
Background Data Filtering Signature Unmixing Segmentation Conclusion

Chemical Plume Detection
for Hyperspectral Imaging

Torin Gerhart, Lauren Lieu, Justin Sunu

Mentors: Andrea Bertozzi, Jen-Mei Chang
Jérôme Gilles, Ekaterina Merkurjev

August 8, 2012
UCLA Applied and Computational Mathematics REU 2012



Background Data Filtering Signature Unmixing Segmentation Conclusion

Motivation

• Applications to defense and security
• Provide warning of chemical weapon attacks
• Chemical contamination: radiation leaks, toxic spills, etc.

• Project goals
• Detect and identify gas plumes
• Segment the image to obtain the location of the gas
• Track the diffusion of the chemical plume in the atmosphere

• Challenges
• LWIR data is not in the visible spectrum
• High dimensional data makes computational analysis lengthy and

difficult
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Hyperspectral Data Cube
Applied Physics Laboratory at Johns Hopkins University

Videotracking of
chemical plume release

• 3 LWIR sensors at different
locations

• 129 channels in data cube
• frame rate: 0.2 Hz
• 30 minute video sequences

c©2010, MIT Lincoln Laboratory
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Three-layer model for Hyperspectral Imaging

Linear mixing model[3]: ε(ν) ≈
N∑

i=1

αisi (ν) + n

si : spectral signature
αi : abundance of i th signature

ν : wavenumber
ε : pixel emissivity

n : noise
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Adaptive Matched Subspace Detector Algorithm[8]

Applied Physics Laboratory at Johns Hopkins University


aa12_Victory_JH_Results_PlumeOfDoom.avi
Media File (video/avi)
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False Color RGB Representation
The Plume of Doom

1. Load frames into a matrix
2. Perform Principle Component Analysis (find eigenvectors

of AT A)
3. Use the first 3 principle components to reduce dimension

of each frame and label the projection on each
component, red, green, and blue, respectively

4. Equalize the histogram of each frame with the Midway
algorithm[4]
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False Color RGB Representation
The Plume of Doom


aa12_Victory_PlumeOfDoom.avi
Media File (video/avi)
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Temperature Emissivity Separation[3]

Data Conversion

ε(λ) ≈ εp(λ)f (Tp − Tb) + εb(λ)

f : Function of the temperature
difference between the plume and
the background
ε: Emissivity
λ: Wavenumber
T : Temperature

• Calculation includes
simplifying assumptions
regarding temperature and
atmospheric conditions

• Data processing results in
NaNs in data set
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Background Subtraction
Computation of the disturbance field[6]

At = (1− w)It + wAt−1
∆t = It − At−1

A: Temporal average image
I: Actual image after initial
smoothing
∆: Disturbance field
0 < w < 1: History weight factor

• Real-time algorithm that
employs temporal averaging

• Gives greater weight to last
frames

• Running average decays
exponentially relative to the
frame number

Grayscale disturbance field of aa12
Victory chemical plume release
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Split Bregman Method for Unmixing[6]

Outline

min
u
‖Au − f‖2

2 + η|u|1
s.t. u ≥ 0,

where,
A: m × n matrix
f : Pixel in the image
u: Signature abundance
η: Sparsity constraint

This is solved for each pixel by a particular type of split Bregman
iteration which is particularly suited for solving overdetermined
systems (when m > n ).
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Unmixing with L1 Minimization[6]

Top left: Successful detection of the target chemical plume
Other frames: Identification of principle components in the image
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Automatic Target Generation Process[5]

Method

• Initialize with a random pixel, ε0
• Find pixels εi , such that

εi = arg max
x

‖(I − Ui−1(UT
i−1Ui−1)−1UT

i−1))x‖2

where Ui−1 = [ ε1 ε2 . . . εi−1 ] is the subspace spanned by the
previously found distinct pixels, and x is a pixel in the image.

We want to find pixels in the image that represent distinct
signatures without prior knowledge of materials in the image.
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Automatic Target Generation Process
Results

Left: Good results using ATGP, Right: Incorrect endmember selection
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Spectral Clustering Algorithm[9]

• Construct a fully connected similarity matrix
• Our similarity matrix is too large to make
• There are a number of different similarity functions
• Self similarity

• Formulate the graph Laplacian
• Normalize to get the symmetric graph Laplacian
• Compute smallest eigenvectors and eigenvalues

• Algorithm to find smallest eigenvectors and values is not efficient
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Spectral Clustering

• Construct the k nearest neighborhood
• Allows for construction of sparse matrices
• Can customize symmetry

• Normalize to get the symmetric similarity matrix
• Compute the largest eigenvectors and eigenvalues of the

normalized similarity matrix
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Similarity Functions

• Gives a value for how "similar" a data point is to another data
point

• 0 is for very dissimilar data and 1 is for very similar data
• An example is the Gaussian similarity function,

s(xi , xj ) = e
−‖xi−xj‖

2

2σ2

• ‖xi − xj‖2 is a distance metric
• The σ constant is used for determining the Gaussian neighborhood
• To illustrate the two extremes

• A value of σ =∞ yields a similarity matrix where all the points are
connected with similarity of 1

• A value of σ = 0 yields a similarity matrix where all the points are
disconnected, similarity of 0
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Similarity Functions
Continued

• Using different distance metrics

Euclidean

• ‖xi − xj‖ =

√√√√ n∑
k=1

(xi,k − xj,k )2

where n is the number of different wavelengths
Cosine
• ‖xi − xj‖ = 1− 〈xi , xj〉

‖xi‖‖xj‖
• Self tuning similarity function[10]

• Instead of a constant sigma, across all values, self tuning tries to
maintain local scaling

• Uses a k nearest neighbors similarity graph

• s(xi , xj) = e
−‖xi−xj‖

2

σiσj where σi is the k ’th nearest neighbor of xi
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Results of Different Distance Metrics

Resulting eigenvalues to show non-trivial clusters
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Results of Cosine Distance Metric

Plume identification in the fourth eigenvector
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Results of Euclidean Distance Metric

Plume identification in a later eigenvector than cosine
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Results of Self Tuning Cosine Distance Metric

Many trivial clusters shown by blank frames
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Results of Self Tuning Euclidean Distance Metric

Similarities with the Euclidean distance metric
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Nyström Method[2]

Eigenvalue and Eigenvector Approximation

• Alternative to full spectral clustering
• Many times faster, at the cost of precision

• Nyström randomly selects a set of points, and utilizes these to
approximate eigenvalues and eigenvectors

• Due to the random selection, the resulting eigenvalues and
eigenvectors can vary
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Nyström Method
Eigenvalue Results

Testing different parameters with the cosine distance metric
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Nyström Method
Eigenvector Results

First few clusters are non-trivial but later eigenvectors degrade quickly
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Segmentation by minimizing
the Ginzburg-Landau functional[2]

Bertozzi and Flenner Method

u = arg min
u

ε

2

∫
|∇u|2dx +

1
ε

∫
W (u)dx + F (u,u0)

where W (u) is a double-well potential, such as W (u) = (u2 − 1)2.

• By minimizing, u will take on values of either -1, or 1 from the
double well term

• The gradient term will stop sharp transitions from -1 to 1
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Segmentation by minimizing
the Ginzburg-Landau functional

Testing parameters: c1 = 100, c = 5, epsilon = 1, dt = 0.001, 400 iterations, 100 eigenvectors
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Segmentation by minimizing
the Ginzburg-Landau functional

Merkurjev et. al Method

Numerically, solve a discretized heat equation plus a fidelity term and
threshold per iteration.

1. Solve
dz
dt

= −Lsz − C1λ(x)(z − z0)

2. Set un+1(x) =

{
1 if y(x) ≥ 0
−1 if y(x) < 0

where y(x) = S(δt)un(x), where S(δt) is the evolution operator
of the discretized heat equation.

This method requires an initialization "patch", and the Nyström
extension to obtain eigenvectors.
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Segmentation by minimizing
the Ginzburg-Landau functional

Merkurjev et. al Method

Top left, Results of background subtraction. Top right, Initialization for the
MBO Scheme. Bottom left, Results of segmentation
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Conclusions

• Filtering
• Weighted average background subtraction outperformed

subtraction of consecutive frames
• Classification

• Unmixing techniques are a viable detection method
• Segmentation

• Spectral Clustering is successful in its segmentation of the data
• Nyström is able to segment the data, but it does not have the

accuracy to be a standalone method
• Ginzberg-Landau minimization results in better detection of thin

gas than background subtraction alone
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Future Work

• Analyze false color RGB images of the plume
• Implement clustering with spatial information
• Minimize noise in the hyperspectral datacube
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