′ = −(µBB + µBSE)(Eablood + Emblood)− aEaSEaspleen
− aEmEmspleen − baDspleenE

m
spleen + aEaSEnaive

+ bp
Dspleen(t− τD)

θD +Dspleen(t)
Easpleen(t− τD)

≤ −αs+ aEaSEnaive +
α

2
Easpleen(t− τD)

Choose M such that:
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Figure 8: Closer look at Easpleen graph from fig. 6

• All the variables are less than M for −τD ≤ t ≤ T2 + τD,

• M >
2aEaSEnaive

α
.

We shall show that s < M for all time. Suppose this is not the case. Let T3 be the first
time that s = M . By our choice of M , T3 > T2 + τD and since this is the first time that
s = M , Easpleen(T3 − τD) < M . Thus

s′(T3) ≤ −αM + aEaSEnaive +
α

2
M

= −α
2
M + aEaSEnaive

< 0.

Thus there exists a time T4 < T3 such that s(T4) > M , which means that there is a time
T5 < T4 < T3 at which s(T5) = M . This is a contradiction to the definition of T3. It follows
that s < M for all time.

Our next result concerns the case when Dtumor(t) ≡ 0. In this case we have a complete
understanding of the system. This case is interesting in its own right since it corresponds
to the model of Ludewig et al.

Theorem 3. The system defined by Equations (21) to (26) where Dtumor ≡ 0 has a unique
equilibrium that is globally asymptotically stable.

Proof. Setting the left-hand side of equations (11) through (16) equal to 0, it is easy to see
that the system has a unique equilibrium. It follows from (11) that Dblood → 0 exponentially
as t→∞. Looking at equation (14), it is then clear that Dspleen → 0 as t→∞.
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Now, setting Dblood = Dspleen = 0, we study the system of the other four variables. Let
~x = (Eablood, E

m
blood, E

a
spleen, E

m
spleen). Notice that

~x′ = a~x+~b

where

A =


−µBB 0 µNormalSB 0

0 −µBB 0 µNormalSB

µBSE 0 −µNormalSB − aEaS − ram 0
0 µBSE ram −aEm − µNormalSB


and

~B =


0
0

aEaSEnaive
0


The eigenvalues of A are:

λ1,2 =
1

2

[
−(µBB + aEm + µNormalSB )

±
√

(µNormalSB + aEm − µBB)2 + 4µNormalSB µBSE

]

λ3,4 =
1

2

[
−(ram + aEaS + µNormalSB + µBB)

±
√

(ram + aEaS + µNormalSB − µBB)2 + 4µNormalSB µBSE

]
and when evaluated at the parameters in the appendix:

λ1 = −0.6418261 λ2 = −0.5219278

λ3 = −5.7000738 λ4 = −5.7000721

These are all negative, therefore the equilibrium is globally asymptotically stable.

Note: In the above proof, we set Dblood = Dspleen = 0, whereas in the 6x6 system, both
variables are approaching 0. We believe the result is the same with this difference, but have
not reached a satisfying proof as yet.

When Dtumor is constant (but possibly not 0) it isn’t hard to see that the system
described by Equations (11) to (19) still has a unique equilibrium and we suspect that
this equilibrium is still globally asymptotically stable. Simulations support this conjecture
but a proof remains elusive because of the delay term. The first step in proving that
the equilibrium is globally asymptotically stable is to show that the solutions are bounded.
Looking back at equation (11), when Dtumor is a constant, then (11) converges to a constant.
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This means that Dspleen is bounded above. If we could bound Easpleen then it would follow
that Eablood is bounded. When Easpleen is large, we can see from (14) that Dspleen will become
smaller which means that the coefficient of the growth term in equation (15) becomes very
small so Easpleen must decrease. However, to make this into a rigorous proof, we need a
better understanding of the delay.

In order to help us understand the affect of the delay term in the system defined by
equations (11)-(19) we have been looking at the general delay differential equation

x′(t) = −αx(t) + β(t)x(t− τ) + f(t).

We have some bounds on the growth rate of x when f(t) ≡ 0 and β is a constant, but we
have not been able to apply these results to the model.

6 The Tumor Compartment

The system below models the behavior of the variables in the tumor compartment. For
simplicity we denote Eatumor by x, T by y and Dtumor by z. The variable Eablood is external
to the system; we think of it simply as a function of time. Our goal is to understand the
behavior of the system whatever function of time Eablood may be. The parameters all have
the values given in the appendix except we explore different values of d and r.

dx

dt
= µBB

y

1 + y
Eablood(t)− aEaTx− cxy (27)

dy

dt
= ry

(
1− y

k

)
− d

(
x
y

) 2
3

s+
(
x
y

) 2
3

y (28)

dz

dt
=

my

q + y
− (µTB + aD)z (29)

Notice that x and y only depend on each other and not on z. This permits us to study
the 2-variable system consisting of x and y alone. Having understood these solutions we
then study the behavior of z. The system in x and y is particularly interesting because it

contains the term
d(x
y
)
2
3

s+(x
y
)
2
3

that is not differentiable at the origin.

6.1 The Two-Variable System in x and y Alone

We start by considering the case when Eablood(t) = Eablood is constant. Figures 9, 10, and
11, show typical simulations in this case.
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Figure 9: d > r, Eablood = 1000 (axis scale: ×104)

Figure 10: d > r, Eablood = 0.03

Notice that the origin (0, 0) is always an equilibrium of the system. The system does not
look locally linear near the origin because of the non-differentiable term. For some values
of Eablood, d and r, the origin is unstable, for others it is semi-stable, and for yet others it is
unstable. We shall see that there is always another stable equilibrium where y is large (near
the carrying capacity of the tumor). Sometimes there is a third unstable equilibrium. The
third equilibrium is helpful in determining the basin of attraction of the origin. In what
follows we do a null-cline analysis of the system in order to quantify and provide proofs of
these observations.

A simple calculation shows that the x-nullcline is given by:

x = µBBE
a
blood

y

(1 + y)(aEaT + cy)
.
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Figure 11: d < r, Eablood = 1000 (axis scale: ×104)

The x-axis (y = 0) forms part of the y-nullcline. The other part is given by:

r
(

1− y

k

)
= d

(
x
y

) 2
3

s+
(
x
y

) 2
3

(
1− y

k

)[
s+

(
x

y

) 2
3

]
=
d

r

(
x

y

) 2
3

s
(

1− y

k

)
+

(
x

y

) 2
3

− y

k

(
x

y

) 2
3

=
d

r

(
x

y

) 2
3

(
x

y

) 2
3

=

[
s(1− y

k )
d
r − (1− y

k )

]

x =

[
s(1− y

k )
d
r − (1− y

k )

] 3
2

y

The graph in Figure 12 shows the nullclines when Eablood = 4.5× 105, and d = 1.25.

Let

f(y) =
µBBE

a
blood

1 + y

and g(y) = (aEaT + cy)

[
s(1− y

k )
d
r − (1− y

k )

] 3
2

We have already observed that the origin is always an equilibrium. A point (x, y) is another
equilibrium if and only if

x =
µBBE

a
blood

(1 + y)(aEaT + cy)
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Figure 12: Eablood >

(
s

d
r − 1

) 3
2 aEaT
µBB

, d > r

and f(y) = g(y). The graphs of f and g are shown in figures 13, 14, and 15 for three
different sets of values of Eablood, d and r.

Observation 1: Consider the equilibria of the system defined by Equations (27) through
(28).

1) If d ≤ r, the equilibria consist of the origin and exactly one other point.

2) If d > r and

Eablood ≤

(
s

d
r − 1

) 3
2 aEaT
µBB

,

then the equilibria of the system consist of the origin and exactly one other point.

3) If d > r and

Eablood >

(
s

d
r − 1

) 3
2 aEaT
µBB

,

then the equilibria consist of the origin and exactly two other points.

We see this as follows:
Function f is defined, decreasing for all y ≥ 0, and does not depend on Eablood. It de-

creases at an extremely high rate until some y that is relatively small compared to k. It
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Figure 13: d ≤ r

Figure 14: d > r,Eablood ≤
(

s
d
r
−1

) 3
2 aEaT
µBB

Figure 15: d > r,Eablood >

(
s

d
r
−1

) 3
2 aEaT
µBB
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then flattens and goes to 0 as y goes to infinity. The function g is also decreasing, though its
rate of decrease is closer to a constant than that of f (see figures 13 through 15). Moreover,
g(k) = 0.

1) When d < r, the function g is only defined for k(1− d
r ) < y ≤ k and has an asymptote

at y = k(1− d
r ). In this case, there is only one intersection between f and g.

2) When d > r, g is still decreasing but now is defined for all 0 ≤ y ≤ k and

g(0) = aEaT

(
s

d
r − 1

) 3
2

.

By the inequality in the hypothesis we see that g(0) ≥ f(0). It follows that f(y) intersects
g(y) only once.

3) In this case g is decreasing and defined for all 0 ≤ y ≤ k and

g(0) = aEaT

(
s

d
r − 1

) 3
2

as in the second case above. This time, however, from the inequality in the hypothesis it
follows that f(0) > g(0). As f descends quickly it crosses the graph of g once, then it
intersects g again when it flattens out.

Observation 2: Every solution to the system defined by equations (27) to (28) converges
to some equilibrium. We divide the discussion into three cases.

Case I: d ≤ r
Figure 16 shows a sketch of the nullclines and the direction fields in all regions in this

case.

All solutions go to equilibrium point I, except those that lie on the line T = 0, which go to
the origin.

Case II: d > r and Eablood ≤
(

s
d
r
−1

)
aEaT
µBB

Figure 17 shows a sketch of the nullclines and the direction fields in all regions in this
case.

Everything in regions 1, 3 and 4 goes to equilibrium I. Points in the top left of region 2 enter
region 1 and also go to equilibrium I. Points in the top right can go directly to equilibrium I.
Points lower down can enter region 4 and be sent to equilibrium I. Points further down can
just keep moving southeast without ever hitting the y-nullcline and converge to the origin.
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Figure 16: The graph of the two nullclines when d ≤ r

It is not clear from the figure that these points exist, but simulations (see for example
Figure 10) suggest that there are always such points. Only points on the Eatumor axis go to
the origin.

Case III: d > r and Eablood >

(
s

d
r
−1

)
aEaT
µBB

.

Figure 18 shows a sketch of the nullclines and the direction fields in all regions in this
case.

The nullclines define 5 different regions in phase space. Everything in region 1 goes to
equilibrium I. Everything in 4 and top half of 3 also goes to equilibrium I. In the top left of
region 2, points go into region 1 and be sent to equilibrium I. In top right of region 2, points
can go directly to equilibrium I. Points lower down can enter region 4 and go to equilibrium
I. Points even lower down in region 2 go to the origin. Everything in region 5 enters the
bottom part of region 2. In the bottom part of region 3, points can hit the y-nullcline and
enter region 5, and eventually go to the origin.

Of particular interest to us is the basin of attraction of the origin. We saw in the
observations above that when d ≤ r the only solutions that converge to the origin are those
where T = 0. When d > r and

Eablood ≤

(
s

d
r − 1

)
aEaT
µBB
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Figure 17: The graph of the two nullclines with d > r and Eablood ≤
(

s
d
r
−1

)
aEaT
µBB

. Regions

are labelled 1-4

we see numerically that points that lie in a sliver where T is small compared to Eatumor are
in the basin of attraction of the origin but we haven’t been able to prove this rigorously or
locate this sliver more precisely (see the shaded region in Figure ??). When d > r and

Eablood >

(
s

d
r − 1

)
aEaT
µBB

there exists a third equilibrium that can help us identify the basin of attraction of the
origin. Consider the shaded region that consists of part of region 3, all of region 5 and
part of region 2. All the points in this region lie in the basin of attraction of the origin.
We see this as follows. The part in region 2 consists of all points that lie vertically below
equilibrium II. Notice that this part of the shaded region is invariant under the flow, so
therefore all solutions go to the origin. There are also some points outside the shaded part
of region 2 that lie in the basin of attraction of the origin, but we are not able to identify
them precisely. Everything in region 5 enters the shaded part of region 2 and goes to the
origin. The points in the shaded part of region 3 enter region 5 and go to the origin.

Because we are especially interested in the initial condition where y > 0 and x = 0, it is
helpful to estimate how far the shaded area in region 3 extends. Let (0, T0) be the point in
the phase plane where any solution passing through (0, T ) where T < T0 converges to the
origin and any solution passing through (0, T ) where T > T0 converges to the other stable
equilibirum. The charts below show the values of T0 for different values of Eablood and d.
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Figure 18: The graph of the two nullclines when d > r and Eablood >

(
s

d
r
−1

)
aEaT
µBB

. Regions

are labelled 1 - 5.

Parameter r has value 0.3954.
d = 1

y0 Eblooda

0.2437 0.1

1.1612 0.2

2.0993 0.3

3.0419 0.4

3.9860 0.5

4.9292 0.6

5.8760 0.7

6.8212 0.8

7.7664 0.9

8.7127 1.0

Eablood = 1
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y0 d

2.8404 0.7

4.6075 0.8

6.5711 0.9

8.7127 1.0

11.0186 1.1

13.4778 1.2

16.082 1.3

18.8217 1.4

21.6908 1.5

24.6922 1.6

Polynomial approximation reveals a strong linear relationship between y0 and Eablood. It is
well-approximated by the function:

y0 = 9.4520Eablood − 0.7200.

The coefficient of determination is 1 and it gives great predication of y0 in larger scale.
Locally, the relationship between y0 and d can be best approximated by the following
quadratic function with coefficient of determination 1:

y0 = 7.5870d2 + 6.9177d− 5.7636.

Unfortunately, it only offers a relatively accurate approximation for small values of d and
results in huge errors on a larger scale. Overall, we are able to numerically determine the
value of y0 with

T0 = 0.1145(7.8570d2 + 6.9177d− 5.7636)(9.4250Eablood − 0.7200)

6.2 The Variable z

We have shown above that when Eablood is constant, along all solution curve for equation
(27) and (28), y must converge some constant, y∗. Thus,

d

dt
Dtumor = m(t)− (µTB + aD)Dtumor

where

m(t)→ m∗ =
my∗

q + y∗
as y → y∗.

As m(t) is converging to a constant, Dtumor will also converges to a constant, namely
m∗

µTB + aD
. This concides with our observation that Dtumor always converge to a constant

in any simulations.
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6.3 3× 3 discussion

We have determined the x,y-nullclines for equation (27) and (28) previously. When
Eablood increases, the y-nullcline remains unchanged and the x-nullcline is stretched in the
x-direction. This causes the equilibrium to move up-right along the y-nullcline and away
from the origin. This will indeed increase the area of basin of attraction we identified ear-
lier, which is bounded by y-nullcline and the horizontal ray starting from equilibrium to the
right.
As for the part of basin attraction that lays above the y-nullcline, we could not elaborate the
effect of increasing Eablood due to the lack of an explicit expression of the boundary. Nonethe-
less, we know that T0 will move upwards along y-axis because of its linear dependency on
Eablood. Moreover, for every appropriate Eablood, we will always have a unique solution that
goes into its unstable equilibrium, appearing as the boundary of basin of attraction. If Eablood
increases, all vectors in the field will have a smaller slope, due to a larger x-component. It
follows that the solution going into the new unstable equilibrium will lay above the old one,
resulting in an expansion of basin of attraction.
This inteprets the phenomena that a solution growing towards the carrying-capacity equi-
librium will ocasionally be deflected half-way and pulled back into the origin equilibrium.
In this case, the expansion of basin of attraction due to inreasing Eablood is rapid enough to
catch up with the growth of tumor.

7 Conclusion/Future Work

Thus far, we have been able to prove the stability of the blood and spleen compartment with
respect to Ludewig’s model in the 6× 6 system analysis. However, in the blood and spleen
compartment, Dtumor(t) is not constant in general, and we are moving towards proving the
boundedness of the six variables in that system, which will bring us closer to the general
stability of that system. As we mentioned before, our reasoning tells us that the blood and
spleen compartment is globally asymptotically stable given a constant number of dendritic
cells in the tumor.

In the tumor compartment, we have been able to conduct nullcline analysis in order to
determine the basin of attraction of the equilibrium at T ∗, so as to put the patient into
a situation where they can kill off tumor cells on their own, without any dendritic cell
vaccinations.

In our future work, we would like further our understanding of the stability of the T ∗

equilibrium. Ultimately, we would like to determine the DC injections that will put the
patient into the basin of attraction at the T ∗ equilibrium. We would also like to determine
which parameters have the greatest effect on the basin of attraction of T ∗, since we do not
expect all patients to have the same parameter values.
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A Parameter Values

The parameters used in the model are described in the following table. These parameter
values are taken from DePillis et al.

Table 1: Parameter Values
Parameter name Description Value Units

α Component of µBTE 1 cell

µBS Transfer rate of DCs from the
blood to spleen

2.832 1/day

µB Rate of DC emigration from
blood

27.072 1/day

µ̃BB Total elimination rate of CTL
from blood

5.8 1/day

µBB Scaled and shifted elimination
rate of CTL from blood

Calculated 1/day

µNormalSB Normal DC transfer rate from
spleen to blood

0.5120 1/day

µ∗SB DC reduced transfer rate from
spleen to blood

0.012 1/day

µ̃BSE Transfer rate of activated
CTLs from blood to spleen

0.022 1/day

µBSE = µ̃BSEQspleen/Qblood Scaled transfer rate of acti-
vated CTLs from blood to
spleen

Calculated 1/day

µLB Transfer rate of DCs from the
liver to the blood

0.51 1/day

µBL Transfer rate of DCs from the
blood to the liver

0.1 1/day

µBTE = µBB(T ) T-dependent rate at which ef-
fector cells enter the tumor
compartment from the blood

Calculated 1/day

µTB Rate of transfer of DC from
tumor to blood

0.0011 1/day

Qblood Murine blood volume 3 ml

Qspleen Murine spleen volume 0.1 ml

Qliver Murine liver volume 0.5 ml

aD Natural death rate of DCs in
the spleen

0.2310 1/day
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Parameter name Description Value Units

b̃DE Elimination rate of DCs by ac-
tivated CTLs (per concentra-
tion)

0.13× 10−6 1/cell· day

bDE = b̃DE/Qspleen Per cell elimination rate of
DCs by activated CTLs

Calculated 1/day

aEaS Natural death rate of acti-
vated CTLs in spleen

0.1199 1/day

Enaive Number of naive CTL cells
contributing to primary clonal
expansion

370 cells

bp Maximal expansion factor of
activated CTL

85 1/day

τD Duration of pre-programmed
CTL divisions

0.5 days

θ̃D Threshold in DC density in
the spleen for half maximal
proliferation rate of CTL

2.12× 103 cell/ml

θD = θ̃DQspleen Scaled threshold in DC den-
sity in the spleen for half max-
imal proliferation rate of CTL

Calculated cell

ram Reversion rate of activated
CTL to memory CTL

0.01 1/day

b̃a Activation rate of memory
CTL concentration by DCs

1× 10−3 ml/(cell·day)

ba = b̃a/Qspleen Per cell activation rate of
memory CTLs by DCs

Calculated 1/(cell·day)

aEm Natural death rate of memory
CTLs in the spleen

0.01 1/day

θ̃shut Threshold in DC density in
the spleen for half maximal
transfer rate from spleen to
blood

13 cells/ml

θshut = θ̃shutQspleen Scaled threshold in DC den-
sity in the spleen for half max-
imal transfer rate from spleen
to blood

Calculated cells
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Parameter name Description Value Units

aEaT Natural death rate of acti-
vated CTLs in tumor com-
partment

log(2)/1.5 1/day

r Tumor growth rate 0.3954 1/day

k Carrying capacity of tumor 1× 109 cells

c Rate at which activated CTLs
are inactivated by tumor cells

9.42× 10−12 1/(cell·day)

d Steepness coefficient of the
fractional tumor kill by CTLs

0.35 1/day

s Value of D necessary for half
maximal activated CTL toxi-
city

1.4 unitless

l Immune strength scaling ex-
ponent

2/3 unitless

m Steepness coefficient of native
immune response

2.4388× 104 cells/ml

q Value of T necessary for half
maximal native immune re-
sponse

100 cells

B Equilibrium Values

Here are the approximate values of the equilibrium points for varying values for Eablood and
d in the 2 × 2 system analysis. Besides the equilibrium at T ∗ (from which we recall is at
T = 0), we have two other equilibria, namely the intermediate equilibrium (near the origin),
and the equilibrium near k (carrying capacity).

Note: When d ≤ r, then the equilibrium at T ∗ is unstable.

Table 2: Equilibrium points where d = 0.35.
Eablood Intermediate Equilibrium Equilibrium Near k

0 none (0.0000, 999999996.5474)

10 none (120.8857, 999984541.9986)

5× 10 none (604.4288, 999954801.4699)

5× 102 none (6044.3076, 999790222.5286)

5× 103 none (60443.9985, 999026633.7926)

5× 104 none (604482.7042, 995489242.8098)

5× 105 none (6046792.8012, 979218224.5963)
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Table 3: Equilibrium points where d = r = 0.3954.
Eablood Intermediate Equilibrium Equilibrium Near k

0 none (0.0000, 1000000000.0192)

10 (0.0017, 0.0000) (120.8857, 999982537.2983)

5× 10 (0.0038, 0.0000) (604.4288, 999948938.0730)

5× 102 (1.5222, 0.0000) (6044.3109, 999763007.0023)

5× 103 (0.0219, 0.0000) (60444.1511, 998900279.9506)

5× 104 none (604489.7922, 994902097.2654)

5× 105 (3.2095, 0.0000) (6047123.8851, 976478836.0816)

Table 4: Equilibrium points where d = 0.85.
Eablood Intermediate Equilibrium Equilibrium Near k

0 none (0.0000, 1000000002.5708)

10 (122.0442, 91.4431) (120.8857, 999962457.9691)

5× 10 (615.3931, 455.5314) (604.4296, 999890227.2826)

5× 102 (6166.1521, 4589.1097) (6044.3438, 999490436.5067)

5× 103 (61673.5608, 45904.1797) (60445.6804, 997633869.7193)

5× 104 (616742.5017, 459579.6325) (604561.1434, 988996710.8838)

5× 105 (6166910.3406, 4649755.4876) (6050513.5566, 948449655.0488)
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