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1 Abstract

We will be examining the Sigmoid Beverton-Holt difference equation. It has been
shown that when the Sigmoid Beverton-Holt has a p-periodically-varying growth
rate, there exists a p-periodic globally asymptotically stable solution {xn}. In this
paper we extend this result to include a more general class of Sigmoid Beverton-Holt
functions. Furthermore, we consider the case in which the variables of our general
class are varied randomly and show that there exists a unique invariant density to
which all other densities converge. Lastly, we extend the Beverton-Holt to include
a spatial component and show there exists a unique, stable, non-trivial fixed point
in this case.

2 Introduction

In this paper, we study the solutions of the Sigmoid Beverton-Holt equation:

xn+1 =
anx

δn
n

1 + xδnn
, n ∈ N

with the initial condition
x0 > 0

under varying conditions on the parameters an and δn where an, δn > 0.

The autonomous case of the Sigmoid Beverton-Holt equation (where an = a and
δn = δ are constant) has been introduced by Thompson as a “depensatory general-
ization of the Beverton-Holt stock-recruitment relationship used to develop a set of
constraints designed to safeguard against overfishing.” In the case when δn = 1 for
all n ∈ N the model reduces to the well-known Pielou logistic equation

xn+1 =
anxn

1 + xn
, n ∈ N

which is equivalent to the Beverton-Holt equation:

xn+1 =
µknxn

kn + (µ− 1)xn
, n ∈ N
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The dynamics and properties of both models have been extensively studied [1][2].

With constant δ, the Sigmoid Beverton-Holt model exhibits different behaviors.
In particular, when δ > 1 and an > δ(δ − 1)1/δ−1 the model exhibits the “Allee
effect” first described by W.C. Allee [2][3][4], which models a positive correlation
between popoulation density and growth rate at low population densities. Kocic
et. al. have proven many results about the behavior of this model with constant
δ and a k-periodic sequence {an} where ak+i = ai for all i ∈ N. One goal of this
paper is to extend these results to include the case when both δn and an are varied
periodically.

As an extension to the well-studied periodically-varied Beverton-Holt model, Haskell
and Sacker studied the behavior of the Stochastic Beverton-Holt Model

xn+1 =
µknxn

kn + (µ− 1)xn
, n ∈ N

with µ < 1 and kn chosen randomly[7]. Haskell and Sacker proved that the distri-
bution of the state variable converges to a unique invariant density. Our second goal
in this paper is to extend their result to the Sigmoid Beverton-Holt with varying a
and δ.

As a final extension, we examine the Beverton-Holt equation

f(x) =
ax

1 + x

with regards a to spatial component. As a spatial model has not previously existed,
we construct a map Fα by considering a one-dimensional case in which we have
several populations lying in a line of N boxes. These boxes represent an intial
separation between the populations, and, as time progresses, the populations begin
to move between boxes according to a constant rate. We show there exists a stable,
nontrivial fixed point. We approach this using two methods–the implicit function
theorem and the Banach fixed point theorem. With the former, we find that there
exists a fixed point in the map Fα. However, we further show Fα is a contraction
mapping, and with this we are able to use the latter theorem to show this fixed
point is stable.

3 Periodic Orbits of the Periodically Forced Sigmoid
Beverton Holt

In this section, we investigate the periodically forced Sigmoid Beverton Holt model:

xn+1 =
anx

δn
n

1 + xδnn

where {an} and {δn} are postive periodic sequences with period p. We prove that



under certain conditions, there exists a stable periodic orbit for sequences of Sigmoid
Beverton-Holt equations.

(a) δ ∈ (1,∞), a > acrit (b) δ = 1, a > 1 (c) δ ∈ (0, 1), a ∈ (0,∞)

Figure 1: Sigmoid Beverton-Holts included in F

3.1 The Set F

First, we define the set F to be the set of all functions that have the following
properties:

(i) f is positive, continuous, and increasing everywhere on R+.

(ii) There exists a number Bf ≥ 0 such that f(Bf ) > Bf and f is concave on
(Bf ,∞).

(iii) There exists a number x∗ > Bf such that f(x∗) < x∗.

Claim: There exists a unique fixed point on the interval (Bf ,∞) where f(x) > x
for x ∈ (Bf ,Kf ) and f(x) < x for x ∈ (Kf ,∞).

Proof. Since f(Bf ) > Bf and f is continuous, there exists an x1 > Bf such that
f(x1) > x1. Furthermore, there exists, by definiton, x∗ > Bf such that and
f(x∗) < x∗. Thus, by the Intermediate Value Theorem, there exists a fixed point
between x1 and x∗. We look at {Ki|f(Ki) = Ki and x1 < Ki < x∗}, the set
of fixed points between x1 and x∗. Define Kf = min{Ki|f(Ki) = Ki and x1 <
Ki < x∗}. Suppose there exists another fixed point Pf > Kf . By the interme-
diate value theorem ∃ t0 ∈ (0, 1) s.t. t0x1 + (1 − t0)Pf = Kf . By concavity
Kf = f(t0x1 + (1− t0)Pf ) ≥ t0f(x1) + (1− t0)f(Pf ) = t0f(x1) + (1− t0)Pf . But by
choice of x1, t0f(x1) + (1− t0)Pf < t0x1 + (1− t0)Pf = Kf . By contradiction there
does not exist a fixed point Pf > Kf . Hence Kf is the unique fixed point on (Bf ,∞).

Now we show f(x) > x for x ∈ (Bf ,Kf ) and f(x) < x for x ∈ (Kf ,∞). By
(ii), f(Bf ) > Bf implies f(x) > x for some x ∈ (Bf ,Kf ) since f is increasing. Then
f(x) > x until f crosses the diagonal, (ie until x ≥ Kf ). Therefore f(x) > x for all



x ∈ (Bf ,Kf ). We know that f crosses the diagonal at Kf by (iii). Once f passes
the diagonal, then f(x) < x, and since Kf is the unique fixed point on (Bf ,∞),
f(x) < x for all x ∈ (Kf ,∞).

Claim. Kf is stable on (Bf ,∞).

Proof. By the definition of f, Kf > f(x) > x for x ∈ (Bf ,Kf ) and f(x) < x < Kf

for x ∈ (Kf ,∞). Then the sequence {an} defined by ak+1 = f(ak) ∀ k ∈ N is
increasing on (Bf ,Kf ) and is bounded above by Kf . And {an} is decreasing on
(Kf ,∞) and bounded below by Kf . By monotone convergence {an} has a limit.
Denote this limit L. We will show by contradiction that this limit is Kf . Consider
first the case when the initial value of the sequence is less than Kf . Then the
sequence is bounded above by Kf , so L ≤ Kf . Now suppose that L < Kf , then

L < f(L). Choose ε = |f(L)−L|
2 . Then ∃ δ s.t. ∀ x ∈ (L,Kf ) if |x − L| <

δ then |f(x) − f(L)| < ε. This implies that f(x) > L. Then L < f(x) < Kf and
because f is increasing, the lim

x→∞
{an} > L. By contradiction L ≥ Kf . A similar

proof shows that L ≤ Kf . Therefore L = Kf .

3.2 Our New Class

Given l ∈ R+, define Ul = {f ∈ F|Bf < l < Kf}.

Claim. Ul is a semigroup under composition.

Proof. (i) If g is positive for all x ∈ R+, then for f > 0 for x ∈ R+ we clearly have
f ◦ g > 0 for all positive reals. Similarly, if f and g are continuous and increasing
on R+, then it follows f ◦ g is continuous and increasing on R+.

(ii)We show that there exists a B ≥ 0 such that f ◦ g is concave on (B,∞) and
f(B) > B.

Assume B = Bf > Bg ≥ 0. Since Bg < B < Kg, g(B) > B which implies
that f ◦ g(B) > B. Then, ∀x1, x2 ∈ (B,∞), t ∈ (0, 1), we need to show f ◦
g(tx1 + (1 − t)x2) ≥ tf ◦ g(x1) + (1 − t)f ◦ g(x2). g is concave in (B,∞), and
by definition of concavity, g(tx1 + (1 − t)x2) ≥ tg(x1) + (1 − t)g(x2). Then,
f ◦ g(tx1 + (1 − t)x2) ≥ f(tg(x1) + (1 − t)g(x2)) since f is increasing. Now,
since f is also concave in this interval, we apply the definition again to obtain
f(tg(x1) + (1− t)g(x2)) ≥ tf ◦ g(x1) + (1− t)f ◦ g(x2).

If Bg > Bf , take B = Bf ′ where Bf ′ is such that Kg > Bf ′ > Bg > Bf . This
is possible since f, g are continuous. So now f ◦ g(B) > B, and f ◦ g is concave on
(B,∞) by similar reasoning as above.



(iii) We show that there exists an x∗ such that x∗ > B and f ◦ g(x∗) < x∗.

Case 1: Assume there exists an x > B such that g(x) ≥ Kf . Then pick x∗ such
that g(x∗) > Kf and g(x∗) < x∗. x∗ exists since g is increasing everywhere. Then
f ◦ g(x∗) < g(x∗) < x∗.

Case 2: Assume g(x) < Kf for all x. Since g(x) < Kf everywhere, then f ◦ g(x) <
f(Kf ) = Kf . Thus, f ◦ g(x) < Kf for all x. Take x∗ such that x∗ > Kf . Then
f ◦ g(x∗) < Kf < x∗.

Finally, we show B < l < Kf◦g. Since B = max{Bf , Bg} and Bf < l and
Bg < l, B < l. Assume first that Kg > Kf . Then f(Kg) < Kg which implies
f ◦ g(Kg) = f(Kg) < Kg. Similarly, g(Kf ) > Kf , which implies f ◦ g(Kf ) > Kf .
Thus, we conclude that Kf < Kf◦g < Kg, which implies that Kf◦g > l. Finally, as-
sume that Kf > Kg. Then f(Kg) > Kg which implies that f ◦g(Kg) = f(Kg) > Kg.
Similarly, since g(Kf ) < Kf , f ◦ g(Kf ) < Kf . Thus, Kg < Kf◦g < Kf .

3.3 Application to Non-Autonomous Beverton-Holt Model

The forced Sigmoid Beverton-Holt model is described by: f(xn+1) = anxδn
1+xδn

Theorem. Suppose we have a sequence {(an, δn)} such that there exists a num-
ber l such that for each n, the Sigmoid Beverton-Holt function fn with parameters
(an, δn) is contained in Ul.
Then the sequence {fn} has a periodic orbit for any x0 in the interval (B,∞), where
B is as defined in Claim 1.

Proof. Since each fn is in U , and U is a semigroup, if we take f1, f2, f3...,fn in U
then g(x) = f1 ◦ f2... ◦fn ∈ U . Thus, g has a stable fixed point on the interval
(Bg,∞), which implies f1 ◦ f2...◦fn has a periodic orbit on (Bg,∞).

4 The Stochastic Sigmoid-Beverton Holt Equation

In the next section, we consider the stochastic Sigmoid Beverton Holt model xn+1 =

b(an, δn, xn) =
anx

δn
n

1 + xδnn
with randomly varying carrying capacity. We restrict our

considerations to the cases when δn ∈ (0, 1), an > 0. Notice that under this restric-
tion, b(a, δ, x) is increasing and concave on all of R+. Furthermore, define k = k(a, δ)
to be the carrying capacity of b(a, δ, x). If we have a sequence of functions, {bn}, we
will denote the minimum carrying capactiy of the sequence by kmin.



We will parallel the methods introduced in Haskell and Sacker to show that for
sequences of Sigmoid Beverton Holt equations falling under our restrictions there
exists a unique invariant density to which all other density distribtions on the state
variable converge. As in Bezandry, Diagana, and Elaydi’s paper [8], we have that for
all n ∈ N, (an, δn) is chosen independently from ((x0, a0, δ0)......(xn−1, an−1, δn−1))
from a distribution with density Ψ(a, δ). Thus, the joint density of xn, δn, and an is
given by fn(x)Ψ(a, δ) where fn(x) represents the density of xn. We suppose that the
expected value is finite, and that Ψ(a, δ) is bounded above. Furthermore, we suppose
that that Ψ is supported on [amin, amax]×[0, 1), with amin > 0. It follows that Ψ(a, δ)
is supported on [kmin, kmax), where kmin represents the minimum carrying capacity
of our sequence, and is determined by some (a∗, δ∗) ∈ [amin, amax]×[0, 1). Finally, we
suppose that there is some interval (kl, ku) such that for all a, δ ∈ [amin, amax]×[0, 1)
with k(a, δ) ∈ (kl, ku), Ψ(a, δ) is positive everywhere.

Let h be an arbitrary function in L∞(R+). The expected value of h at time n + 1
is given by

E[h(xn+1)] =

∫ ∞
0

h(x)fn+1(x)dx (1)

Furthermore, since the joint density of xn, δn, and an is given by fn(x)Ψ(a, δ), we
have that

E[h(xn+1)] = E[h(b(a, δ, y))] =

∫ ∞
0

∫ ∞
0

∫ 1

0
h(x)fn(y)Ψ(a, δ)dδdady

We define a = a(x, δ, y) by the equation

x =
ayδ

1 + yδ
(2)

Solving explicitly for a, one gets that

a =
x(1 + yδ)

yδ
(3)

By making the change of variables x = b(a, δ, y), we rewrite the expected value as

E[h(xn+1)] =

∫ ∞
0

∫ ∞
0

∫ 1

0
h(x)fn(y)[

1 + yδ

yδ
]Ψ(a, δ)dδdxdy (4)

By equations (1) and (2), and using the fact that h is arbitrary, we we get that

fn+1(x) =

∫ ∞
0

∫ 1

0
fn(y)[

1 + yδ

yδ
]Ψ(a, δ)dδdy

Let P : L∞(R+)→ L∞(R+) be defined by

Pf(x) =

∫ ∞
0

∫ 1

0
fn(y)[

1 + yδ

yδ
]Ψ(a, δ)dδdy (5)



where a = a(x, δ, y) is defined by equation (3) .

Let (X,A, µ) be an arbitrary measure space and let

D(X) := {f ∈ L1(X) : f ≥ 0 and

∫
fdµ = 1}

be the space of all densities on X. A Markov Operator Q : L1(X)→ L1(X) is said
to be asymptotically stable if there exists f∗ ∈ D for which Qf∗ = f∗ and for all
f ∈ D

lim
n→∞

||Qnf − f∗||L1 = 0

We would now like to prove that P is asymptotically stable. This can be viewed as
the stochatic equivalent to showing that a globally asymptotically stable periodic
orbit exists in the periodic case.

Theorem. The Markov operator P : L∞R+ → L∞R+) defined by (5) is asymptot-
ically stable.

First, we prove the following Lemmas about P .

Lemma 1.
(i) P is nonnegative
(ii) P is a Markov Operator
(iii) If f is supported on [kmin,∞) then so is Pf

Proof.
(i) Clearly, P is nonnegative.
(ii) To show that Pf is a Markov operator, we compute ||Pf ||.

||Pf || =
∫ ∞
0

f(y)

∫ ∫
fn(y)[

1 + yδ

yδ
]Ψ(a, δ)dxdδdy

Let z = a(x, δ, y) =
x(1 + yδ)

yδ
, then

||Pf || =
∫ ∞
0

f(y)

∫ ∫
Ψ(z, δ)dzdδdy =

∫
f(y) = ||f ||

Therefore, P is a Markov Operator.

We now define the stochastic kernel corresponding to P . Let L : R+×R+ → R+ be
defined by

L(x, y) =

∫
1 + yδ

yδ
Ψ(a, δ)dδ (6)

(iii) Note that all the values of Pf will also lie on the interval [kmin,∞). Thus, Pf
is also supported on [kmin,∞).



Now, let Lm denote the stochastic kernel of Pm. To obtain an expression for Lm,
we first define bm : (R+)m × R+ → R inductively by

b1(a0, δ0, x) = b(a0, δ0, x)
b2(a1, δ1, a0, δ0, x) = b(a1, δ1, b

1(a0, δ0, x))
...

bm(am−1, δm−1, . . . , a0, δ0, x) = b(am−1, δm−1, b
m−1(am−2, δm−2, . . . , a0, δ0, x))

From the first equations in this section, we have that on the one hand,

E[h(xn+m)] =

∫ ∞
0

h(x)fn+m(x)dx (7)

while on the other hand,

E[h(xn+m)] = E[h(b(am−1, δm−1, . . . , a0, δ0)] =∫
. . .

∫ ∫ ∫
h(b(am−1, δm−1, . . . , a0, δ0))fn(y)×

Ψ(am−1, δm−1) . . .Ψ(a0, δ0)dam−1dδm−1 . . . da0dδ0dy (8)

By making the change of variables , we get that

E[h(xn+m)] =∫
h(x)

∫ ∫ ∫
1 + zδ

zδ
fn(y)Ψ(a, δ) . . .Ψ(a0, δ0)dδdam−2dδm−2 . . . da0dδ0dydx (9)

where z = bm−1(am−2, δm−2, ....a0, δ0, y) and a is given by x = bm(a, δ, . . . , a0, δ0, y).

By equating (8) and (9), we see that

fn+m =

∫
. . .

∫ ∫
1 + zδ

zδ
fn(y)Ψ(a, δ) . . .Ψ(a0, δ0)dam−2dδm−2 . . . da0dδ0dδdy which

implies that

Lm =

∫
. . .

∫ ∫
1 + zδ

zδ
Ψ(a, δ) . . .Ψ(a0, δ0)dam−2dδm−2 . . . da0dδ0dδ

We break up our investigation of how P into two parts. First, we consider how P
acts on the parts of the density whose support is in [kmin,∞)

Lemma 2. P : L1[kmin,∞)→ L1(kmin,∞) is asymptotically stable.



Proof. To prove that P is asymptotically stable, it suffices to show that there exists
an integer m, a function g ∈ L1[kmin,∞) and an interval (α, β) such that for all
x, y ∈ R+, we have that

Lm(x, y) ≤ g(x)
and for all x ∈ (α, β) and y ∈ [kmin,∞),

Lm(x, y) > 0

Notice that if x < kmin, Lm(x, y) = 0, and similarly for x if x > amax. Thus,
we defineg : [kmin,∞) as

g(x) =


0 x < kmin

{supa∈R+ Ψ(a, δ̂)}{supam−2,δm−2...a0,δ0,y
1+zδ

zδ
} kmin < x < amax

0 x > amax

This implies that Lm(x, y) ≤ g(x). Furthermore, since the expected value is finite,
g ∈ L1[kmin,∞). Thus, the first condition is satisfied.

As to the second condition , first notice that for all a ∈ R+, δ ∈ (0, 1) and
x ∈ (kmin,∞), bn(a, δ, . . . a, δ, x) → k as n → ∞, where k is the carrying capac-
ity of the map determined by a and δ.

We choose al, δl, au, δu such that ∀ y ∈ [kmin,∞)

lim
n→∞

bn(al, δl, ..., al, δl, y) = kl

and
lim
n→∞

bn(au, δu, ..., au, δu, y) = ku

Claim: There exists m ∈ N large enought such that

bm(al, δl, ..., al, δl, y) <
kl + ku

2
< bm(au, δu, ..., au, δu, y)

for all y ≥ kmin.

Proof. Since
lim
n→∞

bn(au, δu, ..., au, δu, y) = ku

there exists an m1 ∈ N such that

bm1(au, δu, ..., au, δu, y) >
kl + ku

2

On the other hand, since

lim
n→∞

bn(al, δl, ..., al, δl, y) = kl



there exists an m2 ∈ N such that

bm2(au, δu, ..., au, δu, au) <
kl + ku

2

Since b(au, δu, y) is bounded by au, this implies that

bm2+1(au, δu, ..., au, δu, y) <
kl + ku

2

Thus, if we let m = max{m1,m2 + 1}, then we conclude that

bm(al, δl, ..., al, δl, y) <
kl + ku

2
< bm(au, δu, ..., au, δu, y)

Set α = kl+ku
2 and β = bm(au, δu, ..., au, δu, y). If x ∈ (α, β) and y ∈ [kmin,∞), the

inequalities above imply that

bm(al, δl, ..., al, δl, y) < x < bm(au, δu, ..., au, δu, y).

Since bm is continuous in all variables it follows by the implicit function theorem that
there exists an open ball B ⊂ (kl, ku)m−1 and a function κ : B → (al, au)X(δl, δu)
such that for all (a0, δ0, ...., am−2, δm−2) ∈ B, (a, δ) = κ(a0, δ0, ...., am−2, δm−2) is a
solution of x = bm(a, δ, a0, δ0, ...., am−2, δm−2). It follows that Lm(x, y) > 0. This
completes the proof of the lemma.

We now consider how P acts on the parts of the density whose support is in [0, kmin].

Lemma 3. If f ∈ L1(R+) then

lim
m→∞

∫ kmin

0
Pmf(x)dx = 0

Proof. Let ε > 0. Pick M with 0 < M < kmin such that∫ M

0
f(x)dx < ε

Then for all a, δ such that k(a, δ) ∈ (kl, ku), we know we have b(a, δ,M) > M .
Furthermore chooseN > M such that the setA = {(a, δ) : k(a, δ) ≥ klandb(a, δ,M) >
N} has positive Lebesgue mesaure, q. Consider the straight line y = g(x) from
(M,N) to (kl, kl). We know that fpr (a, δ ∈ A and x ∈ (M,kl), b(a, δ, x) will always
lie above this line, due to the fact that b is concave, increasing, and k(a, δ) ≥ kl. Let
y > m. Then there exists a k such that bk(ak, δk, . . . , a0, δ0, y) > kmin where the ai,
δi are in A. Thus, after k steps, we have that



∫ kmin

0
P kf(x)dx ≤

∫ M

0
f(x)dx+ (1− q)

∫ kmin

M
f(x)dx ≤ ε+ (1− q)

∫ kmin

M
f(x)dx

Thus, we have that∫ kmin

0
Pmkf(x)dx ≤ ε+ (1− q)m

∫ kmin

M
f(x)dx

So we can conclude that

lim
m→∞

∫ kmin

0
Pmkf(x)dx = 0

as m→ 0
and the proof is complete.

5 Spatial Considerations

We now consider a spatial component in our study of the Beverton-Holt model

f(x) =
ax

1 + x

In particular, we find that, under certain conditions of α, there exists a stable,
non-trivail fixed point for our map.

Consider a one-dimensional case where the populations lie in a line of boxes
from 1 to N and move between boxes at rate α. We can model this behavior by
xj+1 = Fα(xj) where Fα : RN → RN is defined by

Fα(x1, x2, · · · , xN ) = (y1, y2, · · · , y3)

where
y1 = f1((1− α)x1 + αx2)

yi = fi(αxi−1 + (1− 2α)xi + αxi+1), i = 2, · · · , N − 1

yN = fN (αxN − 1 + (1− α)xN )

where fi(x) = aix
1+x , and ai > 1.

Notice if α = 0, our system is uncoupled, with a non-trivial fixed point at (a1 −
1, a2 − 1, · · · , aN − 1).

From Figure 2, Fα seems to converge to a fixed point of the mapping. We will use
the implicit function theorem to show there exists a non-trivial fixed point when α
is close to 0. Also, we will give an alternative proof using the Banach fixed point



(a) 100 Iterations of 5 Populations (b) 100 Iterations of 1000 Populations

Figure 2: Fixed point iteration where α = .3; ai = sin( (i−1)πN−1 ) + 2

theorem from which we can deduce this fixed point is stable, depending on certain
conditions on α. We have included in this section statements of both theorems as a
reminder for the reader.

5.1 Implicit Function Theorem

Let g : Rn+m → Rm be a continuously differentiable function, with Rn+m having
coordinates (x,y) and let (a,b) satisfy g(a,b) = c, where c ∈ Rm. If the matrix
[ ∂gi∂yj

(a,b)] is invertible, then there exists an open set U containing a, an open set V

containing b, and a unique continuously differentiable function φ : U → V such that

{(x, φ(x)|x ∈ U} = {x,y ∈ U × V|g(x,y) = c}.

5.2 Application to Spatial Beverton-Holt Model

Let
g(α, x1, x2, · · · , xN ) = Fα(x1, x2, · · · , xN )− (x1, x2, · · · , xN ).

Notice g : R1+N → RN , and g(0, a1 − 1, · · · , aN − 1) = (0, 0, · · · , 0).

Claim: Fα has a non-trivial fixed point.

Proof. To use the implicit function theorem, we need to show the Jacobian matrix

∂gi
∂xj

(α, x) =





a1(1−α)
d1

− 1 a1α
d1

0 · · · · · · 0

a2(α)
d2

a2(1−2α)
d2

− 1 a2(α)
d2

0 · · · 0

0
. . .

. . .
. . .

. . . 0
...

...

0 · · · aN (α)
dN

aN (1−α)
dN

− 1


where d1 = (1 + (1−α)x1 +αx2)

2, d2 = (1 +αx1 + (1− 2α)x2 +αx3)
2, ..., dN =

(1 + αxN−1 + (1− α)xN )2.

evaluated at (0, a1 − 1, ..., aN − 1) is invertible, i.e. we need to show the deter-
minant is not equal to 0. Evaluation of the Jacobian at this point gives us

∂gi
∂xj

(0, a1 − 1, ..., aN − 1) =



1
a1
− 1 0 · · · 0

0 1
a2
− 1 0 · · · 0

...
. . .

. . .
...

0 1
aN−1

− 1 0

0 · · · 0 1
aN
− 1


We see that

det(
∂gi
∂xj

(0, a1 − 1, ..., aN − 1)) = (
1

a1
− 1)× (

1

a2
− 1)× · · · × (

1

aN
− 1)

which is non-zero because the ai’s are greater than one. Therefore, the implicit
function theorem is satisfied, and by this we have an open set U ⊂ R that contains
0, an open set V ⊂ RN that contains (a1 − 1, · · · , aN − 1), and a map φ : U → V
such that

{(α, φ(α)) : α ∈ U} = {(α,x) ∈ U × V : g(α,x) = (0, 0, · · · , 0)}

In other words, for all α sufficiently close to 0, the map F has a fixed point.

5.3 Banach Fixed Point Theorem

Let (X, d) be a non-empty complete metric space. Let T : X → X be a contraction
mapping on X, i.e. there is a q ∈ R+, where q < 1, such that

d(T (x), T (y)) ≤ q · d(x, y)

for all x, y ∈ X. Then T has a unique, stable fixed point in X.



5.4 Application to Spatial Beverton-Holt Model

Claim: Fα has a stable, non-trivial fixed point.

Proof. We need to show Fα is a contraction mapping. Notice that |Fα(x1, · · · , xN )−
Fα(y1, · · · , yN )| equals

|(a1[(1−α)x1+αx2]
1+(1−α)x1+αx2

−a1[(1−α)y1+αy2]
1+(1−α)y1+αy2

, a2[αx1+(1−2α)x2+αx3]
1+αx1+(1−2α)x2+αx3

−a2[αy1+(1−2α)y2+αy3]
1+αy1+(1−2α)y2+αy3

, · · · ,

aN [αxN−1+(1−α)xN ]
1+αxN−1+(1−α)xN

− aN [αyN−1+(1−α)yN ]
1+αyN−1+(1−α)yN

)|

≤ a1(1−α)+a2α
(1+(1−α)x1+αx2)(1+(1−α)y1+αy2)|x1 − y1|

+ a1α+a2(1−2α)+a3α
(1+αx1+(1−2α)x2+αx3)(1+αy1+(1−2α)y2+αy3)|x2 − y2|+

· · ·+ aN−1(1−α)+aNα
(1+(1−α)xN−1+αxN )(1+(1−α)yN−1+αyN )|xN − yN |

< a1(1−α)
(1+(1−α)x1+αx2)(1+(1−α)y1+αy2)|x1 − y1|

+ a2(1−2α)
(1+αx1+(1−2α)x2+αx3)(1+αy1+(1−2α)y2+αy3)|x2 − y2|

+ aN (1−α)
(1+(1−α)xN−1+...+αxN )(1+(1−α)yN−1+αyN )|xN − yN |

Let X be that subset of RN where (x1, · · · , xN ) ∈ X) if and only if

(1 + (1− α)x1 + αx2) ≥
√
a1

(1 + αxi−1 + (1− 2α)xi + αxi+1) ≥
√
ai i = 2, · · · , N − 1

(1 + (1− α)xN−1 + αxN ) ≥
√
aN

Then, if x,y ∈ X we see from above that

|F(x) - F(y)| < (1 − α)|x1 − y1| + (1 − 2α)|x2 − y2| + · · · + (1 − α)|xN − yN | ≤
(1− 2α)|x− y|.

Now it is left to show Fα maps X to itself. Let x ∈ X be given. Let y = Fα(x).
Recall that

y1 =
a1[(1− α)x1 + αx2]

1 + (1− α)x1 + αx2



yi =
ai[(αxi−1 + (1− 2α)xi + αxi+1]

1 + αxi−1 + (1− 2α)xi + αxi+1
, i = 2, ..., N − 1

yN =
aN [(1− α)xN−1 + αxN ]

1 + (1− α)xN−1 + αxN

Thus,

1 + (1− α)y1 + αy2 = (1− α)
a1[(1− α)x1 + αx2]

1 + (1− α)x1 + αx2
+ α

a1[(1− α)x1 + αx2]

1 + (1− α)x1 + αx2

> (1− α)
a1[(1− α)x1 + αx2]

1 + (1− α)x1 + αx2
.

Consider g such that g(x) = x
1+x . Notice g is positive and increasing for x > 0. We

see we have (1−α)(a1)g((1−α)x1+αx2). Since x ∈ X, we know g((1−α)x1+αx2) >
g(
√
a1 − 1) = 1− 1√

a1
. Thus,

1 + (1− α)y1 + αy2 > (1− α)(a1)(1−
1√
a1

) = (1− α)
√
a1(
√
a1 − 1)

which is greater than
√
a1 − 1 when (1− α)

√
a1 > 1 or α < 1− 1√

a1
.

Similarly, we can show that

(1 + αxi−1 + (1− 2α)xi + αxi+1) ≥
√
ai i = 2, · · · , N − 1

(1 + (1− α)xN−1 + αxN ) ≥
√
aN

provided α < 1
2(1− 1√

ai
), i = 2, ..., N − 1 and α < 1− 1√

aN
, respectively.

Therefore, Fα is a contraction mapping in X when

α < min

 1− 1√
a1

i = 1
1
2(1− 1√

ai
) i = 2, · · · , N − 1

1− 1√
aN

i = N



and therefore has a unique, stable fixed point in X.

6 Conclusion

In this paper, we found that previous results for the Sigmoid Beverton-Holt with a
periodically-varying growth rate could be extended to a general class of functions.
In particular, we constructed a class Ul such that for all sequences of functions in Ul,
there exists a periodic orbit for any x0 in the interval (B,∞). This class includes



periodically forced Sigmoid Beverton-Holt functions with certain parameters. In
particular, it includes not only Sigmoid Beverton-Holts with one non-trivial fixed
point, often known as the carrying capacity, but also includes those that exhibit an
Alle effect as well.

As extensions, we first considered the case of a randomly-varying environment, in
which an and δn were taken from a random distribution. We discovered that there
exists a unique invariant density to which all other density distributions on the
state variable converge. This extended results proven by Sacker and Haskell [7] and
Bezandry, Diagana and Elaydi [8].

We also noted spatial considerations, and seeing as none had previously existed,
constructed a Sigmoid Beverton-Holt model with δ = 1 with regards to a spatial
component. To achieve this we looked at a one-dimensional case in which the popu-
lations lie in a line of boxes and move between boxes according to a constant rate α.
We first used the implicit function theorem to show there exists a non-trivial fixed
point. We then followed with the stronger Banach fixed point theorem and showed
that this non-trivial fixed point is unique and stable.
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