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Abstract

Analysis of chondrocyte development in bone growth plates yields data concerning foun-

dational genetic structure. Previous research on chondrocyte organization and alignment has

required manual detection of cell sizes and locations. This paper proposes an algorithm for

automated detection of chondrocytes within bone growth plate images. The method aims to aid

biological research by increasing the efficiency and consistency of collecting data from images

of growth plate regions. Due to indistinct background cells and variations between regions of

growth plates, classical techniques of clustering, segmentation, thresholding, and filtering fail to

accurately identify cell boundaries. We propose an automated algorithm that incorporates the

methods of Retinex, anisotropic diffusion and various thresholding operations in order to detect

locations and sizes of chondrocytes. Our results and analysis demonstrate the effectiveness of

the proposed numerical method as applied to various growth plate images.



1 Introduction

Longitudinal growth of bones is the result of a process involving cell division, migration, then

ossification that occurs in growth plates which are located at both the proximal and distal ends

of the bone. In healthy growth plates the cells, called chondrocytes, arrange in columns along

the direction of growth. Analysis of the distribution of chondrocytes provides insight into the

developmental effects of repressing various genes, the lack of which can lead to bone growth disorders

[2]. Detecting chondrocytes in the growth plate is a vital first step to analyzing the distribution of

these cells. Rather than manually determining cell sizes and locations in each zone of the growth

plate, an automated process of cell-detection and zone approximation would aid biological research

by increasing efficiency and consistency.

Classical methods of segmentation and image processing are ineffective on growth plate images

for multiple reasons. Within one growth plate, the characteristics of chondrocytes vary greatly by

region. In the resting zone, cells are small, circular, densely packed, and have distinctly visible

nuclei. Upon entry into the proliferating zone, cells elongate horizontally and undergo division by

mitosis. Each division results in one mother cell and one daugther cell. In this region, mother and

daughter cells are closely spaced, often overlapping or sharing a border, but may be far apart from

other cells in the region. Only some nuclei are visible in the chondrocytes. In the hypertrophic

zone of a growth plate, cells are relatively larger than in the rest of the growth plate, are very

round, and are packed closely to one another with few to no visible nuclei. The region is marked

by the ossification of the chondrocytes [3]. Throughout the growth plate, chondrocytes positioned

beneath the plane of the slide appear faintly in the background of the image. This complicates

detection of cells on the plane of focus of the slide. Furthermore, the intensity of stain penetration

in the background varies throughout the images. Edge detection methods pick up intensity changes

in background cells and staining variations as edges, which result in false positive detections. Pre-

existing cell detection software packages such as ImageJ [14], CellProfiler [4], and HT-HCS [6] do

not take these constraints into account.

Released by the National Institutes of Health in 1997 as open source image processing software

compatible with multiple platforms, ImageJ includes many filtering, thresholding, segmentation

and clustering methods as tools and plugins [5]. A recent implementation of ImageJ for evaluation

of apoptotic cell death [7] has similar cell detection goals. In this process, however, detection

of every cell on a slide is desired, leading to simpler separation from the background than is

required for our project. CellProfiler is a free open source program designed for cellular image

analysis [4]. Unfortunately, when applied to our images, this program overestimates the number

of cells, resulting in many false detections. In [6] an automated cell segmentation algorithm for

high-throughput (HT) and high-content screening (HCS) is proposed. This HT-HCS algorithm

first detects nuclei locations, then uses these as seed points for cell locations. The seeding process
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assumes that each cell has a nucleus and that there is a one-to-one correspondence between local

maxima in pixel intensity values and nuclei locations. The proceeding cell detection method employs

histogram thresholding and k-means clustering. As detailed above, we cannot assume that our class

of growth plate images contains a well-defined nucleus for every cell. Furthermore, we will describe

the shortcomings of k-means clustering as a cell detection method in our images.

Attempting to segment the chondrocytes in an input image before pre-processing results in false

detections of cells beneath the plane of focus. Only applying segmentation also assigns edges to

changes in the intensity of stain penetration, as shown in Figure 1(a). In addition, the irregularities

and inconsistencies of growth plate slides also render many standard processing techniques ineffec-

tive. Motivated by the ideas in [11] of using weaker norms and which [16] extended, cartoon-texture

decomposition interprets small-scale features in an image as texture and separates them from the

large-scale cartoon components. We use a model based on the work in [13,18] where ideally, correct

parameterization would identify the chondrocyte boundaries as the texture component and the re-

mainder of the image as the cartoon component. In practice, the drastic cell enlargement between

the resting zone and hypertrophic zone prevents the use of a single set of parameters for an entire

image. Even when confined to a single region of the growth plate, the texture component does

not accurately detect cells on the plane of focus. Figure 1(b) shows an example of cell-detection

according to cartoon-texture decomposition compared to manual detection. The k-means cluster-

ing algorithm is based on work in [10], which takes a set of n data points and clusters them into

k groups, based on the similarity of each point. The desired output of k-means was to have three

separate clusters: background, cells, and nuclei. Unfortunately, changes in background stain pen-

etration result in inconsistent clustering of background pixels and cell pixels, as shown in Figure

1(c).

The wide variety in cell size, shape, and density, as well as oscillatory pixel intensity values men-

tioned above, demonstrate the need for a new automated cell detection algorithm for this class

of growth plate images. In this paper, we propose an automated algorithm that incorporates the

methods of Retinex, anisotropic diffusion and various shape thresholding operations in order to de-

tect location and size of the chondrocytes existing on the plane of focus of the slides, while dividing

the growth plate into appropriate regions. In Section 2 we describe the origins and implementation

of the methods used in our algorithm. In Section 3 we give an outline of the final algorithm. In

Section 4 examples of final results of chondrocyte detection in various growth plates are displayed.

Section 5 describes the methods of error analysis used to asses the accuracy of our process, followed

in Section 6 by a conclusion of our findings.
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(a) Canny Segmentation (b) C-T Decomposition (c) K-Means Clustering

Figure 1: Results from standard segmentation and processing algorithms. Canny segmentation
applied directly to an input growth plate image in (a) results in false positive cell-detection and
incomplete edges. The texture component of the cartoon-texture decomposition in (b) is overlaid
with blue outlines of manual cell detections. Results of k-means clustering in (c) show unwanted
clustering of background pixels.
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2 Methods

2.1 Retinex

Retinex theory was developed in an effort to imitate and describe human color perception [8].

Because the original Retinex method was excessively complicated, many different interpretations

and implementations of the method have been developed [9]. When applied to images, Retinex

algorithms typically smooth together subtle shading variations as well as enhance effects created

by the human visual system. Thus, a Retinex algorithm has the potential to remove subtle differ-

ences in shading in our images. It could cause cells to have similar intensity values and make the

background more homogeneous. It should be noted that Retinex methods will never improve the

overall quality of an image as they purposely remove information. However, our images inherently

contain extraneous data in the form of cells outside the plane of focus and inconsistencies in the

shading and in the luminosity of the background.

It was recently shown in [12] that it is possible to formalize the original Retinex algorithm as a

discrete partial differential equation. The primary task of the algorithm then becomes solving a

version of the Poisson equation with Neumann boundary conditions. Given an initial image, f , we

want to find a reconstructed image, u, such that

−∆ui,j = Fi,j , (1)

where

∆ui,j := ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j (2)

is the discrete Laplacian at pixel (i, j). Fi,j is defined as

Fi,j = T (fi,j − fi+1,j) + T (fi,j − fi−1,j) + T (fi,j − fi,j+1) + T (fi,j − fi,j−1), (3)

and T is the hard thresholding function such that

T (x) =

0 if |x| ≤ τ

x if |x| > τ
(4)

where τ is a thresholding parameter. Thus the algorithm first considers every pixel in the image

and replaces small gradients (those with magnitude less than the parameter τ) with zero, thereby

creating a vector field. The Poisson equation then constructs the image whose gradient most closely

matches said vector field. These steps can then be reapplied to the resultant image iteratively.

There are multiple well-known numerical methods that are often employed to solve the Poisson
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Figure 2: An image of a cropped region of a bone growth plate before the Retinex algorithm has
been run (on the left) and an image of the same cropped region after an application of the algorithm
(on the right).

equation, for example, inversion of the discrete Laplacian in the Fourier domain (see [12]). For our

application, the Retinex Poisson equation is used for jointly denoising and removing small variations

in image luminosity. As opposed to shadow removal, the anomalous variations that exist in our set

of images are on a small scale. That is they are local variations rather than global ones. Hence a

semi-implicit scheme is more than sufficient for our purposes. The scheme is as follows:

un+1
i,j =

1

4
(uni−1,j + uni+1,j + uni,j−1 + uni,j+1 + Fi,j). (5)

Since the method considers only local variations, the iterative scheme (5) converges to the steady

state rapidly.

In Figure 2 we have an example of the effects of our Retinex algorithm on an image of a small

region of a bone growth plate. Note how the background in the second image has been made more

homogeneous than in the first. This is a result of the smoothing effect Retinex algorithms often

create. Also notice that the faint cells outside the plane of focus in the first image have been faded

considerably, if not eliminated entirely. Our Retinex method has performed in the exact manner

as expected. It has lessened the prominence of cells outside the plane of focus. The algorithm has

similar effects across all of our growth plate images.

Applying our Retinex algorithm to the images of bone growth plates is an early step in our overall

processing method. Once we have eliminated some of the superfluous detail in the images with a

Retinex algorithm, other methods to locate the cells themselves can be applied.

2.2 Anisotropic Diffusion

Filters are processes which, given some input, decompose that input into both the desired output

and the undesired extras. In general, filtering is an averaging process, where the intensity value at
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each pixel is replaced by a weighted average of neighboring values. These methods can be linear,

such as Gaussian and Laplacian filtering, or nonlinear, such as total variation and anisotropic

diffusion filtering.

2.2.1 Theory

The foundation of anisotropic diffusion lies in Gaussian filtering,

u = Gσ ∗ f, (6)

where the filtered signal u is defined as the convolution between the Gaussian filter Gσ and the

original signal f . The Gaussian filter Gσ is related to solving ∂u
∂t = 4u in finite time, where the

standard deviation, σ, is related to time through the relationship σ =
√

2t. The Laplacian, 4u,

has too high of a diffusivity and thus over-smooths the edges. Anisotropic diffusion is a member of

a different family of diffusivity functions,

∂u

∂t
= div (g (|Ou|)Ou) , (7)

where u(t = 0) = f . The above family of diffusivity functions deals with edges differently than it

approaches areas which are distant from edges. This is because, in general, as z goes to infinity,

g(|z|) goes to zero. However, as z goes to zero, g(|z|) approaches one. These boundary conditions

come from the following definition of g(|z|).

g (|Ou|) =
1

|Ou|p
, (8)

where varying the value of p distinguishes the methods within the diffusivity function family, as

shown in Equation 7. With the value of p = 0, the high diffusion levels of the Laplacian are reached.

When p = 1, total variation flow has been created; and as p extends past one to p = 2, Perona

- Malik Diffusion is generated. In general, with anisotropic diffusion, we employ 0 < p < 1. The

effect the equation defining g(|z|) has regarding diffusivity in an image is as follows: where there is

a large gradient, such as across an edge, only small amounts of diffusion will occur. Where there are

small gradients, due to noise or small features, diffusivity is high. Thus, while diffusion is inhibited

across edge boundaries, it is still encouraged along those boundaries. This can occur due to the

directionality of the gradient being preserved in addition to its magnitude.

u = arg min
u

∫
Ψ
(
Ou,OuT

)
dx, (9)
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where Ψ is always choosen so its derivative is the diffusivity function g,

Ψ′ = g. (10)

The order of vector multiplication between Ou and OuT in Equation (9) creates for anisotropic dif-

fusion a tensor structure rather than a scalar value. The tensor structure is where the directionality

of the gradient is preserved.

2.3 Threshold

From the cartoon-like solution, edge information is extracted through a gradient detector. The

output is a matrix containing gradient values scaled between 0 and 255. In order to segment the

cells from the background and clean the image, morphological functions will be applied in future

steps. However, in order to apply morphological functions, a binary representation of the gradient

image is needed. To obtain the binary representation of the gradient image, hard thresholding is

applied. For the definition of hard thresholding see Equation 4. The value of the set threshold

value is chosen as to maximize membrane separation for cells within clusters while minimizing cell

membrane pixel loss over the entire growth plate region. However, loss of pixels that represent

chondrocyte perimeters is prevalent. The next step in the pipeline is to apply the convex hull

operation. The algorithm will act on the binary representation of the gradient image obtained

through hard thresholding to linearly bridge the cell perimeter discontinuities.

2.4 Convexification of Cell Perimeters

Convex hull is a morphological operation which we apply to a binary representation of the gradient

image. After hard thresholding to obtain the binary representation, there is a loss in the quantity

of cell perimeter pixels. Thus, incomplete cell perimeters result. In order to fill and identify cells,

discontinuities in cell boundaries must be eliminated. Mathematically, to perform a convex hull

operation means to find the smallest convex set that encloses the given points. The convex hull

operation was applied to the binary representation using the convhull command in MATLAB. The

MATLAB algorithm identifies the smallest convex set of points that fully encloses the perimeter of

each cell. Then the points are connected, forming a filled polygon representation of each cell.

2.5 Biological Restrictions

The next processing steps are size thresholding and shape thresholding. These operations are based

on our knowledge of cell biology. The cells are thresholded in order to conform to expected cell
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(a) Incomplete cell
perimeter produced
by thresholding the
gradient.

(b) Convex hull overlaid on the incom-
plete cell perimeter

(c) Filled polygon rep-
resented cell produced.

Figure 3: Convex hull operations steps.

geometries, of which we specifically utilize restrictions on area and convexity. The thresholding

is applied to the output of the convex hull operation. Size thresholding eliminates large polygons

which are often created during the convex hull operation due to boundary points of the growth plate

region. See Figure 4. Polygons with areas larger that a set maximum pixel value are eliminated, as

well as polygons with areas smaller than a set minimum pixel value. In addition to the elimination

of polygons which do not conform to size expectations, elimination of cells with nonconforming

convexities is also applied. Our shape thresholding is based on the isoperimetric inequality. For

each polygon we compute the isoperimetric ratio, C, where

C =
4πA

L2
. (11)

In the ratio equation, A is the area of the polygon and L is the length of the perimeter of the

polygon. Polygons with isoperimetric ratios that demonstrate geometries that do not conform with

cell biological knowledge are eliminated.

2.6 Zone Approximation

In order to perform biological analysis on the bone growth plates captured in our images it is

important to be able to identify which zone a given cell lies in. There are three major zones present

in the majority of our images; the resting zone, the proliferating zone, and the hypertrophic zone.

The cells in the resting and hypertrophic zones are, in general, much more circular than the cells

in the proliferating zone. The cells in this region are much flatter than those in the other two.

Furthermore, the cells immediately undergo drastic changes in size and shape upon entering the

proliferating zone from the resting zone and again upon leaving the proliferating zone for the

hypertrophic zone. We use this predictability in cell shape to estimate the three zones.
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Figure 4: Image of growth plate region after convex hull operation. Polygons are present that do
not correspond to cells.
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We start by classifying each cell based on its isoperimetric constant, a good measure of its shape

for our purposes. Next we compute the average isoperimetric constant along strips that lie perpen-

dicular to the direction of cell migration in the growth plates. For the majority of our images, the

direction of cell movement is downward, and so in most cases we consider horizontal strips across

the image. Next we plot the averages in MATLAB. Since the cells in the resting and hypertrophic

zones are much more circular than those in the proliferating zone and because the proliferating

zone separates the other two zones, we expect two peaks in this graph. Thus we use a fourth

degree polynomial to approximate it. We then use the two inflection points of the polynomial as

estimations of the boundaries between the zones.

As is shown in Figure 5, the inflection points of the fourth degree polynomial provide satisfactory

estimations of both the boundary between the resting and proliferating zones and the boundary

between the proliferating and hypertrophic zones.

3 Algorithm

Our final algorithm was implemented entirely in MATLAB. It expects only two inputs: a cropped

image of a bone growth plate with a white background, and the same image with a green background

(the background should have the uniform RGB value (0,255,0)). The output is a binary image of

the same size as the initial images, where the cell pixels have been colored white and the remaining

pixels of the image black.

First, the Retinex algorithm specified in 2.1 is applied separately to each color channel of the image

of the bone growth plate with the white background. The results from each color channel are

then recombined to form a new image. The output image from the Retinex process is then passed

to an anisotropic diffusion algorithm. Anisotropic diffusion is applied in order to calculate the

gradient of the image. The gradient of the image contains information regarding diffusion along

and across cell boundaries. We are interested in the gradient output of the anisotropic diffusion

process. We use our knowledge of expected chondrocyte geometry to analyze this image and

compute a binary representation of the gradient image using a hard threshold so that we may then

apply morphological functions. Discontinuities in cell boundaries occur as an unavoidable result

of the thresholding conversion process. Thus, a convex hull operation is applied. The resulting

output of filled polygon representations of cells is cleaned using size thresholding, based on the

minimum and maximum number of pixels in a cell and shape thresholding based on the calculation

of the isoperimetric ratio for each polygon. Finally, we approximate the resting, proliferating,

and hypertrophic zones of the bone growth plate using the isoperimetric constants of the objects.

The product of this entire process is a black and white image with two blue lines drawn along the

estimated boundaries of the resting and proliferating zones and of the proliferating and hypertrophic
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(a)

(b)

Figure 5: In (a), a fourth degree polynomial approximates the graph of the mean isoperimetric
constant for horizontal strips down a growth plate image. In (b), the zone boundaries predicted by
inflection points of the polynomial accurately divide the growth plate.
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(a) Input Image (b) Retinex (c) Cartoon Compo-
nent

(d) Gradient (e) Output Image

Figure 6: A cropped section of a growth plate image at each step in the algorithm.

zones.

4 Results

Figure 6 shows a growth plate image after each step of the final algorithm. Figure 6(a) is a section of

an input image and 6(b) is the result of the Retinex portion of the algorithm. Figures 6(c) and 6(d)

are the cartoon component and gradient of the image, respectively. Finally, Figure 6(e) is the result

of thresholding and the convex hull operation, and is the final output of the algorithm. This growth

plate excerpt includes chondrocytes in the resting zone, proliferating zone, and hypertrophic zone,

demonstrating the effectiveness of the algorithm across regions with different characteristics.

Figure 8 shows the results of our algorithm applied to a type of growth plate different than the

growth plates used to develop and test the algorithm. The cell detections overlaid on the gradient

image in Figure 8(b) demonstrate the accuracy of our method, even when applied to different

classes of growth plates.
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Figure 7: Output of algorithm when applied to entire growth plate image.

13



(a) Input Image

(b) Overlay of Cell Detections

Figure 8: Algorithm results from a tibia growth plate image.
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5 Error Analysis

In order to create ground truths for cell detection, we manually fit ellipses and polygons to chondro-

cytes which fit our criteria for detection. The manual detection we used as the basis for comparison.

Our algorithm was then able to be tested using well known clustering metrics and statistics.

In this section we define the classes {Lj} in our ground truth image S={l1, . . . , lN} and clusters

{Ci} in our segmented image S
′
=
{
l
′
1, . . . , l

′
N

}
.

5.1 Clustering Purity

Purity is a simple way of measuring the accuracy of a clustering algorithm [1]. It is defined as:

P =
∑
i

|Ci|
N

max
j

|Ci ∩ Lj |
|Lj |

. (12)

The main drawback of this statistic is that it does not penalize segmenting a class into multiple

clusters nor clusters which cover multiple classes. The trivial segmentations of every pixel as its own

cluster and segmenting the whole image as one cluster both maximize the purity of the image.

5.2 Rand Index

One of the most well known clustering metrics, the Rand Index, looks at the percentage of pixel

pairs that are mapped from either the same class to the same cluster, or from different classes to

different clusters. [15]

R(S, S
′
) =

1(
N
2

) (|A|+ |B|) (13)

where A =
{

(i, j)|i 6= j, Ii = Ij , I
′
i = I ′j

}
and B =

{
(i, j)|i 6= j, Ii 6= Ij , I

′
i 6= I ′j

}
.

5.3 Adjusted Rand Index

The Adjusted Rand Index is a normalization of the Rand Index, which accounts for the expected

Rand Index of a random clustering compared to our images. This expected value of the Rand

Index, becomes our normalized zero-value, giving us an estimate of how much better our clustering

is compared to a randomly chosen clustering [15].
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AR(S, S
′
) =

R(S, S
′
)− E(R(S, S

′
))

Max(R(S, S′))− E(R(S, S′))
=

∑
i,j

(|Ci∩Lj |
2

)
−

∑
i |Ci|

∑
j |Lj |

(N2 )∑
i |Ci|+

∑
j |Lj |

2 −
∑

i |Ci|
∑

j |Lj |
(N2 )

(14)

The equivalence of the above expressions can be algebraically derived.

5.4 Normalized Information Distance

Lastly, we can use entropy,

H(S) = −
∑
i

|Ci|
N

log

(
|Ci|
N

)
, (15)

and conditional entropy,

H(S|S′
) = −

∑
i

∑
j

|Ci ∩ Lj |
N

log

(
|Ci ∩ Lj |

Lj

)
, (16)

to measure the accuracy of our clusterings. The mutual information I(S, S
′
)=H(S)-H(S|S′

), mea-

sures how much the the uncertainty in one variable is decreased by knowing the other, essentially

how dependent the distributions of the two are. Using these statistics we can calculate the Nor-

malized Information Distance metric for these images: [17]

dmax = 1− I(S, S
′
)

max(S, S′)
(17)

5.5 Results of Error Analysis

The above algorithms were programmed into MATLAB, and run on a selected rectangle of our

processed image (the same rectangle used to create our ground truth image). This subsection of

the image was then compared to our ground truth and the results are tabulated below.

Error Measure Rand Index Adj. Rand Index Purity Norm. Info. Dist.

Maximum Value 0.7434 0.3447 0.8867 0.6771

As we can see, The purity is the highest of these statistics, indicating that the algorithm is iden-

tifying most of the desired cell pixels. The Rand Index having a slightly lower value than this is

due in part to the splitting of cells in some of our clusters, which is heavily penalized under this

measurement. Similarly, the comparatively lower Adjusted Rand Index and Normalized Informa-

tion Distance indicate that there is a moderate correlation between the images. Some of this error

results from the ambiguity and inaccuracy of our ground truth image, since ellipses do not perfectly
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approximate the cells in our original image. There is also ambiguity as to which cells are in the

foreground of the image.

6 Conclusion

We have developed a specialized set of algorithms implemented in MATLAB which can be used for

the automated detection of chondrocytes in growth plate images. The data extracted from these

images can be used to analyze the position and shape of the chondrocytes as needed for the biological

analysis. This algorithm results in an accurate segmentation of the input image, as well as accurate

identification of the resting zone, proliferating zone, and the hypertrophic zone. The results enable

simplification and expedition of the process of cell detection in biological research.
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A Manual Detection Using Xara X 1.1

This is a step by step guide for operating the program Xara X 1.1 for the purpose of processing

images of cells in epiphyseal growth plates. The end result will be a Xara file consisting of multiple

image layers representing the original image and its desired characteristics identified.

1. Open Xara X 1.1.

2. Go to File, and then from the drop down menu choose Import...

3. The Import File box should appear. Locate the folder on the computer where the image you

wish to edit is stored. Select the desired image by clicking once on it and pressing the Open

button.

4. Be sure the image is selected on the page. If not, select it by clicking once on the image.

Along the top menu bar, locate the X and Y coordinate measurements. These display

and control the coordinates of the lower left corner of the image. Change the values for both

X and Y to 0.0 pix.

17



5. Go to Utilities, then Galleries, then select Layer Gallery to turn it on. The Layer gallery

should appear as a box on the screen. There should be one layer with the generic nameLayer

1. Right click on Layer 1 in the Layer gallery. Select Properties.... When the Layer properties

box appears, rename the layer as Original Image.

6. Within the Layer gallery, click New... in order to create a new layer. A prompt will appear

querying the name of your new layer. Create layers until there is a total of five layers with

the following names: Original Image, Background, Rectangle, Cell Membranes, and Nuclei.

7. In order to edit any of the layers, you need to go into the Layer gallery and make sure that

only the layer you wish to edit is currently selected. The first column of checkboxes allows

you to visibility of the different layers. The second column of checkboxes allows you to make

different layers available for editing. Whenever editing a layer, that layer needs to be the only

one that is editable - there should be a checkmark next to it in the second column. No other

layers should have a check in the second column.

8. Begin by editing the Background layer. Change your mouse from the Selector Tool to the

Shape Editor Tool. Both tools can be found in the vertical toolbar located on the left side of

the screen. Begin by

B Cropping Images Using Xara X 1.1

This is a step by step guide for operating the program Xara X 1.1 for the purpose of specifically

cropping images of epiphyseal growth plates. The end result will be a TIFF file consisting of a

version of the orginal image in which the non-growth-plate-region has been cropped.

1. Open Xara X 1.1.

2. Go to File, and then from the drop down menu choose Import...

3. The Import File box should appear. Locate the folder on the computer where the original

growth plate image you is stored. Highlighting the desired file, then click the Open button.

4. Be sure you select the image on the page. If it is not selected, do so by clicking once on

the image. Along the top menu bar, locate the X and Y coordinate measurements. These

display and control the coordinates of the lower left corner of the image. Change the values

for both X and Y to 0.

5. Begin by changing your mouse from the Selector Tool to the Shape Editor Tool. Both tools

can be found in the vertical toolbar located on the left side of the screen. Change the line

width to 2.0 in order to make the lines you will create easier to see. Click and create points
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around the edges of the growth plate region. Make sure to complete your shape by connecting

your final point to your first point. If you have done this correctly, the shape will be complete

and the entire shape will fill with a solid color. Go to the color toolbar at the bottom of the

window and select No Fill.

6. Next switch back to the Selector Tool. Click outside the image. Next select both the original

image and your drawn outline, using an operation such as Ctrl + A. Right click and go to

Combine Shapes..., then select Intersect Shapes. The result will be the growth plate region

cropped out of the original image.

7. Since you have obtained your desired image, the next step is to save it so you can run your

algorithm on it. Saving by just using the general Save button will result in a .xar file type.

Thus, rather than saving, instead go to File, then select Export. Complete the dialogue box

by entering your desired file name, and most importantly, setting the File Type to be TIFF.

Then click the button to export your image. You now have a cropped version of your growth

plate region image ready to process.

C Metamorph

In order to run the Metamorph Software to collect cell data from our images, certain procedures

(detailed below) must be followed in order to guarantee an accurate and consistent analysis.

C.1 For Images in Xara X Files

1. Open the Xara X (.xar) file containing the image

2. Make sure only the appropriate layer is selected

3. Select [File>Export] and export as a .tif file with 300 dpi and no compression

4. Open the exported .tif file in Metamorph [File>Open]

5. Select [Measure>Calibrate Distance>Pixels>Apply]

6. Select [Measure>Set Color Threshold>(Select a Color Range)>Apply]. For our Images we

either selected a 168-255 or 243-255 range for the Red, Green, and Blue thresholding values to

get a good bounds on the cell size. Alternatively if the cells are entirely composed of the exact

same color pixels, we can easily identify all cell pixels in Metamorph by selecting [Measure>Set

Color Threshold>Set by Example>(Clicking on a cell pixel in Metamorph)>Apply]. In either

case, the selected pixels will turn orange.
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7. We can then collect the data by selecting [Measure>Integrated Morphology Analysis>(Select

the boxes for Area, Perimeter, X-Centroid, Y-Centroid, and Orientation)>Measure]. Once

the data is collected the cell pixels should turn green.

8. To export the data to an Excel Spreadsheet select [Open Log>Dynamic File>(input desired

sheet name)]. This should open an excel sheet and establish a connection between the pro-

grams. To transfer the data select the Log Data button.

C.2 For Images not in Xara X

If the image is not in Xara X it can either be opened in Xara X, in which case the above procedure

can be followed from Step 2. If the file format is compatible (e.g. .tif, .jpeg) the file may be opened

directly in Metamorph, in which case the above procedure can be followed from Step 5.

If the image opened includes pixels outside of the growth plate we want to analyze, we can crop

this out in Metamorph by creating a region. Select [Trace Region Tool>(Click Around Perimeter

of the Desired Area)> (Double Click on Starting Point to Close Region)]. To undo a segment

created, right click with the mouse. After the region is closed the perimeter should flash. Then

select [Measure>Region Measurements]. From this point we can follow the above procedure from

Step 5.
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