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Abstract

This paper describes the research conducted during the Summer 2011
Research Experience for Undergraduates at the UCLA Applied Mathe-
matics Laboratory Swarm Robotics Testbed. The robotics team set out
to extend the capabilities of the third generation autonomous vehicles by
extending the on-board algorithm processing and support of sensor de-
vices. The research project focused on advancing multi-robot capabilities,
generating path planning and swarming algorithms to implement on the
testbed. The team also laid the groundwork for camera implementation,
and redesigned the peer-to-peer network protocol to enable inter-vehicle
communication. Through collaboration with the University of Cincinnati
Cooperative Distributed Systems Lab, the team set up Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) communication in Matlab for
inter-testbed cooperation.
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1 Introduction

The development of cooperative behavior between autonomous robots is use-
ful because of its applications to multiple fields. This technology is utilized at
industrial facilities to heighten efficiency, and unmanned autonomous vehicles
are also useful for mapping and exploration objectives. Small micro-cars such
as those used in the UCLA Applied Mathematics Laboratory are capable of
dispersing to explore different regions of unknown territory and reporting infor-
mation on the surrounding environment. These robots can be used to scour the
rubble after a natural disaster and survey the terrain without putting human
lives at risk. As the capabilities of autonomous robots expand, their efficiency
and extensive capabilities make them an important tool used in modern society.

2 The Hardware

2.1 Camera

This year we began work on the camera unit. Initially the camera was put on
the car by Anteros Labs without any hardware or software support, only power
connections. The camera now has hardware support for all pins and interrupts
as well as power. IIC serial communications have been implemented with the
camera. The serial communication is over pins 4 and 5, SCL and SDA (see
Figure 1). This will allow configuration of the camera. Hardware to read the
data is also in place. All that remains for a functioning camera is to setup the
interrupt controllers for VD, HD and DCLK. These are located on Figure 1 as
pins 8, 9 and 10 respectively. They are the pins that give the synchronizing
pulses for each frame of the image. VD is the vertical sync pin. HD is the hori-
zontal sync pin and DCLK is the data clock. Timing diagrams for the behavior
of these pins is provided in the camera spec sheet on page 15. The interrupts
must be compatible with whatever peer-to-peer algorithm is in place. Please
note that before service all of the cameras must be checked for continuity and
for voltage as there are connections missing on some of the boards. Also, the
camera prototype vehicle has had a jumper placed from IOVDD to PVDD and
the trace to IOVDD removed from the board. It is suspected, but not confirmed
that the voltage on this pin was too high for operation. The voltage is outside
the recommended operating range, but not outside of the safety margin. Con-
tinuity needs to be checked from the FPGA all the way to the camera pins.
Figures 2 and 3 provided for the continuity checking operation, they represent
the pin list and netlist conversion table respectively. The minimum steps to
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Figure 1: Camera pins

configure the camera are to use setupCameraGPIO, SetupInterruptSystem and
InitCameraI2C. This runs the camera reset seuquence then the self test, inter-
rupt setup serial initialization and finally serial configuration. Warning: there
are still problems with the interrupt system, but the functions should return
successfully.They are completely automatic and require no user input. These
functions are described in detail in the in-code documentation.

2.2 Communication Systems

2.2.1 Upper Board Serial

The Upper Board Serial is the primary link for debugging, peer-to-peer and
Internet connection. The UBS runs at 115200 baud with no parity bits. This
is the serial link to the computers. This does not allow programming but does
allow run-time communication. The robots connect to the wi232 devices us-
ing the UARTlite IP from Xilinx. Instances of MATLAB can connect to this
network using the serial object from the instrument control toolbox with the
appropriate wireless connection hardware. No other action is necessary because
this is a simple point to multipoint network where there are no parity bits and
no flow control. Through MATLAB you can write by simply using the fwrite
command with the serial object and read with fread. Examples are provided in
the form of the 2011 code.
Recommendation: Use either xil printf or print, they are both large functions,
so only use one if possible.
Check the MATLAB documentation for information about the serial object.
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2.2.2 Lower Board Serial

No modifications were made to the lower board. Refer to the 2010 documenta-
tion for details about streaming from the Lower Board.

2.2.3 MATLAB Internet Connection Interface

The Ethernet system allows communication over the internet. The Ethernet
communication is done through MATLAB. Two MATLAB instances (one at
University of California, Los Angeles and one at University of Cincinnati) com-
municate data from testbed to testbed. Each testbed has its own method to
transmit data from the MATLAB instance to the agent robots but the infor-
mation over the network must be standardized. The easiest way is to order the
information consistently. Examples of this can be found in the 2011 MATLAB
code.
MATLAB uses the TCPIP object from the instrument control toolbox to set up
a TCPIP server and client to transmit data from instance to instance. Fwrite
and fread can be used just as in the case of the serial object.

3 Peer-to-Peer Networking

The 2010 robotics team set up a peer-to-peer network using a finite state ma-
chine in which an individual robot switched between four states: the tracking
state, the transmission state, the receive state, and the calculation state. The
transmission protocol for the network used a token topology. There were several
problems with the peer-to-peer that prevented the network from being fully im-
plemented and integrated into the testbed. Because of the transitions between
the states in the finite state machine, if anything other than a complete message
is received, the token is lost and the peer-to-peer stops functioning. Interrupt
handles were implemented to prevent cars from getting stuck in the receiving
state if a transmission error occurs. However, the cars only got stuck in an
infinite calculation state instead of the receive state. As a result, the utility
of this peer-to-peer network was limited because the micro-cars did not use
inter-vehicle communication, but instead used the overhead camera tracking to
determine the location of the other robots.
The communication network was structured in a way that caused message col-
lisions, making the broadcast unintelligible to the cars. Inside the finite state
machine, the cars switched between states independently, thus there was no
guarantee that a car would be in the receive state when a message was about
to be sent. Thus, sent messages had an increased probability of not getting
received. Since missed messages meant lost tokens as well, one message error
could disable the entire peer-to-peer network. The peer-to-peer communication
structure needed to be redesigned in order to increase its robustness and flexi-
bility.
Time-based scheduling was used to resolve the peer-to-peer network issues. The
new configuration assigned specific time slots for broadcasting, processing, and
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Figure 2: Example of peer-to-peer scheduling with two cars

calculation for each individual car. Without the token, the micro-cars would not
get stuck in an infinite loop since time-based scheduling removed the systems
dependence on receiving the previous message. By synchronizing the timers on
every robot and scheduling broadcasting times to avoid radio broadcasting inter-
ference, they can rapidly share and update information without relying heavily
on the lossy network.

3.1 Broadcasting Using Time-based Scheduling

The problems with the previous peer-to-peer network led to the restructuring
of the system on a time-based schedule. Timer synchronization was necessary
to ensure that the transmission cycles on each car begin at the same time. The
decision was made to design the communication network to send smaller packets
of information more rapidly instead of larger packets less often. This decision
was based on the idea that even if one packet is corrupted or lost, another will
be available soon enough that the loss would not negatively affect the system.
Thus, during a broadcast, an individual sends a message consisting only of its
own information. Each message broadcast contains the following: a designated
header (one byte), the car identification number (one byte), the x-coordinate
(two bytes), the y-coordinate (two bytes), the heading (two bytes), the IR sensor
reading (two bytes), and a designated terminator (one byte). Thus, the total
message size is eleven bytes. Looking at the upper board radio specifications, we
know the transmission rate is 115200 bps. Using only 80% of that means a rate
of 92 kbps. The time required to for one broadcast is thus 1.2ms. Allotting 1ms
for processing for each message, means the maximum amount of time needed
for broadcasting is 19.8ms (assuming there are nine cars on the testbed, the
maximum number of cars available). The limiting factor for the cycle length
is the rate at which information is transferred from the lower board to the
upper board, 30 Hz. Allowing the cycle time to be 33ms thus leaves at least
10ms for algorithm calculations and commands a cycle. The car information
is also updated before each message is sent out, capturing all the data without
redundancy.
Thus with a cycle time of 33ms, the schedule is as follows:

• An initialization period to allow for schedule setup and broadcast time
assignments. The initialization also includes timer synchronization across
all of the cars. Broadcast times are scheduled to occur every 3ms.
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• When not broadcasting, the cars wait in the processing loop for the mes-
sage to be received. As a message comes into the radio, the interrupt
handler is activated and the message is moved from the radios hardware
buffer to the global array wi Buff UB. When the message is stored into the
global array, the processing loop parses the message and stores it. The car
then returns to checking its broadcast time against the timer and waiting
for a message to be received.

• After each car on the testbed has broadcast its message, all the cars enter
a calculation state. Thus, the fewer the number of cars on the testbed, the
more time is allotted for calculations. It is during the calculation period
that various algorithms can be inserted and executed.

• When the calculation period ends, all the cars reset their timers and repeat
the above schedule.

3.2 Peer-to-Peer Communication Test: Following

In order to determine if the restructured peer-to-peer network was a more robust
system that the previously implemented protocol, it underwent the following
assessment on the testbed:

• Two cars were placed on the testbed. One was designated the leader, and
the other was designated the follower.

• The leader was programmed to drive in a circle in its calculation period.
The algorithm for the follower was to take the coordinates received from
the leader and drive to that location.

The test was successful: both cars on the testbed behaved as desired. However,
the functionality of the peer-to-peer network has not been thoroughly tested for
a larger number of micro-cars due to time constraints. A preliminary swarm
test was done with three cars, however it was unsuccessful.
Because the USB serial transmitter and receiver is on the same channel as the
upper board radio on the car there is an issue with the serial picking up and
displaying all of the unparsed messages that the cars send during peer-to-peer.
Since there are eleven bytes per car being transmitted 30 times a second, the
serial is essentially flooded. This makes it very difficult to use print statements
to aid in the debugging process. The entire peer-to-peer cycle will need to be
slowed down considerably in order to debug the problem that occurs when using
more than two cars on the testbed.

4 Algorithms

4.1 Path Planning

The goal of a path planning algorithm is to follow a path to a predetermined
target without running into other robots and barriers. A sufficient model for

6



Figure 3: The robot detecting a barrier and feeling a force perpendicular to the
barrier

this is a potential field, where each ”object” emits a force. Other robots and
barriers emit a repulsive force while the target emits an attractive force. The
robot moves in the direction of the total force with constant velocity. The
following equation governs this type of movement.

F = Qr

(
C

rt
||rt||2

+Qr

K−1∑
i=1

ri
||ri||2

+

L∑
i=1

Bi

)
(1)

Qr is the robot potential, C is the target potential, rt is a vector from the target
to the robot, ri is a vector from the moving robot to the i-th robot and Bi is
the i-th barrier term. Each robot, barrier and target is assigned a constant
potential, which corresponds to coefficients Qr, Br (which will be discussed
soon) and C. Also, K is the number of robots on the testbed and L is the
number of boundaries in the environment. The first two terms are simply a
direct attraction or repulsion inversely proportional to distance. However, the
boundary term is a bit different because we want the robot to go around the
boundary instead of directly away from it. As shown in Figure 4.1, the robot
feels a force perpendicular to the barrier instead of directly repulsing it. The
robot only detects boundaries in the semicircle where the robot is facing, so this
ensures the robot moves around the boundary.

Bi = Br

(
r⊥B
||rB ||2

)
(2)

Similar to the terms in (1) , Br is the boundary repulsion term and rB is the
vector perpendicular to the vector from the i-th boundary to the robot. How-
ever, deciding which of the two perpendicular vectors to choose is an interesting
question. Choosing one direction for every robot means all robots go around
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Figure 4: How the robots detect which direction rB should point

the same side of the boundary, possibly causing a traffic jam or just not being
very aesthetically pleasing. Ideally, we want half the cars to go around one side
of the boundary while the other half go the other way. Drawing a line from the
target to the robot, the testbed is split into two regions. One of the vectors
perpendicular to the boundary lies in each region. Whichever region contains
less other robots, the boundary vector lying in that area is used in the boundary
term.

4.2 Leader Following with Swarming

The goal of this algorithm is for a group of robots to follow a leader robot without
running into one another while maintaining formation. Again, a potential model
is used, but this time the potential is exponential instead of linear. This is
similar to Morse potential as seen in molecular physics. The following differential
equations govern the velocity vi and position xi of each robot, except the leader
which operates independently of the swarm.

dxi
dt

= vi (3)

dvi
dt

= (α− β||vi||2)vi −∇U(xi) + ΣN
j=1C0(vj − vi) (4)

U(xi) =
1

2
Cl(xi − y)2 + ΣN

j=1Cre
||xi−xj ||/lr − Cae

||xi−xj ||/la (5)

U is the potential function, N is number of robots on the testbed and y is the
position of the leader robot with constants m, C0, Cl, Cr, Ca, lr and la. The
constant m refers to the robot mass, C0 is the velocity alignment coefficient,
Cl is the leader potential coefficient, Ca and Cr are the robot attraction and
repulsion coefficients, respectively, and la and lr are the robot attraction and
repulsion lengths, respectively.
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Figure 5: A simulation of the path planning algorithm with three robots

4.3 Simulations

Simulations for both algorithms were written in Matlab. For the path planning
algorithm, the robots could detect boundaries in a semicircle in front of them
with fixed radius w (as seen in Figure 4.1) to simulate a camera or infrared
sensor. A boundary is represented by a point, so to create large boundaries,
several boundary points are clustered together. Each robot had its own target,
but the targets were placed near each other.
For the swarming algorithm, an ordinary differential equation solver was used to
calculate the velocity and position of each robot at every timestep. The leader
robot had a circular path and moves at a constant velocity.
For both algorithms, parameters were chosen by experimentation. The values
that were used for the path planning algorithm are Qr = −150, Br = −2000
and C = 1000. In the swarming algorithm, the constants were chosen as such:
m = 1 C0 = 1, Cl = 0.7, Cr = 50, Ca = 90, lr = 12 and la = 2. Using the
Instrument Control Toolbox, communication between the University of Cincin-
nati Mathematics REU program and our team was established via TCP/IP.
The swarming algorithm previously mentioned was implemented on two sepa-
rate sessions of Matlab, one at each university. Position and velocity data from
each local swarm was exchanged real-time, so the swarms could follow the leader
robot together.

4.4 Implementation

The path planning algorithm was implemented on the actual robots. However,
to detect boundaries, the robot would gather IR sensor data. Then, a curve
was fit to convert the reading to an approximate distance away of an object. If
the object is less than a certain distance away and is inside the testbed, then
the barrier term is nonzero. The algorithm works on one robot, but it does not
always take the most efficient path around a barrier. This is due to the fact
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Figure 6: A simulation of the swarming algorithm with one leader robot, three
blue robots from UCLA and three red robots from Cincinnati

that the IR sensor sees objects outside the testbed that are white or reflective,
so naturally the IR sensor reading is far too large, especially near the boundary
of the testbed. Hopefully, in the future, the camera will be used for on-board
image processing to detect barriers more accurately.
Unfortunately, there are issues with the peer-to-peer communication, so multiple
car path planning and swarming were not able to be implemented on the cars.
However, the algorithms have been coded in C, so once car communication
works, the algorithms should work as well. Naturally, this will allow for swarm-
to-swarm communication with the Cincinnati team, using a Matlab-to-C parsing
script which we already have written as well.

5 Conclusion

The robotics team developed effective communication systems that allow for
cooperative algorithms between both testbeds and individual robots. The Uni-
versity of Cincinnati robotics team and UCLA Applied Mathematics Lab have
coordinated swarming simulations, preparing for actual inter-testbed swarm-
ing maneuvers such as barrier avoidance and leader following. In addition, the
camera hardware on the third generation micro-cars has been configured for the
next step of writing the drivers for the device. The completion of these tasks
lends the robots new sensing capabilities and establishing interaction between
different robotics platforms paves the way for multi-robot coordination.

6 Recommendations for Future Work

The team has generated a list of the following recommendations regarding
the equipment and operation of the UCLA Applied Mathematics Laboratory
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testbed to facilitate the swarm robotics research conducted annually.

• Design the next generation of robots to have a sharper turning radius
so that the vehicles can more accurately track a prescribed path instead
of being limited to a turning radius of 25 cm, which makes up a sixth
of the testbed length, or be capable of holonomic drive (mechanum or
omni-wheels).

• Include an additional radio for the next generation of robots so that there
is no interference between inter-vehicle communication and the informa-
tion exchanged via the GUI interface. As there is now a high amount of
traffic over the Upper Board radio for peer-to-peer communication.

• Complete and stabilize the image capture software. The interrupt and
data collection routines need to be completed and integrated with the
existing suite of peer-to-peer interrupts.
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