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Figure: Crime Hot-Spot Pattern, Long Beach, LA. Short et al. 2010 [2]



Hotspot Modeling

• Our goal is to model crime, specifically the hotspot
phenomenon.

• Crime hotspots are when several crimes occur in a short period
of time and in a small area.

• Considerable empirical evidence behind them.

• We focus on burglaries for simplicity.
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Hotspot Modeling: Theory

• What causes hotspots?

• Repeat/ Near Repeat Effects: increased knowledge of location
after successful crime.
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The Short et al Model (2008)

• Starts with discrete model

• Criminals are agents on a lattice that has “attractiveness” field

• Every time step, criminals move to neighboring lattice spaces
based on attractiveness.

• Then decide to burgle or not based off attractiveness.

• Crimes are self-exciting; cause attractiveness at lattice point
and neighbors to increase.
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The Short et al Model (2008) (cont.)

Then, taking limits as grid spacing and time steps go to zero, we
get system of PDEs

The Model

At = η∆A− A + ρA + A0 (1a)

ρt =
(
A∆

( ρ
A

)
− ρ

A
∆A
)
− ρA + A− A0 (1b)

A = attractiveness at a point
ρ = criminal density at a location
A0 = a constant, background level of attractiveness
A = the spatially homogeneous equilibrium solution for A.



Lévy Flights

• Short et al model assumes Brownian motion (and thus
distance traveled normally distributed)

• We use Lévy Flights

• Power law distribution of step sizes
(P(k) ∼ k−(2s+1), 0 < s ≤ 1)

• Fractal-like motion; reflects many scales of human movement.
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Lévy Flights

• Short et al model assumes Brownian motion (and thus
distance traveled normally distributed)

• We use Lévy Flights
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Implementation: Discrete

• We change the transition probability as follows:

pi→i+1(t) =
Ai+1(t)

Ai+1(t) + Ai−1(t)
(Brownian)

pi→j(t) =
Aj(t)|i − j |−(2s+1)

Σk∈Z,k 6=iAk(t)|i − k |−(2s+1)
(Lévy)



Implementation: Continuous

• From before we had:

At = η∆A− A + ρA + A0,

ρt =
(
A∆

( ρ
A

)
− ρ

A
∆A
)
− ρA + A− A0.

• Using our new transition probabilities and taking limits as
before we get:

At = η∆A− A + ρA + A0 (No change)

ρt =
(
A∆s

( ρ
A

)
− ρ

A
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)
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∞∫
−∞

A(y)− A(x)

|y − x |2s+1
dy , (2)

cs is a constant and 0 < s ≤ 1.
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Fractional Calculus

• The operator ∆s is the Riesz Derivative,

• Generalization of the second derivative such that
lim
s→1

∆sA = ∂2A
∂x2 .

• But note that ∆
1
2A 6= ∂A

∂x

• Is a non-local operator. Leads to super-diffusion. Degree of
non-locality controlled by s.

• Fourier Transform has nice property: Fx→q{∆sA} = −|q|2s Â
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Fractional Calculus

• The operator ∆s is the Riesz Derivative,
• Generalization of the second derivative such that

lim
s→1

∆sA = ∂2A
∂x2 .

• But note that ∆
1
2A 6= ∂A

∂x

• Is a non-local operator. Leads to super-diffusion. Degree of
non-locality controlled by s.

• Fourier Transform has nice property: Fx→q{∆sA} = −|q|2s Â
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Numerical Solutions: Spectral Method of Lines

• Discretize in space and the calculate derivatives in Fourier
space. This turns into ODE in time.

• We make use of the fact that Fx→q{∆sA} = −|q|2s Â.

• Then use MATLAB’s stiff ODE solver.

• We used to use a forward Euler spectral method, but that
could not handle much of the parameter space.
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Examples

Figure: Single Hot-Spot.



Examples

Figure: Four Hot-Spots, D = 1, s = 1, ε = 0.05.



Examples

Figure: No Hot-Spot, D = 1, s = 0.5, ε = 0.05.



Examples

Figure: Oscillating Hot-Spots, s = 0.7, η = 0.1, ρ = 0.4,A = 0.12.



Linear Stability of Homogeneous Equilibrium

• The homogeneous equilibrium does not change from Short et
al. We get

A = A0 + B and ρ =
B

A0 + B
. (3)

• Perturb from the homogeneous equilibrium as follows and
plug into linearized equations:

A(x , t) = A + δAe
σte ik·x , (4a)

ρ(x , t) = ρ+ δρe
σte ik·x . (4b)

• Solving the resulting eigenvalue problem results in this
condition for instability: there exists |k| such that

η|k|2s+2 − |k |2s(3ρ− 1) + ηA|k |2 + A < 0. (5)
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Stability (cont.)

The first attempt to solve Eq. (5): the condition for instability is
equivalent to, there exists |k| such that

ρ >

inf
|k|

1

3

(
1 + η|k |2

)(
1 +

A

|k |2s

)
. (6)

where |k∗| is a root of

|k |2s+2 + A(1− s)|k|2 − As

η
= 0. (7)
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Stability (cont.)

The second attempt to solve Eq. (5): the condition for instability
is equivalent to, there exists |k | such that

A <

sup
|k|

3ρ|k |2s

1 + η|k|2
− |k |2s . (8)

where |k∗| is a root of the equation
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Stability (cont.)

• For ρ > 1
3 , this generates condition for linear instability for the

system:

A < A∗(ρ, η, s) ≡

(
−3ρ(1− s)− 2s +

√
W

2ηs

)s (
3ρ(1 + s)−

√
W

−3ρ(1− s) +
√
W

)
,

(10)

where W = 3ρ(3ρ(1− s)2 + 4s).

• When s = 1, the above inequality reduces to√
Aη + 1 <

√
3ρ, (11)

which agrees with the result from Short et al.

• Has bifurcations in s, so changing degree of Lévy Flight alters
stability.
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Changing Stability with Varying Parameter

(a) A stable regime

Figure: Different possibilities of the effect of fractional diffusion.



Changing Stability with Varying Parameter

(a) An unstable regime

Figure: Different possibilities of the effect of fractional diffusion.
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(a) Fractional diffusion leads to
stability

(b) Fractional diffusion leads to
stability

Figure: Different possibilities of the effect of fractional diffusion.
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(a) Fractional diffusion leads to
unstability

(b) Fractional diffusion leads to un-
stability

Figure: Different possibilities of the effect of fractional diffusion.
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(a) Fractional diffusion leads
to stability and then instability

(b) Fractional diffusion leads to
stability and then instability

Figure: Different possibilities of the effect of fractional diffusion.



Changing Stability with Varying Parameter

Remark. The fixed points |k | of σ(|k |) with respect s are given by

|k1| = 1, |k2| =

√
6(ρ− 1

3) + 3A

2η
. (12)



Changing Stability with Varying Parameter

(a) A regime in which |k2| < |k1| = 1

Figure: Different possibilities of the effect of fractional diffusion.



Numerical Verfication

We need to automate a hot-spot detection.

• The variance and its derivative.

• The difference of the maximum of the solution in the final
frame from A as a percentage of A.

• The difference between the maximum and the minimum.

• An ensemble method.
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Numerical Verfication (cont.)

Figure: A parameter analysis with a bifurcation curve. Fix ρ and η.



Numerical Verfication (cont.)

Figure: A hot-spot formation when A = 13, s = 0.8.



Numerical Verfication (cont.)

Figure: A parameter analysis with a bifurcation curve. Fix ρ and η.



Numerical Verfication (cont.)

Figure: No hot-spot formation when A = 21, s = 0.6



Numerical Verfication (cont.)

Figure: A parameter analysis with a bifurcation curve. Fix s and η.



Hot-spot Shape

• Are the hotspots any different under the two regimes?

• Yes and no. Attractiveness hotspots do not change, and first
order approximations from Kolokolnikov et al. still work very
well.

• But distribution of criminals changes.
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Hotspot Shape (cont.)

Figure: The inner region and the outer region of a hotspot.

• Let x = εy , and v = ρ/A2.
• In the inner region (|x | < ε),

A ∼ ε−1v
−1/2
0 w(y), (12)

v ∼ v0, (13)

where v0 and v1 are constants, and w =
√

2 sech y (same as
Kolokolnikov et al.).

• In the outer region (ε� |x | ≤ l), we have

A = α + o(1), (14a)

v = h0(x) + o(1), (14b)

where

∆sh0(x) = ζ =
α− γ
D0α2

< 0, 0 < |x | ≤ l , (h0)x(±l) = 0,

(15)
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Future Work

• Analyze the perturbation near hot-spots.

• Study the dynamics of K -hot-spots with Lévy Flights.

Brownian based model. Lévy based model.

• Add the police.

• Improve the numerical simulation, especially hotspot detector.

• Analyze weakly-nonlinear stability.
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• Add the police.

• Improve the numerical simulation, especially hotspot detector.

• Analyze weakly-nonlinear stability.



Future Work

• Analyze the perturbation near hot-spots.

• Study the dynamics of K -hot-spots with Lévy Flights.
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