
CRIME MODELLING WITH LÉVY FLIGHTS AND THE STABILITY OF
HOT-SPOT PATTERNS

JONAH BRESLAU, TUM CHATURAPRUEK, THEODORE KOLOKOLNIKOV,
SCOTT MCCALLA, DANIEL YAZDI

ABSTRACT. Working off of the pioneering crime modeling paper of Short et al. (2008),
we alter the movement patterns of the criminal agents to follow biased Lévy Flights rather
than biased Brownian motion in the original discrete model. This, in turn, leads in the
continuum limit to the use of the fractional Laplacian or Riesz Derivative, ∆s, to represent
the diffusion of the criminals, which converges to the traditional Laplacian when s = 1,
where s is the Lévy Flight non-locality parameter. We also find a novel bifurcation for the
linear stability near the spatially homogeneous equilibrium in the Lévy Flight non-locality
parameter, s. Finally, we estimate the profile of the hotspots.
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1. INTRODUCTION

Crime is unfortunately a common component of the society we live in. Furthermore, it
is not uniformly distributed, with certain neighborhoods containing high levels of criminal
activity in comparison to others. The regions of space containing elevated criminal activity
in a short period of time are known as hot-spots. In their seminal paper, Short et al. pio-
neered the movement for applying mathematical models for understanding the dynamics of
criminal activity. Specifically, they focused on residential burglaries due to the simplicity
of accounting for moving offenders and stationary victims [13].

The model incorporates the assumptions of repeat/near repeats events and the broken
window theory, which are supported by empirical evidence. Repeat/near repeat events
reason there is a high likelihood of being robbed a second time shortly after a home or a
neighbor’s home is robbed for the first time. This increased probability decays through
time and is due to factors such as the criminal’s familiarity/comfort with the neighborhood
and knowledge of other goods to be stolen [11]. The broken window theory takes into
account the diffusive nature of crime. Neighborhoods with high crime exude a sense of
lawlessness, and a notion of crime tolerance. As a result, homes in such neighborhoods
can become more desirable targets for burglars.

Another critical assumption of the original model is that criminals travel through space
with a biased Brownian motion. In the discrete model, this amounts to criminals moving
to adjacent homes, and in the continuous case, moving with biased regular diffusion. With
this motion, robbers have limited knowledge that is restricted to the homes directly adjacent
to them. In addition, it assumes this is a natural mode of human mobility. However, this
is not necessarily a safe assumption. It has been shown that humans and other animals
follow a Lévy flight style of movement [10, 3]. Instead of moving to adjacent neighbors,
Lévy flght allows for longer jumps to be made with the probability dictated by a power law
distribution. The non-local fractal nature of this motion allows criminals to have extended
knowledge of their surroundings, and allows them to more efficiently examine the space
for potential homes to rob.

For this project, we have adjusted the Short et al. model to have criminals move in
a non-local manner. With this new condition, we constructed an agent based model for
residential burglaries, and derived a series of partial differential equations representing the
system. Specifically, the new model contains the fractional Laplacian, a non-local exten-
sion of the normal Laplacian, which allows for the super-diffusion of criminals. Linear sta-
bility analysis was performed to identify the conditions rendering hot-spot formation. This
includes an analysis of how transitioning from Brownian motion to Lévy flight can alter
hot-spot formation. Furthermore, we simulated our mathematical findings using spectral
methods and verified our results with numerical simulations across the parameter space.
We conclude our study with an exploration of the analytic solution describing hot-spot
morphology under Lévy flight motion. We hope our findings provide a more realistic and
accurate representation for the dynamics of residential burglaries.
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2. MODELING FRACTIONAL DIFFUSION

2.1. Original Short et al. Model.

2.1.1. Discrete Model. Short et al. first start off by creating a discrete, agent-based model
[13]. They begin by defining the attractiveness of each location s at time t, As(t), which is
then partitioned into a static background component A0 and a dynamic component Bs(t):

As(t) ≡ A0
s +Bs(t). (2.1)

The robbers’ movements are biased towards areas of high attractiveness. Their probability
of movement from sites to the neighboring site n is

qs→n(t) =
An(t)∑
s′∼sAs′(t)

, (2.2)

where s′ ∼ s signifies all the gridpoints s′ adjacent to s. The probability that a given
burlglar robs location s betwen times t and t+ δt is

ps(t) = 1− e−As(t)δt. (2.3)

Robbers are removed from the grid after they rob a home, to model returning home with
the goods. Let Ns(t+ δt) be the number of robbers at s at time t+ δt. Then

Ns(t+ δt) =
∑
s′∼s

Ns′(t)(1− ps′(t)) · qs′→s + Γ, (2.4)

which is derived from the number of criminals from neighboring cells who do not commit
crime and move to s following the biased transition probability given above plus a constant
replenishment rate Γ.

The formula for the dynamic attractiveness is

Bs(t+ δt) = [Bs(t) +
nl2

z
∆Bs(t)](1− δt) + θEs(t), (2.5)

where ∆ is the discrete Laplacian operator

∆Bs(t) =

(∑
s‘∼s

Bs′(t)− zBs(t)

)
/l2. (2.6)

2.1.2. Continuous Model. To derive the continuum model, let ρ = N/l2 and let δt and l
go to zero with the constraint l2/δt = D and θδt = ε to get

∂B

∂t
=
ηD

z
∇2B − ωB + εDρA. (2.7)

The derivation of the continuum limit of N(t) is more complicated.
For one dimension, our goal is to get

Nt − Γ +
2D

z

(
N

A
Ax

)
x

=
D

z
Nxx −NA. (2.8)

We note

1− pts ∼ 1−Aδt, (2.9)
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and that
1∑

s′′∼s′ As′′(t)
=

1

zAs′ + l2∆As′
∼ 1

zAs′

(
1− l2∆As′

zAs′

)
(2.10)

Expanding the discrete mode (2.4), we have

Nt − Γ =
As
δt

∑
s′∼s

[(
Ns′

zAs′

)
−
(
Ns
zAs

)
− Ns′δt

z
− Ns′

(zAs)2
Dδt∆As′

]
(2.11)

=
AD

z

(
N

A

)
xx

−NA− lim
l→0

DAs

(∑
s′∼s

Ns′

(zAs)2
∆As′

)
(2.12)

= −2D

z

(
NAx
A

)
x

+
D

z
Nxx −NA. (2.13)

Let ρ = N/l2 and fix Γ/l2 = γ and we get

∂ρ

∂t
=
D

z
∇ ·
[
∇ρ− 2ρ

A
∇A
]
− ρA+ γ, (2.14)

and these two equations are in the general form of a reaction-diffusion system. Note also
that this can be written:

∂ρ

∂t
=
D

z

[
A∆

ρ

A
− ρ

A
∆A
]
− ρA+ γ,

One interesting observation is that if we integrate the steady-state version equation of
the second PDE, and assuming either a Neumann or a periodic boundary condition, the
result is that the spatially averaged criminal density is constant at γ [13].

Similarly, the spatially homogeneous attractiveness value is also constant at B̄ = εDγ
ω .

Now, here is a dimensionless version of the two governing PDEs

Bt = ηBxx −B + ρA (2.15a)

ρt = (ρx − 2ρ
Ax
A

)x − ρA+B (2.15b)

2.2. Non-local Walking Criminal Model. Given the evidence cited above, a Lévy flight
model of human mobility may better represent the movement of criminals than the current
Brownian motion-like assumptions of Short et al. First, for simplicity, we look at the
discrete model on the real line on which the grid size is l. Point 1, for example, corresponds
to l in the actual real line number. We define the relative weight of a criminal moving from
point i to point s, where i 6= s, as

wi→s =
As

d(s, i)µ
, (2.16)

where µ is a constant in the interval (1, 3), and d(s, i) = l|s− i|. The range for µ in a 1D
model and a 2D model will be different. Now we normalize that relative weight to get the
probability of a criminal moving from point i to point s, where i 6= s,

qi→s =
wi→s∑

j∈Z,j 6=i wi→j
. (2.17)
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Thus, our criminals follow a kind of biased Lévy Flight. Considering the denominator, we
can write it in the following manner (the reason for doing this will be apparent when we
take the limit l→ 0)∑

j∈Z,j 6=i
wi→j =

∑
j∈Z,j 6=i

Aj
d(j, i)µ

=
∑

j∈Z,j 6=i

Aj −Ai
d(j, i)µ

+
∑

j∈Z,j 6=i

Ai
d(j, i)µ

= LAi + 2l−µAi

∞∑
k=1

1

kµ

= LAi + 2l−µAiζ(µ), (2.18)

where L is a functional defined by

Lf(i, t) =
∑

j∈Z,j 6=i

f(j, t)− f(i, t)

d(j, i)µ
.

We note here that the condition µ > 1 makes ζ(µ) finite. When l is small, we can make an
approximation

Lf(i, t) =
∑

j∈Z,j 6=i

f(j, t)− f(i, t)

d(j, i)µ
≈ 1

ld

∫
y∈Rd

f(y)− f(i)

|y − i|µ
dy,

where d is the dimension of the model, and the integral is interpreted as the principal value
(to make it well-defined). Thus, we can approximate

1∑
j∈Z,j 6=i wi→j

=
1

2l−µζ(µ)Ai

(
LAi

2l−µζ(µ) + 1
)

≈ 1

2l−µζ(µ)Ai
− LAi

(2l−µζ(µ))2
. (2.19)

Next, the equation for number of criminals is now

N(s, t+ δt) =
∑

i∈Z,i6=s
Ni · (1− pi) · qi→s + Γδt, (2.20)

as the criminals who have committed crimes at site i with probability pi = 1− e−Aiδt are
removed. Let z = 2ζ(t). Subtracting N(s, t) from both sides, dividing by δt, and taking
limit δt→ 0, we get (note that Nt is now ∂N/∂t)

Nt − Γ ≈ lim
δt→0

1

δt

−Ns +
∑

i∈Z,i6=s
Ni · (1−Aiδ)

As
|s− i|µ

(
1

Aiz
− lµLAi

(Aiz)2

)
≈ lim

δt→0

As
δt

∑
i∈Z,i6=s

[
Ni
Ai
− Ns

As

zd(s, i)µ
lµ − Ni

|s− i|µ
lµLAi
A2
i z

2
− Ni
|s− i|µ

lµ

Dz

]

=
Dld

z

AL(N
A

)
−A

∑
i∈Z,i6=s

Ni
|s− i|µ

LAi
A2
i z
− A

z

∑
i∈Z,i6=s

Ni
|s− i|µ

(2.21)
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where D = lµ−d

δt . Using the same technique, we arrive at

Nt =
D

z

[
A∆∗

(
N

A

)
− N

A
∆∗A

]
−NA+ Γ− lµ

(
AD

z2
∆∗
(
N∆∗A

A2

)
+
A

z
∆∗N

)
,

(2.22)
for which we have used

∆∗f(x, t) = lim
l→0

ldLf(x, t) =

∫
y∈Rd

f(y)− f(x)

|y − x|µ
dy.

Now we will try to connect this to the notations used in the fractional calculus. For ease of
writing, let

s =
µ− d

2
. (2.23)

Recall the definition of the fractional Laplacian or Riesz Derivative (for example in [8])

− (−∆)sf(x) = Cd,2s

∫
y∈Rd

f(x)− f(y)

|x− y|2s+d
dy, Cd,2s = 22s Γ (s+ d/2)

πd/2|Γ(−s)|
, 0 < s ≤ 1.

(2.24)
To see a connection to our ∆∗, we note that

∆∗ = −C−1
d,2s(−∆)s.

For the remaining of this paper, for ease of writing, we abuse notation to write

− (−∆)s as ∆s. (2.25)

We then instead define D2 = D
Cd,µ−d

= l2s

Cd,2sδt
. Thus, the modified 1D model with a Lévy

walk is

Bt =
ηD1

z1
Bxx − ωB + εD1ρA, (2.26a)

Nt =
D2

z2

[
A∆s

(
N

A

)
− N

A
∆sA

]
−NA+ Γ, (2.26b)

where D1 = l2

δt , D2 = l2s

Cd,2sδt
, z1 = 2, and z2 = 2ζ(µ). Dividing (2.26b) by l2 and using

ρ = N/l2 and γ = Γ/l2 as in (2.14), we get

ρt =
D2

z2

[
A∆s

( ρ
A

)
− ρ

A
∆sA

]
− ρA+ γ (2.26b′)

One problem with this derivation is that it does not continuously move between the Lévy
Flight and Brownian motion cases, since Cs → 0 as s → 1. This causes D2 to diverge
as we approach the traditional Laplacian. Some derivations avoid this problem by using
different transition probabilities, see [1, 15]. However, these methods seem hard to fathom
in the case of human mobility, as the probability distributions are more complicated and
less natural. To avoid the divergence of D2, we will simply let D′2 = CsD2. Hereafter the
prime will be disregarded.

2.3. Computer Simulation.
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2.3.1. Discrete Model. Using the discrete model, we implemented agent-based computer
simulations in both one and two spatial dimensions. Our focus, however, will be on the
1-dimensional model, since the continuous simulations will also be in this dimension. Fur-
thermore, the 2-dimensional simulation is an extension of the 1-dimensional case. The
number of lattice points and the spacing between them, l, are self-assigned by the user.
The boundary conditions of the model are periodic so that results can coincide with con-
tinuous simulations generated using spectral methods. We compiled a deterministic and
stochastic version of the model.

For the deterministic version, we start with baseline attractiveness, A0, and an initial
criminal field of N + 0.01 cos(6πx), where, as in [13],

N =
Γδt

1− eAδt
, A = A0 +B, B =

θΓ

ω
. (2.27)

The probability a crime will be committed at each lattice point is a function of the attrac-
tiveness, p(s) = 1−e−As(t)δ(t). We tabulate the number of crimes committed at each point
by evaluating its expected value, p(s)A(s), hence the deterministic nature of the model.
The remaining criminals must move, and are assigned to the other positions on the grid by
again evaluating the expected number of criminals to each point. The new criminal distri-
bution and attractiveness are calculated in preparation for the next iteration. The stochastic
model does not use expected values. The number of criminals are rounded to the nearest
integer, allowing us to independently determine whether each criminal commits a crime,
and where each will move if they don’t commit a crime. To compensate for rounding, we
add integer criminals with a probability determined by the criminal growth rate.

2.3.2. Continuous Model: Pseudo-Spectral. To simulate (2.26a) and (2.26b′), we used a
pseudo-spectral method of lines with a stiff solver (MATLAB 23s or 15s). That is, we
discretize in space but remain continuous in time. To calculate the fractional Laplacians,
we use the fact that

Fx7→q {∆sf(x)} = −|q|2sFx 7→q{f(x)}. (2.28)

Taking advantage of spectral accuracy allows us to use a small number of grid points.
However, it also meant that we had to assume periodic boundary conditions. Still, there
are considerable difficulties in implementing other boundary conditions.
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(a)

(b)

FIGURE 1. An agent-based simulation for the discrete model with
criminals following Brownian Motion and Lévy flight.There is a heat
map color coding, with red indicating high attractiveness and blue corre-
sponding to low attractivenss. Fig 1(a): Simulation under Browniam mo-
tion conditions. The parameters are grid size = 128 × 128, time = 350,
η = 0.03, θ = 0.56, γ = 0.019, µ = 10. Having µ = 10 > 3 cor-
responds to Brownian Motion. Fig 1(b): The simulation under Lévy
flight conditions. The parameters are the same as before, except µ = 2.
Because µ < 3, the criminals follow Lévy flight. Also, the total at-
tractiveness over the entire space is equal for the two simulations by the
conservation property of this model. As a result, the Lévy flight peaks
are larger because there are fewer hotspots.
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3. DISPERSION RELATIONSHIP: LINEAR STABILITY ANALYSIS

3.1. Crime Model. To non-dimensionalize, we set Ã = A/ω, ρ̃ = (εD1/ω) ρ, x̃ =√
z1ω
D1
x, and t̃ = ωt. We further set1 constants so that D2

D1
· z1z2 = 1. We substitute this into

Eqs. (2.26) and drop the tildes to get

Bt = ηBxx −B + ρA, (3.1a)

ρt =
(
A∆s

( ρ
A

)
− ρ

A
∆sA

)
− ρA+B, (3.1b)

where ρ = N/l2, γ = Γ/l2, B = εD1γ
ω2 . The spatially and temporally homogeneous

solution does not change from before:

A = A0 +B and ρ =
B

A0 +B
. (3.2)

Then we look at the solutions of the form

A(x, t) = A+ δAe
σteik·x, (3.3a)

ρ(x, t) = ρ+ δρe
σteik·x. (3.3b)

This gives [
−η|k|2 − 1 + ρ A
2ρ

A
|k|2s+2 − ρ −|k|2s −A

][
δA

δρ

]
= σ

[
δA

δρ

]
. (3.4)

We note that any positive σ will lead to linear instability. Since the trace of the coefficient
matrix in the Eq (3.4) is negative, a linear instability will occur at wavenumber k for which
the determinant is negative, that is, when

η|k|2s+2 − |k|2s(3ρ− 1) + ηA|k|2 +A < 0. (3.5)

Hence, there exists some parameter regime for which our system is unstable. A necessary
condition for hotspots being formed from the homogeneous equilibrium is

ρ >
1

3
, (3.6)

or equivalently

B >
A0

2
. (3.7)

3.2. Cauchy process. In order to better understand this stability result, we will investigate
the situation when s = 0.5, The Eq. (3.5) becomes a cubic polynomial inequality

P (|k|) = η|k|3 + ηA|k|2 − |k|(3ρ− 1) +A < 0. (3.8)

Note that P (0) = A > 0. By Descartes’ rule of signs, we can see that P (x) has exactly one
negative root, leaving two possibilities: (a) P (x) has one negative root and two positives
roots, or (b) P (x) has one negative root and two complex roots. We can see that case (a)
will give us a negative value of P (x) in between two positive roots, if the two positive

1There are some issues here. If we let f(s) = D2
D1
· z1
z2

= l2s−2

ζ(2s+1)Cd,2s
, then we can see that f(s) blows

up as s→ 1. For the purpose of this paper, we will ignore this issue. See the end of §2.2 for more details.
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roots are distinct. This regime corresponds to a linear instability. These two cases for
polynomials P (x) = ax3 + bx2 + cx+ d can be distinguished by the discriminant

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2. (3.9)

Case (a) with an additional condition that the two positive roots are distinct corresponds to
∆ > 0, while Case (b) corresponds to ∆ < 0. The inequality ∆ > 0 turns into

− 4A
4
η2 +A

2
η(9ρ2 − 60ρ− 8) + 4(3ρ− 1)3 > 0. (3.10)

This gives

8ηA
2
< 9ρ2 − 60ρ− 8 +

√
3ρ(8 + 3ρ)3. (3.11)

When A0 = 0 (or ρ = 1), the above expression becomes

ε2ηD2

ω2
·
( γ
ω

)2

<
−43 + 11

√
33

8
≈ 2.52. (3.12)

The physical interpretation of the above relationship is similar to that given in [13].

3.3. A general case. We prove the following result:
Result 1. For ρ > 1

3 , a condition for linear instability for the system Eq. (3.4) is

A < A∗(ρ, η, s) ≡

(
−3ρ(1− s)− 2s+

√
W

2ηs

)s(
3ρ(1 + s)−

√
W

−3ρ(1− s) +
√
W

)
, (3.13)

where W = 3ρ(3ρ(1− s)2 + 4s). If ρ ≤ 1
3 , then the system is stable.

Proof. From the condition given in Eq. (3.5), the system is unstable if and only if there is
a value |k| such that

A <
3ρ|k|2s

1 + η|k|2
− |k|2s. (3.14)

Let g(|k|) = 3ρ|k|2s
1+η|k|2−|k|

2s andA∗(ρ, η, s) = sup|k| {g(|k|)} . Then, there is an instability
when A < A∗. Using Mathematica, we solved d

d|k|g(|k|) = 0. The equation turns out to
be a quadratic equation in |k|2, which has a unique non-negative solution, say |k0|. We
have |k0|2 = −3ρ(1−s)−2s+

√
W

2ηs . We also checked that at |k| = |k0|, d2

d|k|2 g(|k|) < 0 to
confirm that |k0| is in fact a maximum point. Finally, using Mathematica, we can simplify
g(|k0|) to the right hand side of the equation Eq. (3.13), as desired. For ρ ≤ 1

3 , it is clear
that there is no |k| satisfying Eq. (3.14). �

Remark. The condition given in Result 1 reduces to the condition given in Short et al.
when s = 1, and it also reduces to our condition for the Cauchy process (Eq. (3.11)) when
s = 1

2 . See § 3.4.1 for the numerical test of Result 1, and the results agree favorably.
We can prove a similar result for ρ. Suppose |k∗| is the unique root of |k|2s+2 +A(1−

s)|k|2 − As
η = 0. Then the condition for instability is equivalent to

ρ > ρ∗(A, η, s) ≡
1

3

(
1 + η|k∗|2

)(
1 +

A

|k∗|2s

)
. (3.15)
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We can see that we cannot get a solution in closed form when solving for ρ, but we deduce
that there is a ρ∗(A, η, s) for which the system is unstable if and only if ρ > ρ∗.

3.4. Theory Versus Numerics.

3.4.1. Set-up. The larger eigenvalue of Eq. (3.4) is

σ(|k|) =
1

2

(
−J +

√
J2 − 4(A+ |k|2s)(1 + η|k|2) + 12|k|2sρ

)
, (3.16)

where J = 1 +A+ η|k|2 + |k|2s − ρ.
Using Mathematica to solve ∂σ

∂s = 0, we find that there are two points of k, say k1 and
k2, such that Re(σ(k)) is independent of s. And the values are given by

|k1| = 1, |k2| =

√
6(ρ− 1

3 ) + 3A

2η
. (3.17)

3.4.2. Hot-Spot Detection. We need to automate a hot-spot detection to distinguish be-
tween hot-spot and no-hot-spot outcomes (see Fig. 4, for example).

The following is a list of methods that we use to detect hot-spots.

• The variance and its derivative.
• The difference of the maximum of the solution in the final frame from A as a

percentage of A.
• The difference between the maximum and the minimum.
• An ensemble method (a combination of the above methods).

3.4.3. Results. See Figure 6 for the numerical test of Result 1. For most cases, the results
agree favorably. There are some false negatives (detection of hotspot where we did not
predict) near the bifurcation curve. In some cases, especially when A is small, there are
substantial. This could be due to the numerical solver or hot-spot detection. It also may
reflect that for some parameters values we have oscillating hotspots, see Figure 5, which
our hotspot detection methods are not equiped to address.
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(a) A stable regime (b) An unstable regime

(c) Fractional diffusion leads to stability (d) Fractional diffusion leads to unstability

(e) Fractional diffusion leads to stability and then in-
stability

(f) A regime in which |k2| < |k1| = 1

FIGURE 2. Different possibilities of the effect of fractional diffusion
based on Eq. (3.16)
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(a) Fractional diffusion leads to stability

(b) Fractional diffusion leads to unstability

(c) Fractional diffusion leads to stability and then instabil-
ity

FIGURE 3. Different possibilities of the effect of fractional diffusion
based on Eq. (3.13). Note that Fig. 3(a) corresponds to Fig. 2(c);
Fig. 3(b) corresponds to Fig. 2(d); and Fig. 3(c) corresponds to Fig. 2(e);
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(a) A hot-spot formation when A = 13,

s = 0.8.

(b) No hot-spot formation when A = 21, s =

0.6.

FIGURE 4. Possible outcomes of the system.

FIGURE 5. A hotspot solution that oscillates in time
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(a) A cross section in which only ρ and A vary.

(b) A cross section in which only s and A vary.

FIGURE 6. Numerically testing Result 1. Red pluses denote the error
of detecting hot-spots where we did not predict. From the diagram, this
error happens only near the blue bifurcation curve.
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4. HOT-SPOTS

4.1. Profile.

4.1.1. Asymptotic Analysis of Steady-State Hot-Spot Solutions in 1-D for Lévy Flight Model.
Motivated by the technique that works for the Brownian walking criminal model in [5], we
investigate the shape or profile of a stable hotspot in the interval [−L,L]. First, we intro-
duce a new variable V ,

V =
ρ

A2
. (4.1)

Then,
A∆s

( ρ
A

)
− ρ

A
∆sA = A∆s(V A)− V A∆sA. (4.2)

Notice that, if we hold V constant, the above term is zero, which will be important in the
analysis of the shape of the hot-spots. Eqs. (3.1) become

Bt = ηBxx −B + V A3, (4.3a)

(V A2)t = A∆s(V A)− V A∆sA− vA3 +B. (4.3b)

Notably, for any functions P and Q, the integration of P∆sQ−Q∆sP is zero, since∫ ∞
−∞

P∆sQ−Q∆sPdx =

∫ ∞
−∞

∫ ∞
−∞

P (x)Q(y)− P (y)Q(x)

|x− y|2s+1
dydx

= 0, (4.4)

by symmetry. This also means that the fractional Laplacian operator is self-adjoint under
the inner product

〈p, q〉 =

∫ ∞
−∞

p(x)q(x)dx. (4.5)

Note that this result also holds if we replace the infinite limits with [−L,L]. Thus, inte-
grating the steady-state of Eq. (4.3b), we get

V =
2LB∫ L
−LA

3dx
. (4.6)

Now we proceed following the analysis of Kolokolnikov et al [5] . We begin by changing
the variables as follows (together with Â = Ã, ρ̂ = ρ̃): ε̂2 = η, α̂ = A0, x̂ =

√
D̂x̃, t̂ =

τ̂ t̃, and γ̂ = α̂+ εDγ
ω , where A0 = A−B = Â− B̂. After dropping the hats, we have

At = ε2Axx −A+ V A3 + α, (4.7a)

τ(V A2)t = D (A∆s(V A)− V A∆sA)− V A3 + γ − α, (4.7b)

and note that α < γ. Let y = x/ε. Then, Eq. (4.7a) becomes Bt = Byy − B + V A3.

By an analogy to Kolokolnikov et al. [5], for D � ε2, we get V = O(ε2) globally
on −L < x < L, A = O(ε−1) in the inner region, A = O(1) in the outer region,
D = O(ε−2), and P = O(1) in the inner region. This analysis leads to a change of
variables

V = ε2v, D =
D0

ε2
, (4.8)
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where we have both v and D0 of order O(1), leading to

At = ε2Axx −A+ ε2vA3 + α, (4.9a)

τε2(vA2)t = D0 (A∆s(vA)− vA∆sA)− ε2vA3 + γ − α. (4.9b)

4.1.2. A Single Steady-State Hot-Spot Solution. By the result in the previous section, it
makes sense to expand

A =
A0

ε
+A1 + · · · , v = v0 + εv1 + · · · , y =

x

ε
. (4.10)

Note that by change of variables, we have

∆su(x) = ε2s∆sU(y), (4.11)

where U(y) = u(x) = u(εy). In what follows, we will write U as u for convenience.
Thus, u(x) and u(y) will actually represent the same thing, depending on the context. In
terms of y, from Eq (4.9a), we get

(A0)yy −A0 + v0A
3
0 = 0, −∞ < y <∞, (4.12a)

(A1)yy −A1 + 3A2
0A1v0 = −α− v1A

3
0, −∞ < y <∞. (4.12b)

In terms of x, let Ls(g(x), h(x)) = g∆sh − h∆sg, for any valid functions g and h.
Note that when s = 1, we have L1(g, hg) = (g2h′)′. From Eq (4.9b), we get, in terms of
y,

Ls(A0, v0A0) = 0, (4.13a)

Ls(A0, v1A0) + Ls(A0, v0A1) + Ls(A1, v0A0) = 0, (4.13b)

where −∞ < y <∞.

Lemma 1. If, for all x,

∆s(v0A0) = v0∆sA0, (4.14)

then v0 must be constant.

Proof. Suppose for contrary that there are x1, x2 such that v(x1) 6= v(x2). Without loss of
generality, suppose v(x1) > v(x2). By definition, we have

0 = (∆s(v0A0)− v0∆sA0)x=x2
− (∆s(v0A0)− v0∆sA0)x=x1

= c

∫ ∞
−∞

A(y)(v(x1)− v(x2))

|x− y|µ
dy

> 0,

a clear contradiction. �

By Lemma 1, from Eqs. (4.13a) and (4.13b), we deduce that v0 and v1 must be con-
stants.
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Using the same trick as in Kolokolnikov et al. [5], from Eq. (4.12a), we can write the
homoclinic solution with the condition (A0)y(0) = 0 as

A0(y) = v
−1/2
0 w(y), (4.15)

where w is the unique solution to the ground-state problem

w′′ − w + w3 = 0, −∞ < y <∞; w(0) > 0, w′(0) = 0; w → 0 as |y| → ∞,
(4.16)

which is given explicitly by

w =
√

2sech y. (4.17)

Similarly to arguments in §2.1 in Kolokolnikov et al. [5], we get the same hot-spot shape
for the attractiveness field A but a different shape of v in the second order. The detailed
results are as follows:

Result 2. In the inner region (|x| < ε),

A(y) ∼ ε−1A0(y) +A1(y) + · · · , (4.18)

A0(y) = v
−1/2
0 w(y), (4.19)

A1(y) = α(1− [w(y)]2)− v1

2v
3/2
0

w(y), (4.20)

where v0 and v1 are unknown constants, and w(y) =
√

2sech y.
In the outer region (ε� |x| ≤ l), from Eqs. (4.9), we have

A = α+ o(1) (4.21a)

v = h0(x) + o(1). (4.21b)

Substituting in Eq. (4.9b), we get

∆sh0(x) = ζ =
α− γ
D0α2

< 0, 0 < |x| ≤ l, (h0)x(±l) = 0, (4.22)

subject to the matching condition that h0(x)→ v0 as x→ 0±.

We now embark on a brief digression, because the estimate for v does correspond with
the numerical result, in contrast to the estimate for A. This is an area of continuing inves-
tigation. The following are some fractional differential equations we have worked on that
may help us improve our estimate for v.

Lemma 2. The solution to ∆su = δ(x) on (−∞,∞) is, up to a shift by constant,

u(x) = udel ≡ c1|x|2s−1, (4.23)

where c1 = Γ(2(1−s)) sin(sπ)
(2s−1)π , for 1

2 < s < 1; and c1 = 1
2 , for s = 1. Also,

u′(±L) = (2s− 1)cL2s−2. (4.24)
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Proof. We first consider the case when s = 1. Via Fourier transform, we get

2πu(x) = −Re

∫ ∞
−∞

eikx

|k|2
dk = −Re

∫ ∞
−∞

eikx

k2
dk. (4.25)

We take the derivative to get

2πu′(x) =

∫ ∞
−∞

sin(kx)

k
dk = sgn(x)

∫ ∞
−∞

sin(y)

y
dy = sgn(x)π, (4.26)

where we change the variables y = kx. Thus, u(x) = 1
2 |x|+ const.

For s < 1, we have

2πu(x) = −Re

∫ ∞
−∞

eikx

|k|2s
dk

= −2

∫ ∞
0

cos(kx)

k2s
dk. (4.27)

Again, we take the derivative to get

2πu′(x) = 2

∫ ∞
0

sin(kx)

k2s−1
dk (4.28)

= 2Γ(2(1− s)) sin(sπ)sgn(x)
(x2)s

x2
,

1

2
< s < 1. (4.29)

Thus, we get

u(x) =
Γ(2(1− s)) sin(sπ)

(2s− 1)π
(x2)s−

1
2 + const

=
Γ(2(1− s)) sin(sπ)

(2s− 1)π
|x|2s−1 + const, (4.30)

and we note that

lim
s→1−

Γ(2(1− s)) sin(sπ)

(2s− 1)π
=

1

2
, (4.31)

which corresponds to the classical Laplacian case. �

Lemma 3. The solution to the equation ∆su = rect
(
x

2L

)
on the interval (−∞,∞) is, up

to a shift by constant,

u(x) = urect ≡ c2
[
((L+ x)2)ssgn (L+ x) + ((L− x)2)ssgn (L− x)

]
, (4.32)

where c2 = Γ(−2s) sin(sπ)
π . Note that, for s > 1

2 , we have

lim
x→±L

u′(x) = c2
(
2s(2L)2s−1

)
. (4.33)

Proof. We use Mathematica to calculate in the Fourier space to get the above result. �

Now we are ready to solve the following problem.
Problem Statement. Solve

∆su = rect
( x

2L

)
+ c0δ(x). (4.34)

The problem is to choose c0 such that u′(±L) = 0. In that case, what is u(x)?
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Solution. The solution is u = udel + c0urect, for s > 1
2 . By solving u′(±L) = 0, we get

c0 = 22s−1L
1−2s .

�

4.2. Gierer-Meinhardt System. Considering our difficulties with the crime model, we
decided to investigate a different model that exhibits pattern formation, the Gierer-Meinhardt
model, in the hopes that a fractional version of it might provide some insight into the sys-
tem presented above. The Gierer-Meinhardt system is given by

At = ε2Axx −A+
A2

H
, (4.35a)

0 = Hxx −H +A2. (4.35b)

First, we perform the asymptotic analysis on the traditional GM model. Later, we replace
Hxx with ∆sH and analyze the dynamics of the system.

In the inner region, let x = εy, where ε is small. This gives H ∼ H0. If we let
A = H0w, then wyy − w + w2 = 0 has an explicit solution of w = 3

2 sech2(y/2).

In the outer region, we have Hyy − H ∼ 0, which has the explicit solution H =
1

ε
∫∞
0
w2dy

e−|x|.

After some asymptotic analysis, we get equilibrium solutions as follows: (letting y =

x/ε)

Ae = H0w(y), (4.36a)

He = H0e
−|x|, (4.36b)

H0 =
1

ε
∫∞

0
w2dy

. (4.36c)

4.2.1. Steady-State Stability. We perturb the equilibrium solutions as usual to get

λϕ = ε2ϕxx − ϕ+
2A

H
ϕ− A2

H2
ψ (4.37a)

0 = ψxx − ψ + 2Aϕ. (4.37b)

In the outer region, this gives
ψ ∼ ψ(0)e−x, (4.38)

and after integrating Eq. (4.37a), we get

ψ0 =
2
∫∞

0
wϕdy∫∞

0
w2dy

(4.39)

Thus, Eq. (4.37a) turns into

λϕ = ε2ϕxx − ϕ+ 2wϕ− χ
(∫ ∞

0

wϕdy

)
w2, (4.40)

where χ = 2∫∞
0
w2dy

. There is a theorem stating that Eq. (4.40) is stable, i.e. Re(λ) ≤ 0

(see references in [5]), if and only if χ > 1∫∞
0
w2dy

. This inequality holds for our case,
meaning that the GM system is always stable near hot-spots.
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4.2.2. Fractional Diffusive GM System. In the case of fractional diffusion term ∆sH =

D2s
|x|H replacing Hxx, we would expect Eq. (4.40) to be the same except χ = χ∗ for some

new value χ∗. We can see that, in the inner region, H ∼ H0 and A = H0w, where w is
the same as before. In the outer region, however, we need to solve ∆sH −H ∼ 0.

In particular, we need H(0+). We can in fact explicitly compute this value. Suppose
A2 ≈

(
ε
∫∞
−∞A2dy

)
δ(x) in the inner region. If we let H(x) = −

(
ε
∫∞
−∞A2dy

)
G(x),

from ∆sH −H +A2 = 0, we have

∆sG−G = δ(x), (4.41)

and H(0) = −
(
ε
∫∞
−∞A2dy

)
G(0). Since A = H0w in the inner region, we get

H0 = − 1

G0ε
∫∞
−∞ w2dy

. (4.42)

The upshot is

G0 ≡ G(0) =

∫ ∞
−∞

1

1 + |q|2s
dq =

2π csc
(
π
2s

)
2s

, 2s > 1. (4.43)

In the inner region, we approximate 2Aϕ =
(
ε
∫∞
−∞ 2Aϕdy

)
δ(x). From ∆sψ − ψ +

2Aϕ = 0, we get

ψ = −
(
ε

∫ ∞
−∞

2Aϕdy

)
G. (4.44)

It turns out that, in the inner region, because ∆sψ − ψ ∼ 0,

ψ ∼ ψ(0) = −2εH0G0

∫ ∞
−∞

wϕdy =
2∫∞

−∞ w2dy

∫ ∞
−∞

wϕdy, (4.45)

which does not depend on the value of G0. So, χ = 2∫∞
−∞ w2dy

. Thus, we conclude that we
always have stable hotspots.
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5. DISCUSSION

Simple, seemingly minor changes in assumptions about human mobility resulted in
major differences in the dynamics. Moreover, introducing Lévy Flight to the model created
many difficulties. From the standpoint of finding numerical solutions, part of the system
becomes fully non-linear. Further, the linear stability result becomes far more complicated,
introducing bifurcations in the Lévy Flight non-locality parameter s. Additional work
is needed to ensure that the hotspot detection is truly working and distinguish the false
positives and true negatives. While the shape of the hotspots in the attractiveness field
does not change under the non-local model, it seems likely that the hotspots in ρ assume
a different shape. Further research will investigate the presence of a Hopf Bifurcation,
weakly non-linear stability, perturbation near hotspots, stability of single and arbitrary
numbers of hotspots, and the dynamics of the model after the addition of police.
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