Data Filterin

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Chemical Plume Detection for Hyperspectral Imaging

Torin Gerhart, Lauren Lieu, Justin Sunu

Mentors: Andrea Bertozzi, Jen-Mei Chang Jérôme Gilles, Ekaterina Merkurjev

August 8, 2012 UCLA Applied and Computational Mathematics REU 2012

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Motivation

- Applications to defense and security
 - · Provide warning of chemical weapon attacks
 - Chemical contamination: radiation leaks, toxic spills, etc.
- Project goals
 - Detect and identify gas plumes
 - Segment the image to obtain the location of the gas
 - Track the diffusion of the chemical plume in the atmosphere
- Challenges
 - LWIR data is not in the visible spectrum
 - High dimensional data makes computational analysis lengthy and difficult

Data Filtering

Signature Unmixing

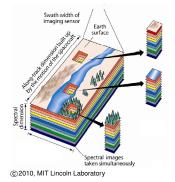
Segmentation 000000000 000 0000 Conclusion

Hyperspectral Data Cube

Applied Physics Laboratory at Johns Hopkins University

Videotracking of chemical plume release

- 3 LWIR sensors at different locations
- 129 channels in data cube
- frame rate: 0.2 Hz
- 30 minute video sequences



・ロト・日本・ 小田・ 小田・ 小日・

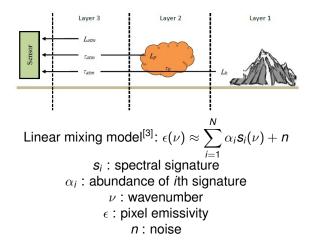
Data	Filtering Signatur	е
00	0000	

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conclusion 0000

Three-layer model for Hyperspectral Imaging



Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion 0000

Adaptive Matched Subspace Detector Algorithm^[8]

Applied Physics Laboratory at Johns Hopkins University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Background	
00000	

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

False Color RGB Representation

The Plume of Doom

- 1. Load frames into a matrix
- 2. Perform Principle Component Analysis (find eigenvectors of $A^T A$)
- 3. Use the first 3 principle components to reduce dimension of each frame and label the projection on each component, red, green, and blue, respectively
- 4. Equalize the histogram of each frame with the Midway algorithm^[4]

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion 0000

False Color RGB Representation

The Plume of Doom

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion 0000

Temperature Emissivity Separation^[3]

$$\epsilon(\lambda) \approx \epsilon_p(\lambda) f(T_p - T_b) + \epsilon_b(\lambda)$$

f: Function of the temperature difference between the plume and the background

- Emissivity
- λ : Wavenumber
- T: Temperature

- Calculation includes simplifying assumptions regarding temperature and atmospheric conditions
- Data processing results in NaNs in data set

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion

Background Subtraction

Computation of the disturbance field^[6]

 $\begin{array}{l} \boldsymbol{A}_t = (1 - \boldsymbol{w})\boldsymbol{I}_t + \boldsymbol{w}\boldsymbol{A}_{t-1} \\ \boldsymbol{\Delta}_t = \boldsymbol{I}_t - \boldsymbol{A}_{t-1} \end{array}$

- A: Temporal average image I: Actual image after initial smoothing
- Δ : Disturbance field
- 0 < w < 1: History weight factor

- Real-time algorithm that
 employs temporal averaging
- Gives greater weight to last frames
- Running average decays exponentially relative to the frame number

Grayscale disturbance field of aa12 Victory chemical plume release

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion 0000

Split Bregman Method for Unmixing^[6]

 $\min_{u} \|Au - f\|_2^2 + \eta |u|_1$ s.t. $u \ge 0$,

where,

- A: $m \times n$ matrix
- f: Pixel in the image
- u: Signature abundance
- η : Sparsity constraint

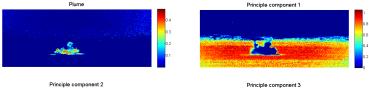
This is solved for each pixel by a particular type of split Bregman iteration which is particularly suited for solving overdetermined systems (when m > n).

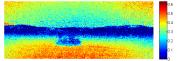
Data Filtering

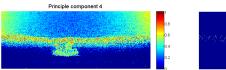
Signature Unmixing

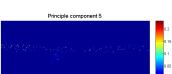
Segmentation 000000000 000 0000 Conclusion 0000

Unmixing with L₁ Minimization^[6]









Top left: Successful detection of the target chemical plume Other frames: Identification of principle components in the image

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Automatic Target Generation Process^[5]

We want to find pixels in the image that represent distinct signatures without prior knowledge of materials in the image.

- Initialize with a random pixel, ϵ_0
- Find pixels ϵ_i , such that

$$\epsilon_i = rg\max_{x} \| (I - U_{i-1}(U_{i-1}^T U_{i-1})^{-1} U_{i-1}^T)) x \|_2$$

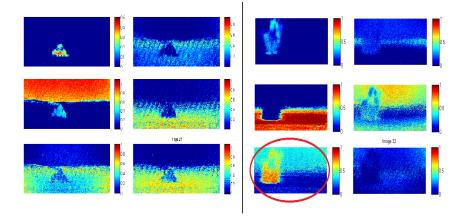
where $U_{i-1} = [\epsilon_1 \epsilon_2 \dots \epsilon_{i-1}]$ is the subspace spanned by the previously found distinct pixels, and *x* is a pixel in the image.

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion 0000

Automatic Target Generation Process



Left: Good results using ATGP, Right: Incorrect endmember selection

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Data Filtering 00 Signature Unmixing

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Spectral Clustering Algorithm^[9]

- · Construct a fully connected similarity matrix
 - Our similarity matrix is too large to make
 - There are a number of different similarity functions
 - Self similarity
- Formulate the graph Laplacian
- Normalize to get the symmetric graph Laplacian
- · Compute smallest eigenvectors and eigenvalues
 - Algorithm to find smallest eigenvectors and values is not efficient

Data Filtering

Signature Unmixing

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Spectral Clustering

- Construct the k nearest neighborhood
 - Allows for construction of sparse matrices
 - Can customize symmetry
- Normalize to get the symmetric similarity matrix
- Compute the largest eigenvectors and eigenvalues of the normalized similarity matrix

Signature Unmixing

Segmentation 00000000 000 000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Similarity Functions

- Gives a value for how "similar" a data point is to another data point
- 0 is for very dissimilar data and 1 is for very similar data
- An example is the Gaussian similarity function,

$$\mathbf{s}(\mathbf{x}_i, \mathbf{x}_j) = e^{\frac{-\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}}$$

- $||x_i x_j||^2$ is a distance metric
- The σ constant is used for determining the Gaussian neighborhood
- To illustrate the two extremes
 - A value of $\sigma=\infty$ yields a similarity matrix where all the points are connected with similarity of 1
 - A value of $\sigma=$ 0 yields a similarity matrix where all the points are disconnected, similarity of 0

Data Filtering

Signature Unmixing

Segmentation 000000000 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Conclusion

Similarity Functions

Continued

Using different distance metrics

Euclidean

•
$$||x_i - x_j|| = \sqrt{\sum_{k=1}^n (x_{i,k} - x_{j,k})^2}$$

where n is the number of different wavelengths

Cosine

•
$$\|x_i - x_j\| = 1 - \frac{\langle x_i, x_j \rangle}{\|x_i\| \|x_j\|}$$

- Self tuning similarity function^[10]
 - Instead of a constant sigma, across all values, self tuning tries to maintain local scaling
 - Uses a *k* nearest neighbors similarity graph $-\|x-x\|^2$

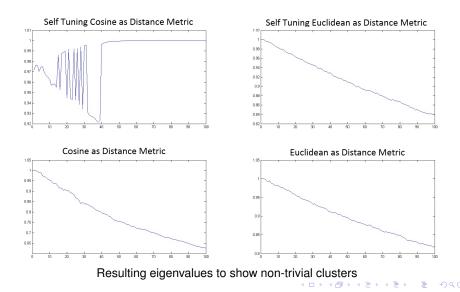
•
$$s(x_i, x_j) = e^{\frac{-\|\sigma_i - \sigma_j\|}{\sigma_i \sigma_j}}$$
 where σ_i is the *k*'th nearest neighbor of x_i

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion

Results of Different Distance Metrics

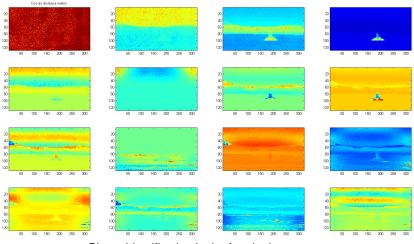


Data Filtering

Signature Unmixing

Segmentation 000000000 000 000 Conclusion

Results of Cosine Distance Metric



Plume identification in the fourth eigenvector

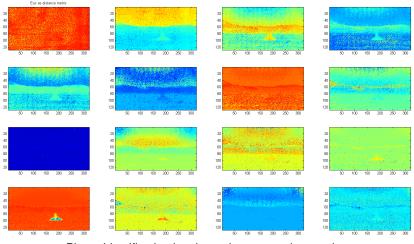
・ロト・母ト・ヨト・ヨー もんの

Data Filtering

Signature Unmixing

Segmentation 0000000000 000 0000 Conclusion

Results of Euclidean Distance Metric



Plume identification in a later eigenvector than cosine

Data Filterini

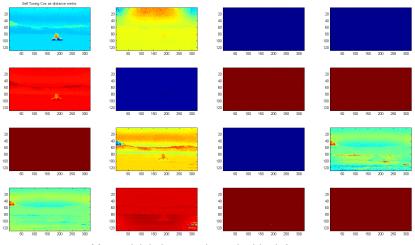
Signature Unmixing

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Conclusion 0000

∃ 900

Results of Self Tuning Cosine Distance Metric



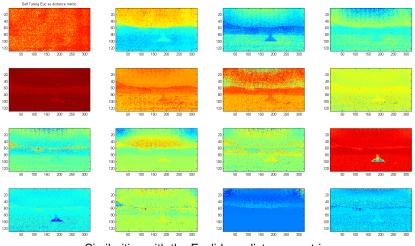
Many trivial clusters shown by blank frames

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion

Results of Self Tuning Euclidean Distance Metric



Similarities with the Euclidean distance metric

Data Filtering

Signature Unmixing

Segmentation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Nyström Method^[2]

Eigenvalue and Eigenvector Approximation

- Alternative to full spectral clustering
- Many times faster, at the cost of precision
 - Nyström randomly selects a set of points, and utilizes these to approximate eigenvalues and eigenvectors
 - Due to the random selection, the resulting eigenvalues and eigenvectors can vary

Data Filtering

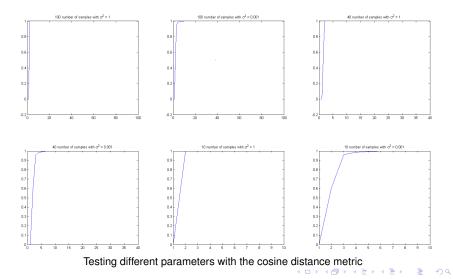
Signature Unmixing

Segmentation

Conclusion 0000

Nyström Method

Eigenvalue Results



Data Filterin

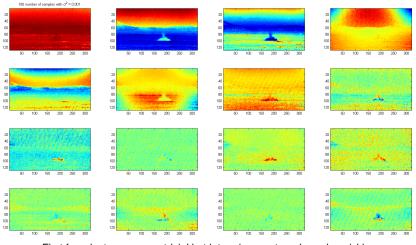
Signature Unmixing

Segmentation

Conclusion 0000

Nyström Method

Eigenvector Results



First few clusters are non-trivial but later eigenvectors degrade quickly

Data Filtering

Signature Unmixing

Segmentation

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclusion 0000

Segmentation by minimizing the Ginzburg-Landau functional^[2]

$$u = \operatorname*{arg\,min}_{u} rac{\epsilon}{2} \int |
abla u|^2 dx + rac{1}{\epsilon} \int W(u) dx + F(u, u_0)$$

where W(u) is a double-well potential, such as $W(u) = (u^2 - 1)^2$.

- By minimizing, u will take on values of either -1, or 1 from the double well term
- The gradient term will stop sharp transitions from -1 to 1

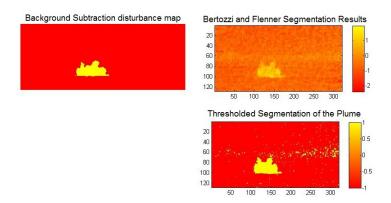
Data Filtering

Signature Unmixing

Segmentation

Conclusion

Segmentation by minimizing the Ginzburg-Landau functional



Testing parameters: c1 = 100, c = 5, epsilon = 1, dt = 0.001, 400 iterations, 100 eigenvectors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Data Filtering

Signature Unmixing

Segmentation

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Segmentation by minimizing the Ginzburg-Landau functional Merkurjev et. al Method

Numerically, solve a discretized heat equation plus a fidelity term and threshold per iteration.

1. Solve
$$\frac{dz}{dt} = -L_s z - C_1 \lambda(x)(z - z_0)$$

2. Set $u_{n+1}(x) = \begin{cases} 1 & \text{if } y(x) \ge 0 \\ -1 & \text{if } y(x) < 0 \\ \text{where } y(x) = S(\delta t) u_n(x), \text{ where } S(\delta t) \text{ is the evolution operator of the discretized heat equation.} \end{cases}$

This method requires an initialization "patch", and the Nyström extension to obtain eigenvectors.

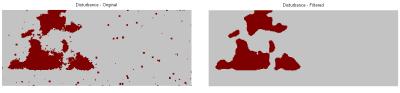
Data Filtering

Signature Unmixing

Segmentation

Conclusion

Segmentation by minimizing the Ginzburg-Landau functional Merkurjev et. al Method



Top left, Results of background subtraction. Top right, Initialization for the MBO Scheme. Bottom left, Results of segmentation

Background
00000

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Conclusions

- Filtering
 - Weighted average background subtraction outperformed subtraction of consecutive frames
- Classification
 - Unmixing techniques are a viable detection method
- Segmentation
 - Spectral Clustering is successful in its segmentation of the data
 - Nyström is able to segment the data, but it does not have the accuracy to be a standalone method
 - Ginzberg-Landau minimization results in better detection of thin gas than background subtraction alone

Background	
00000	

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Future Work

- Analyze false color RGB images of the plume
- Implement clustering with spatial information
- Minimize noise in the hyperspectral datacube

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Acknowledgements

Mentors: Jen-Mei Chang, Jérôme Gilles, Ekaterina Merkurjev

Cristina Garcia-Cardona

Andrea Bertozzi

Johns Hopkins Applied Physics Lab contacts: Alison Carr, Dr. Joshua Broadwater, Diane Limsui

UCLA Mathematics Computer Consulting Office (Bugs)

Data Filtering

Signature Unmixing

Segmentation 000000000 000 0000 Conclusion

References

[1] Michael Borghese, Alex Honda, Samuel Lim, Daniel Waltrip, and Monica Yoo. Video tracking of airborne gases. Technical report, UCLA Department of Mathematics, 2010.

[2] Andrea L. Bertozzi and Arjuna Flenner. Diffuse interface models on graphs for classification of high dimensional data. To be published in a 2012 Multiscale Modeling and Simulation, 2012.

[3] J. B. Broadwater, D. Limsui, and A. K. Carr. A primer for chemical plume detection using lwir sensors. Technical report, National Security Technology Department, 2011.

[4] Julie Delon. Midway Image Equalization. Journal of Mathematical Imaging and Vision, 21: 119-134, 2004.

[5] Qian Du and Nareenart Raksuntorn and Nicolas H. Younan and Roger L. King. End-member extraction for hyperspectral image analysis. Applied Optics, 47:F77-F84 , 2008.

[6] Zhaohui Guo, Stanley Osher and Arthur Szlam. A split bregman method for non-negative sparsity penalized least squares with applications to hyperspectral demixing. ICIP, 1917-1920, 2010.

[7] Gilad Halevy and Daphna Weinshall. Motion of disturbances: detection and tracking of multi-body non-rigid motion. Machine Vision and Applications, 11: 122-137, 1999.

[8] Dimitris Manolakis, Christina Siracusa, and Gary Shaw. Adaptive matched subspace detectors for hyperspectral imaging applications. Technical report, MIT Lincoln Laboratory, 2001.

[9] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:1-32, 2007.

[10] L. Zelnik-Manor and P. Perona. Self-Tuning Spectral Clustering. Advances in Neural Information Processing Systems, 17: 1601-1608, 2005.