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1 Introduction to contagion modeling and crowd survival
Large groups of individuals defending themselves from an attacker is a common occurance everyday.
A school of fish being attacked by a shark, for example, or a herd of zebras trying to escape from a
lion. Another example would be the crowd of people in the annual Running of the Bulls in Spain.
The situations surrounding these crowds vary, a school of fish has a large essentially unbounded area
to escape in. The herd of zebras still have an essentially unbounded area to run in, but now there are
obstacles that need to be avoided. The crowd of people are running in a confined area with obstacles.

One interesting feature of crowds is that information can flow through them. This can be seen with
a flock of birds flying through the air and moving as a group, or a school of fish avoiding a predator.
Each individual member of the crowd is described by its position and velocity and, in addition to
that, by a quantification of some emotion, such as fear, or alertness, which changes how they react
to certain stimuli. For example a fish that is scared might run away from where they believe the
fear is coming from. The phenomenon by which this emotion spreads among the population is called
contagion. This is included in our models as a way to increase survival rates of individual particles.
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Previous works have spent time analyzing the movement and formation of crowds such as the forma-
tion of home territories of coyotes [7]. These works often use a continuum model to find the expected
density at a given time. These continuum models have also been extended to describe the flow of
people in a crowd line in [2] While the continuum model works well to capture the macroscopic qual-
ities of crowds, it is of interest to know where the individual memebrs of the crowd are at a given
time. As such a discrete model can be benefecial to capture both the macroscopic and the microscopic
dynamics of crowds.
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Previous studies from biology have got some natural predator-prey phenomena with advanced tech-
nology. In [3], with high-resolution sonar imaging to track the motion and interactions among sea
trout and its schooling prey, juvenile Gulf menhaden, they observe that the predators prefer to attack
lager groups and to impede prey from rejoining the original shool. In our study, we have set up
two different predator-prey models to simulate the natural predator-prey behaviors described in this
paper. The first one is to incorporate a fear field with the prey swarming system. The second one is
to replace the previous fear field with the interaction terms between predator and preys in the system.

2 Bounded Room
The first scenario we wished to model was individuals escaping from a bounded room. This can
simulate a fire occuring in a room, or a sheepdog in a sheep’s pen[1]. To begin with we needed a room
to simulate. We decided on a square room with walls of length 6 units, with a door at the top of
length 0.6 units. Obstacles such as walls or pillars are placed in the room to restrict the movement of
individuals and to influence how they leave the room.

2.1 The Model
Typically in an agent based model each individual particle has rules for interacting with the other
particles in the simulation. In open space this model works, but once obstacles are introduced these
agent-based dynamics become increasingly complicated. Now instead of only interacting with other
particles, each particle needs rules for interacting with any obstacles introduced into a room. These
rules can be implemented using strictly agent based dynamics, however the computations are complex.
Essentially each particle wants to find an optimal path out of the room based off of the location of the
other particles and any obstacles. Instead of having each particle calculate their own path, we create
a field for these paths to follow.
We begin with some assumptions about how we want people to move.

Assumption 1. There is a goal or set of goals that people want to reach.

One example for this goal set would be the area contained within the doorway. This goal set can also
be dynamic, such as the set of all points that are far from an attacker, or close to an individual. This
goal set can also be part dynamic and part static.

Assumption 2. There are regions of discomfort defined by a function g(x), s.t. if g(x)>g(x’) then a
person would rather move through x’.

This assumption allows us to define high discomfort areas such as walls, obstacles, and in this specific
case fear sources. If we combine these two assumptions we can generate a cost field across our domain.
This cost field has a base cost of β across the entire field. This serves as a forcing term that with
nothing else in the room will cause people to exit by the shortest pathwise distance to the goal set. The
discomfort field is added into the cost field to discourage paths from using that area of the domain.
The cost field appears as follows

C(x) = β + γg(x)

For the purposes of our simulations β and γ are 1. The discomfort field g has four components. The
first is a constant forcing term near the boundary to discourage people from being at the boundary.
The second is a gaussian placed at each person and is scaled by their fear. This serves to discourage
people from entering areas of the room where other people are scared. The third term is another
gaussian placed at any obstacles in the room. And the fourth is a gaussian placed at any "predator"
points in the room. The reason gaussians are used is because they allow for the discomfort function
to scale to different sized grids.
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Once this cost field has been generated, a shortest path from a person to the goal set still needs to
be found. The potential function φ defined by the Eikonal Equation can be used to find this shortest
path [9]. If φ is defined to be 0 in the goal set and satisfies

‖∇φ‖ = C

Then the shortest path for a given point follows the gradiant of φ at that point. Now that we have a
direction for our path, we need a speed to follow the path.

Assumption 3. The speed of any given person is density dependent. People in low density move fast,
people in high density move slowely.

Adding in this assumption allows us to put together a basic second order model for the room.
dxi
dt

=
ρmax − ρ
ρmax

vi

dvi
dt

=(∇φ(xi)− vi)

‖∇φ‖ =β + γg(x)

Collisions are handled by a cutoff repulsion factor. When any two points are within a small distance
of each other (in our simulations it was .25), both particles were pushed with a force equal to the
inverse of their distance. The force was cut off at 1√

dt
in order to avoid blow up if two points got

too close in a time step. In addition for simulations requiring a predator, they are attracted to their
nearest neighbor with a fixed speed.

2.2 Showing Eikonal Equation solves shortest path
Now we need to show that the solution to the Eikonal Equation ‖∇φ‖ = C can give us a shortest
path. If we call Ω the domain where the individuals can move, that is, the room, and Gamma the
goal set they want to reach, this is stated in the following result

Theorem 1. Let Ω be any bounded connected domain and let Γ ⊂ Ω. Let φ : Ω→ R such that φ ≡ 0
on Γ. Then the shortest path for particle at a given point x to the goal set Γ follows the gradiant
descent path of the solution to the Eikonal Equation ‖∇φ‖ = C

Proof. We follow ideas in [4]. The shortest path from any point to our goal set will be the path P
that satisfies minP

∫
P
C(x)ds

To begin with let us parameterize our path P by P = f(t), t ∈ [0, 1]. Now we wish to solve

min
f

∫ 1

0

C(f(t))‖ḟ(t)‖dt =

∫ 1

0

I(f, ḟ).

Here I(f, ḟ) is the functional that we are trying to minimize along our path. If we show that the
parametrization characterized by the gradiant descent path solves the Euler Lagrange equation for I
then we have shown that it is a minimzer of I and we are done. The Euler Lagrange Equation is

0 =
∂I

∂f
− d

dt

(
∂I

∂ḟ

)
(1)

In the case we are interested in, the right hand side of the quation reads

(E − L) = ∇C(f)‖ḟ‖ − d

dt

(
C(f)

ḟ

‖ḟ‖

)

= ∇C(f)‖ḟ‖ −

(∇C(f) · ḟ)
ḟ

‖ḟ‖
+ C(f)

‖ḟ‖f̈ −
(

ḟ

‖ḟ‖ · f̈
)
ḟ

‖ḟ‖2
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To show that (E-L) is zero, and thus a solution to (1) it suffices to show that (E-L)·V = 0 and
(E-L)·V ⊥ = 0 for any nonzero vector V. First choose V = (ḟ) Then (E-L)·V reduces to

∇C(f)‖ḟ‖ḟ −

(∇C(f) · ḟ)
ḟ

‖ḟ‖
ḟ + C(f)

‖ḟ‖f̈ −
(

ḟ

‖ḟ‖ · f̈
)
ḟ

‖ḟ‖2
ḟ


= ∇C(f)‖ḟ‖ḟ −

∇C(f)‖ḟ‖ḟ + C(f)
‖ḟ‖f̈ ḟ −

(
ḟ

‖ḟ‖ · f̈
)
‖ḟ‖2

‖ḟ‖2


= 0

Now if we let V = (ḟ)⊥ Then (E-L)·V reduces to

∇C(f)‖ḟ‖ · ḟ⊥ −

(∇C(f) · ḟ)
ḟ

‖ḟ‖
ḟ⊥ + C(f)

‖ḟ‖f̈ −
(

ḟ

‖ḟ‖ · f̈
)
ḟ

‖ḟ‖2
ḟ⊥


=ḟ⊥ · ∇C(f)‖ḟ‖ −

[
0 + C(f)

‖ḟ‖f̈ · ḟ⊥ − 0

‖ḟ‖2

]

=ḟ⊥ · ∇C(f)‖ḟ‖ − C(f)
f̈ · ḟ⊥

‖ḟ‖

Now we need to show ḟ⊥ · ∇C(f)‖ḟ‖2 = C(f)(f̈ · ḟ⊥). Let us choose the parameterization for f such
that ḟ = ∇u then

(ḟ⊥ · ∇C(f))‖ḟ‖2 = (∇u⊥ · ∇C)C2

= ((−uy, ux) · ∇‖∇u‖) (C2)

=
(

(−uy, ux) · ∇
√
u2x + u2y

)
(C2)

=

(
(−uy, ux) · (uxuxx + uyuxy, uxuxy + uyuyy)

C

)
(C2)

= ((uxuxx + uyuxy, uxuyx + uyuyy) · (−uy, ux)) (C)

(f̈ · ḟ⊥)C = (∇̇u · ∇u⊥)C

=

(
d

dt
(ux(f(t)), uy(f(t))) · (−uy, ux)

)
C

=
(

(∇ux · ḟ ,∇uy · ḟ) · (−uy, ux)
)
C

= (([uxx, uxy] · [ux, uy], [uyx, uyy] · [ux, uy]) · (−uy, ux))C

= ((uxuxx + uyuxy, uxuyx + uyuyy) · (−uy, ux)) (C)

Since (ḟ⊥ ·∇C(f))‖ḟ‖2 = (f̈ · ḟ⊥)C for this parametrization then the E-L equation is 0, which implies
that this parametrization is a minimizer of the original functional.

2.3 Numerical Simulation
Our numerical simulation was done in both Matlab and C++. All of the a priori work to solve the
Eikonal Equation and keep track of the individuals was done in Matlab while solving the Eikonal
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Equation was done in C++, by a Hamiltion-Jacobi Solver by Shawn Walker 3. The set up in matlab
was based off of the work done by Treuille et al [9]. Our first attempt was based off of the work by
Polymenakos et al[8] but matlab was not suited to handle their method.
To begin with we set up a square grid that covers our domain. Each node has a neighbor in each
cardinal direction, North, South, East, and West. In addition each node of the grid has knowledge
about which other nodes are its neighbors. We also mark each node to establish if it is in the interior
of our domain or on the boundary. Each node also keeps track of the value of the cost field at its
current location.
At each step of our simulation we begin by calculating the cost field at every node. The cost field has
several components. First if the node is close to the boundary (within 10%) we had a forcing term to
keep individuals away from the boundary. Next we add in the cost of any obstacles in the domain by
adding in a gaussian to our field centered at every obstacle. In addition we add a gaussian scalled by
individual’s fear level at each individual. Now that we have the cost field at each point we find the
average vertical and average horizontal cost at each point and store that in the node. We next find our
goal set. In our situation the door was always considered a goal set, so we find which nodes are in the
doorway that was labeled before. There were also conditions for the goal set such as being a certain
distance from the predator when he was too close to the door. These conditions were included here.
Next we run the C++ mex file on all of this to produce the solution to our Eikonal Equation. Once
we have the solution at every node, we calculate the gradient at each node using matlab’s gradient
function.
Next we interpolate these gradients to find the gradient at each individual. We then run all of our
updates for position, speed, and fear. For fear we bring each individual who is below the average
closer to the average, and then apply an extra term for any fear sources from predators. Speed is done
by subtracting the current speed from the interpolated field and using that as the change of speed.
This causes an alignment of velocity to the field. Finally position is updated by scaling the velocity
by the density at that point and using that as the change of position.

2.4 Numerical Results
Several interesting results came up during the simulations. The first was that when an obstacle was
placed in front of the door there was a drastic increase in particles exit speed in comparison to placing
the obstacle in the center of the room. When the fear source was placed at the door it took 100 people
22.69 seconds to exit the room. When the fear source was placed at the center of the room it took
33.19 seconds for the same people to leave the room. We believe that this is because when there is no
obstacle at the door people get gridlocked trying to exit. With an obstacle people are filed out in two
lines. This also agrees with the result found in Hughes /citeHughes_2002

Figure 1: Obstacle at door after 15 seconds Figure 2: Obstacle in center after 15 seconds

The next interesting result was that once an attacker was added to the room. They chased the nearest
3http://www.mathworks.com/matlabcentral/fileexchange/24827-hamilton-jacobi-solver-on-unstructured-triangular-

grids/content/HJB_Solver_Package/@SolveEikonalmex/SolveEikonalmex.m
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person and turned them into a fear source when they got within 0.1 distance of them. One benefecial
strategy for him was to stay at the door because people had to leave. To combat this for the people,
we added a toggle that when the attacker was too close to the door the people ran away from the
attacker to any point more than 2 unit distance away. The interesting part about this toggle was that
this was only beneficial to the people when the attacker started farther away from the door. Here the
door is located at 0,3

Attacker Start = [0,2] Attacker Start = [0,0] Attacker Start = [0,-2]
Toggle Regular Toggle Regular Toggle Regular
80.4667 80.9000 81.1667 78.6333 87.6333 81.7000

The above table represents the average of 30 trials run at points near the listed start points. Because
the system is chaotic, small differences in initial data produce vastly different results. The 30 runs
is to find the average at that point. Interestingly when the attacker starts near the door the peoples
response to the attacker at the door doesn’t change the results. However when the attacker started
away from the door, having the field toggle had a large increase in survivability.

3 Unbounded Space
The goal of the project was to construct models for interacting individuals that includes the spread
of emotion and how it affects their behavior. Most systems of animals have a mechanism of commu-
nication with each other to help warn fellow animals of a imminent threat and this is the idea that
we wanted to be evident in the simulations.The interaction between the prey and the predator is set
up for a fish based model. The prey exhibit flocking behavior amongst themselves. The predator goes
after the closest prey, while the prey runs away from the nearest predator. The prey gain fear when
close to the predator and this fear can spread amongst the prey which in turn increases their speed.
The main goal of this part of the model is to show how contagion can help the survival of the Prey.
When a predator heads towards a flock of prey, their fear increases and it spreads to the back of the
flock which will prepare them for the predator. Numerous data simulations were run to see how much
the contagion helped increase the survival rate of the prey.
• Model for the Predator

dxi
dt

= vxi

dvxi
dt

= −vxi +A
yj − xi
|yj − xi|

s.t. |yj − xi| = min
1≤s≤n

|ys − xi|

• Model for the Prey

dyi
dt

= (1 + 2qyi)vyi

dvyi
dt

= −vyi + χ{r≤1}(|yi − xj |)
yi − xj

|yi − xj |1+2qyi
+ χ{r>1}(|yi − xj |)

yi − xj
|yi − xj |2

+
1

n

∑
j 6=i

F (|yj − yi|)
yi − yj
|yi − yj |

s.t. |yi − xj | = min
1≤s≤m

|yi − xs|

dqyi
dt

=
B

n

∑
j 6=i

qyj − qyi
ε+ |yi − yj |2

+
1

D

∑
|xj−yi|≤C

1
2 − qyj
|xj − yi|

+
1

E

∑
|xj−yi|>C

(−qyi)

F (r) =
1

r
− r
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3.1 Description of the Model
The model is a 2nd order model(i.e. incorporates position, velocity, and acceleration). Let m be the
number of prey and n be the number of predators then we have system of (5m + 4n) ODEs.

• Predator Terms
dxi
dt

= vxi

This term says that the change in position is the velocity.

dvxi
dt

= −vxi +A
yj − xi
|yj − xi|

s.t. |yj − xi| = min
1≤s≤n

|ys − xi|

This term includes a dampening velocity term which could be considered a drag term and the second
term says that each predator goes after the closest prey.
• Prey Terms

dyi
dt

= (1 + 2qyi)vyi

The way the Prey moves depends on how high its fear is.

dvyi
dt

= −vyi + χ{r≤1}(|yi − xj |)
yi − xj

|yi − xj |1+2qyi
+ χ{r>1}(|yi − xj |)

yi − xj
|yi − xj |2

+
1

n

∑
j 6=i

F (|yj − yi|)
yi − yj
|yi − yj |

s.t. |yi − xj | = min
1≤s≤m

|yi − xs|

F (r) =
1

r
− r

The first term is again a dampening velocity term. The next two terms describe the behaviour of the
preys interaction with the predator. Each prey run away from the nearest predator, and depending
on how close they are they behave differently. The fourth term is a aggregation term for the prey. It
has a newtonian potential, so if the particles are far away they attract each other and if they are close
they repel, which allows for some optimal distance where they are happy to be from each other. This
makes it so they form some ball shape. The reason we decided to allow the prey to have a full cone
of vision is because of the lateral line on fish, it allows them to essentially see in all directions.

dqyi
dt

=
B

n

∑
j 6=i

qyj − qyi
ε+ |yi − yj |2

+
1

D

∑
|xj−yi|≤C

1
2 − qyj
|xj − yi|

+
1

E

∑
|xj−yi|>C

(−qyi)

This last ODE describes how the fear of each prey can increase or decrease. The first term introduces
the spread of fear among the prey. The next two terms say that if the prey is within a certain
distance of the predator then their fear increases but if they are outside of that distance then their
fear decreases due to a dampening velocity term.

4 Results
After running numerous simulations using the forward euler method in matlab with and without
considering the contagion phenomenon, the dynamics of the prey behavior was much different in the
two cases. We ran the simulations with low number of predators and thousands of prey. The prey
were more adept to survive the attack from the pedator. Using the number of survived prey as a
metric, the comparison from a system where the contagion effect is present to another one without
it shows that the survival rate is much higher in the case of the contagion. Currently we are trying
to understand the best formation for the predators in order to attack the prey, after many numerical
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simulations for two predators it is best for their angle of separation to be between 90 and 140 degrees
apart.
Here we plot a 30 run average of the angle of seperation vs. the number of prey that survived

5 Predator and Prey Model in 2D
Aggregation models of single species with attractive-repulsive force laws have been broadly studied.
In [6], the stability of ring pattern at the steady state has been analyzed, and [5] studies singular
perturbations off lower-dimensional steady states.
In our study, we use similar methods but add a predator-prey interaction term into the aggregation
model of the prey. The model includes N many preys and one predator. We call F (r) the force
term which will cause different patterns at the steady state. H(r) and I(r) are the interaction terms
between prey and predator in the prey’s system and predator’s system, respectively. The second order
model for the prey is:

dvj
dt

= −vj +
1

N

N−1∑
k=0,k 6=j

F (‖xj − xk‖)
xj − xk
‖xj − xk‖

+H(‖xj − z‖)(xj − z), (2)

dxj
dt

= vj j = 1...N, (3)

where xj ’s and vj ’s denote the position and velocity of each particle j, respectively. And the second
order model for the predator is:
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du

dt
= −u+

c

N

N∑
j=1

I(‖xj − z‖)(xj − z), (4)

dz

dt
= u, (5)

where z and u denote the position and velocity of the predator, respectively, and c is a parameter
that should be chosen reasonably so that the numerical result agrees with the real phenomenon.

5.1 Stability analysis of the steady state
In numerics, we notice that different potential functions F (r), H(r) and I(r) will give different equi-
libria stability phenomena. We start with the easy case, where only the predator is perturbed and
the preys are fixed on the ring. Next we perturb both the predator and preys in a first order model.

• Radius of the ring pattern at steady state
We consider the prey particles locate at an equally spaced ring and the predator locates at the center
of the ring at the steady state. For j = 1...N , taking xj = Re

2πij
N , z = 0 and plugging into equations

(2) and (3) give:

0 =
1

N

N−1∑
k=1

F

(
2R sin

(
πk

N

))
1− exp( 2πik

N )

2R sin(πkN )
+RH(R) (6)

So at the steady state, the radius R has to satisfy equation (6).

• Perturbation of the predator with the ring of fixed N prey
We start with the simple case when the prey is fixed on the equally spaced ring and in particular,
take F (r) = r0.5 − r2, H(r) = 1

r2 , and add a small perturbation to the predator, z = 0 +Beλt. Then
ż = u = Bλeλt and u̇ = Aλ2eλt. Plugging these into the predator velocity equations (2) and (3) and
linearizing the sum term gives:

λ2 + λ+
N

Rq + 1
− NqRq

2(Rq + 1)2
= 0. (7)

Solving the quadratic equation, we get

λ1,2 =
−1±

√
1 + 2N(qRq−2Rq−2)

(Rq+1)2

2
,

where R satisfies equation (6).

• Perturbation of the ring with N prey particles and one predator
Only consider the perturbation of predator is not enough in reality, but the stability analysis of the
second order model with perturbation of both predator and prey is more complicated, so we consider
the first order prey model

dxj
dt

=
1

N

N−1∑
k=0,k 6=j

F (‖xj − xk‖)
xj − xk
‖xj − xk‖

+H(‖xj − z‖)(x− z). (8)
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Taking xj = Re
2πij
N (1 + φje

λt), z = Beλt, with 0 < ‖φj‖, ‖A‖ � 1 and plugging them into the first
order model equation gives:

λRe
2πij
N φje

λt =
1

N

N−1∑
k=0,k 6=j

F (‖a+ ε‖) a+ ε

‖a+ ε‖
+H(‖b+ δ‖)(b+ δ), (9)

where a = R(e
2πij
N − e 2πik

N ), ε = Reλt(e
2πij
N φj − e

2πik
N φk), b = Re

2πij
N , and δ = eλt(Rφje

2πij
N − B).

Using Taylor expansion to the first order, we get:

λφj =
1

N

N−1∑
k=0,k 6=j

[
G+

(
π(k − j)

N

)(
φj − φke

2πi(k−j)
N

)
+G−

(
π(k − j)

N

)(
φ̄j − φ̄ke

2πi(k−j)
N

)]

+
H ′(R)

2

(
Rφj −Be

−2πij
N +Rφ̄j − B̄e

2πij
N

)
+H(R)

(
φj −

A

R
e

−2πij
N

)
(10)

where G±(θ) = 1
2

[
F ′(2R| sin(θ)|)± F (2R| sin(θ)|)

2R| sin(θ)|

]
.

Next we take φj = b+e
2mπij
N + b−e

−2mπij
N + Be

2πij
N + B̄e

−2πij
N . Plugging it into equation (10) and

collecting the common exponential terms, we get:

LHS(10) =λ(b+e
2mijπ
N + b−e

− 2mijπ
N +Be

2πij
N + B̄e−

2πij
N ); (11)

RHS(10) =
1

N

N∑
l=1

{
G+

(
πl

N

)[
e

2mijπ
N b+(1− e

2(m+1)ilπ
N ) + e−

2mijπ
N b−(1− e

2(−m+1)ilπ
N ) +Be

2πij
N (1− e 4πil

N )
]

G−

(
πl

N

)[
e

2mijπ
N b−(e

2milπ
N − e 2πil

N ) + e−
2mijπ
N b+(e−

2milπ
N − e 2πil

N ) + B̄e−
2πij
N (e−

2πil
N − e 2πil

N )
]}

+ e
2mijπ
N

[
H ′(R)R

2
(b+ + b−) + b+H(R)

]
+ e−

2mijπ
N

[
H ′(R)R

2
(b+ + b−) + b−H(R)

]
+ e

2ijπ
N

[
H ′(R)

2
(2RB − B̄) +BH(R)

]
+ e−

2ijπ
N

[
H ′(R)

2
(2RB̄ −B) +H(R)

(
B̄ − B

R

)]
(12)

The equation can be rewritten as the eigenvalue problem:

λ


b+
b−
B
B̄

 =


I1(m) I2(m) 0 0
I2(m) I1(−m) 0 0

0 0 K1 K2

0 0 J1 J2



b+
b−
B
B̄

 (13)
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where

I1(m) =
1

N

N∑
l=1

G+

(
πl

N

)(
1− e

2(m+1)ilπ
N

)
+
H ′(R)R

2
+H(R),

I2(m) =
1

N

N∑
l=1

G−

(
πl

N

)(
e

2milπ
N − e 2πil

N

)
+
H ′(R)R

2
,

K1 =
4

N

N/2∑
l=1

G+

(
πl

N

)
sin2

(
2πl

N

)
+RH ′(R) +H(R),

K2 =− H ′(R)

2
,

J1 =− H ′(R)

2
− H(R)

R
,

J2 =RH ′(R) +H(R).

• Constant density within the annulus at the steady state of first order model in 2D
We will show that the solution of the system has the form of an annulus of uniform density at the
steady state under certain conditions of H(r), which is the interaction term of prey and predator in
the prey system. For simplicity, we take f(r) = F (r)/r, where F is taken to be Newtonian potential,
i.e. F (r) = 1

r − r.
Take N →∞, then the system becomes:

ρt(x, t) +5x · (v(x)ρ(x, t)) = 0; (14)

v(x) =

∫
R2

f(‖x− y‖)(x− y)ρ(y)dy +H(‖x− z‖)(x− z)

=

∫
R2

[5xln‖x− y‖ − Id2(x− y)]ρ(y)dy +H(‖x− z‖)(x− z), (15)

where Id2 denotes the 2× 2 identity matrix and ρ(x, t) denotes the density of the prey particles.
The following proposition describes the phenomenon and we will show it by method of characteristics.

Proposition 1. Let D ⊂ R2 be the annulus whose inner radius and outer radius are r and R,
respectively. The system (15) has a steady state for which ρ(x) is constant inside D and is 0 outside
D under the condition that H(r) = 1

r2 or constant and.

Proof. We use the method of characteristics:

dx

dt
= v;

dρ

dt
= −(∇ · v)ρ.

So

∇x · v =

∫
R2

{∆xln‖x− y‖ − ∇x · [Id2(x− y)]}ρ(y)dy +∇x · [H(‖x− z‖)(x− z)]

=

∫
R2

[2πδ(x− y)− 2]ρ(y)dy +∇x · [H(‖x− z‖)(x− z)]

= 2πρ(x)− 2M +∇x · [H(‖x− z‖)(x− z)], (16)

where the mass M =
∫
R2 ρ(y)dy is conserved.
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Hence ∇x ·H(‖x− z‖)(x− z) has to be constant so that ρ(x) is independent of the position along the
characteristic curves. So either H(r) = 1

r2 or H(r) is constant and

dρ

dt
= {2M − 2πρ−∇x · [H(‖x− z‖)(x− z)]}ρ. (17)

Suppose that the initial conditions are:

ρ(x, 0) =

{
ρ0, x ∈ D0

0, x /∈ D0

where D0 is some closed set. Hence ρ(x, t) is the solution for the ODE (17) with the initial condition,
ρ(0) = ρ0. And ρ goes to [2πM −∇x · [H(‖x‖)x]](2π)−1 as t→∞.
At the steady state, on the boundary of the domain D(t), v(x) = 0. Using this fact, we continue to
compute the inner radius r.

v(x) =

∫
D(t)

[
x− y
‖x− y‖2

− Id2(x− y)

]
ρ(y, t)dy +H(‖x− z‖)(x− z)

= ρ(t)

∫
D(t)

x− y
‖x− y‖

dy − x|D(t)|ρ(t) +H(‖x− z‖)(x− z)

= πρ(t)x

(
1− r2

‖x‖2

)
− x|D(t)|ρ(t) +H(‖x− z‖)(x− z)

.
And since the velocity on the boundary should be 0 at steady state, so

πρ(t)x

(
1− r2

‖x‖2

)
− x|D(t)|ρ(t) +H(‖x− z‖)(x− z) = 0. (18)

z = 0 is a steady state for the predator, so equation (18) becomes

πρ(t)

(
1− r2

‖x‖2

)
− |D(t)|ρ(t) +H(‖x‖) = 0. (19)

On the other hand, by the fact that at the steady state, ∇x · v = 0, we get ρ = 2M−∇x·H(‖x‖)x
2π and

∇x ·H(‖x‖)x is constant. Hence

M =

∫
D(t)

ρ(y)dy = ρ|D(t)| = 2πM −∇x ·H(‖x‖)x
2π

|D(t)|.

Therefore,

|D(t)| = 2πM

2M −∇x ·H(‖x‖)x
=π(R2 − r2) (20)

Solving equations (19) and (20) will give the inner radius and outer radius of the annulus at steady
state.

Taking H(r) = 1
r2 , then we have ρ = M/π inside the annulus at steady state. Thus from equation

(20), R2 = r2 + 1. Additionally, solving equations (19) and (20) gives r = 1 and R =
√

2, which
agrees with the numerical results shown in the figure below. Figure 3 demonstrates the steady state of
1500 preys and 1 predator(in red) in the form of an annulus with inner radius 1 and outer radius 1.4
approximately. Figure 4 demonstrates the annulus with 200 preys and 1 predator(in red) and results
are very close to analytic results.
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Figure 3: H(r) = 1
r2 , 1500 particles Figure 4: H(r) = 1

r2 , 200 particles

6 Conclusion
We have derived a model to simulate individuals exiting a room using the Eikonal Equation. This
allows us to easily insert obstacles and have individuals react to them. We have also shown that the
Eikonal Equation gives us the shortest path out of the room. In the future we would like to speed
up our implementation of our simulation. In addition we would like to further explore the results of
putting an obstacle in front of the door to cause of speed up of exit speed
We have constructed a realistic predator prey model that incorporates fear. The fear is an important
factor in the survival of prey. In the future we would like to do more analysis of how multiple predators
affect the system in 3d.
We have given the eigenvalue problem set-up for the stability analysis of first order prey system, in the
future, the numerical verification will be given with taking particular potential functions F (r), H(r)
and I(r). Additionally, the similar method will be used to analyze the stability of first order predator
system and furthermore, the simplest first order model will be extended to second order model.
We have shown that under the condition of H(r) is either 1

r2 or constant, the prey system will have an
equilibrium in the form of a uniform density annulus with given inner and outer radii. In the future,
we would like to study how the swarming is evolved by the predator numerically.
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